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Abstract

Experiments and micromechanical simulations generate tabular data for material behavior.
Typically, models are �t to thesematerial data before engineering simulations can be performed.
It is frequently discovered that existingmodels cannot express the experimental data adequately,
and new models have to be developed and �t. ¿is process is undesirable and a preferable ap-
proach is to directly use the tabular data without model building. In this work, we discuss such
a tabular model and associated numerical algorithms in the context of the elastoplastic behavior
of a poorly graded concrete sand. Special considerations for tabulated data are described and the
model is tested in hydrostatic compression, uniaxial compression, and pure shear. ¿e model
reproduces experimental behavior of the sand, but only if the bulk moduli and crush curve ex-
tracted from the input hydrostat are scaled by 1.7 and 1.2 times, respectively. An implication
of this observation is that the assumption of isotropy may be signi�cantly inaccurate at high
compression.

1 Introduction

Tabulated data are increasingly being used as inputs to elastoplastic simulations to avoid the devel-
opment of speci�c models that �t those data. However, algorithms that can handle such data are
sparsely described in the research literature. In this work we describe an algorithm that can be used
to handle tabulated data for elastoplastic materials that are pressure-dependent and have a compres-
sion cap, but do not depend on the third principal invariant of the deviatoric stress (J3). ¿ematerial
that is explored is a poorly-graded concrete sand that not only is nonlinear in the elastic domain,
but also exhibits a strong increase of the elastic bulk modulus with increasing inelastic strain. We
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are mainly interested in the moderate to extremely high pressure regimes that are experienced in
applications such as the penetration of soil by high-speed projectiles and explosions in soil.

In previous work, we have explored the use of support vector models (Banerjee, Fox, and Regueiro,
2020c) and neural network models (Banerjee, Fox, and Regueiro, 2020b) to generate functional rep-
resentations of multi-variable tabular data for elastoplastic simulations. If the extra e�ort of �tting
suchmachine learningmodels is to be avoided, tabular data have to be interpolated directly. Various
approaches to interpolating tabular data, e.g., linear interpolation, radial basis function interpola-
tion, and kriging interpolation have been discussed in Banerjee, Fox, and Regueiro (2020a). In this
paper, we focus on the elastoplasticity algorithm and use linear interpolation of tabular data (with
the understanding that any of the other approaches can be swapped in for linear interpolation in the
elastoplasticity code).

¿e basics of elastoplasticity theory in rate form are discussed, with emphasis on elasto-plastic cou-
pling and the contribution of the coupling tensor (Z) and the projection tensor (P). ¿e stress up-
date algorithm requires a closest-point projection step because the yield condition is only available
in discretized form and only the zero level set of the yield function is available when tabular data are
used directly. An iterative process is used to improve estimates of the projection tensor (P) and the
non-hardening plastic strain rate factor (λ̇). A hardening correction is then applied to allow for the
evolution of the compression cap.

Several special considerations are needed to handle tabular data. For example, the input yield func-
tion data have to be forced to lie on a convex surface. Also, the vertices created during the dis-
cretization of the yield function have to be smoothed. We use a quadratic B-spline for smoothing
the yield surface and use that smooth approximation to determine the closest point and normal to
the yield surface for a give trial stress state. ¿emodel and algorithms have been implemented in the
open-sourceVaango code and tested for accuracy using hydrostatic compression, uniaxial compres-
sion, and simple shear. Results from these simulations are compared with hydrostatic compression
loading-unloading data and show that the approach discussed in this work is both computationally
e�cient and accurate.

¿is paper is organized as follows. Section 2 discusses the experimental data that provides the justi�-
cation for this work as well as a validation set. ¿e elastoplasticitymodel is discussed in Section 3 and
the stress update algorithm in elaborated upon in Section 4. Special considerations that are needed
to handle tabular data are discussed in Section 5. ¿e response of the model in hydrostatic compres-
sion is compared with experimental data in Section 6 and predicted behaviors in uniaxial tension
and simple shear are presented. Some concluding remarks are given in Section 7.

2 Experimental data

¿e experimental data that have been used as a test-bed for the modeling process are for a dry,
poorly-graded, concrete sand described by Fox et al. (2014) and tested at theUniversity ofMaryland.1
Further details on the particular set used in this work can be found in (Banerjee, Fox, and Regueiro,
2020c). In this paper, compressive states are assigned positive values and tensile states are assigned
negative values.

1Stephen Akers, 2018, Private communication, CCDC Army Research Laboratory, Aberdeen Proving Ground, MD,
USA
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¿e hydrostatic loading-unloading data for that sand is presented as a plot of pressure (p) as a func-
tion of the total volumetric strain (εv) in Figure 1(a). ¿e loading curve, shown in cyan, is used to
�t a crush-curve model. ¿e unloading curves are used to �t a bulk modulus model that depends
on the plastic strain. Tangents to the unloading curves represent the bulk modulus and have been
plotted in Figure 1(b). ¿ere is a strong dependence of the bulk modulus (K) on both the elastic (εev)
and plastic (εpv ) volumetric strains.

(a) Loading-unloading curves (b) Tangent bulk modulus curves

Figure 1 – Hydrostatic loading-unloading data and unloading bulk moduli for dry
poorly-graded concrete sand.

¿e crush-curve extracted from the hydrostatic compression data is depicted in Figure 2(a). Since
the term “crush-curve” is used more commonly to refer to the change in porosity as a function of
pressure form, we shown this form of the curve in Figure 2(b). ¿e porosity (ϕ) has been computed
using ϕ = p3 − εvp where εvp is the volumetric plastic strain and p3 = 0.325 is the volumetric plastic
strain at which all pores have been crushed (Brannon, Fuller, et al., 2015).

¿e original yield function curve for the concrete sand intersected the deviatoric stress axis approxi-
mately 5 kPa (compression), indicating that a purely elastic response was not possible when the sand
was loaded from zero strain. To ensure that simulations did not run into any di�culty, the function
was shi ed to the tensile regime by 5 kPa to provide a small amount of cohesion. A plot of the yield
function in p-q space is shown in Figure 3. Here p is the mean stress, de�ned as p = 1/3 tr(σ), q is
the deviatoric yield stress given by q =

√
3J2 where J2 = 1/2 s ∶ s, σ is the Cauchy stress, s = σ − pI is

the deviatoric part of the Cauchy stress, and I is the second-order identity tensor. ¿e crush curve
suggests that nonlinear bulk moduli are not su�cient to explain the observed yield response and a
compression cap is needed to model the material.

3 Tabular elastoplasticity model

In this work, instead of designing algebraic expressions that can explain and �t the experimental data
presented in Section 2, we use the tabular data directly in an elastoplasticity model. Models are, of
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Figure 2 – Crush-curves for dry poorly-graded concrete sand.

Figure 3 – Yield function for dry poorly-graded concrete sand.
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course, needed where limited or no experimental data are available, such as for the evolution of the
shear modulus and the compression cap for the yield surface.

We assume that the unrotated total strain rate (ε̇) can be additively decomposed as (Brannon, 2007;
Banerjee and Brannon, 2019)

ε̇ = ε̇e + ε̇p (1)
where εe is the elastic strain and εp is the plastic strain. ¿e unrotated nonlinear elastic response is
assumed to be coupled with the plastic response and is given by a relation of the form

σ = σ(εe , εpv ) (2)

where σ is the unrotated Cauchy stress, and εpv is the plastic volumetric strain de�ned as

εpv ∶= ∫ tr(ε̇p)dt . (3)

¿e rate form of (2) is

σ̇ = ∂σ
∂εe

∶ ε̇e + ∂σ
∂εpv

ε̇pv . (4)

3.1 Elasticity model

¿e elastic response is assumed to be given by

∂σ
∂εe

= C(εev , ε
p
v ) (5)

where C is the elastic sti�ness, assumed isotropic in this work, obtained by varying σ while keeping
εpv �xed, and εev ∶= tr(εe) is the volumetric elastic strain. ¿e sti�ness matrix can then be expressed
as

C = [K(εev , ε
p
v ) − 2

3G(εev , ε
p
v )] I ⊗ I + 2G(εev , ε

p
v ) I (6)

where K is the tangent bulk modulus, G is the tangent shear modulus, I is the second-order identity
tensor, I is the symmetric fourth-order identity tensor.

In the tabular model, the tangent bulk modulus is determined from a table of unloading curves
(see Figure 1 for an example). ¿e unloading curves consist of data for the mean stress (pressure),
p = 1/3tr(σ), as a function of the total engineering volumetric strain, εv . Each unloading curve is
associated with a �xed plastic volumetric strain (εpv ). As discussed in Banerjee, Fox, and Regueiro
(2020a), bulk moduli can either be computed by converting the pressure curves, p(εpv , εev), to bulk
modulus curves, K(εpv , εev) = dp/dεev , and interpolating the bulk moduli directly, or by interpolating
pressures and computing bulk moduli using a central di�erence scheme:

K(εpv , εev) =
p(εpv , εev + є) − p(ε

p
v , εev − є)

2є
(7)

where є > 0 ∈ R. ¿e tolerance є is usually has a value of 10−6 or smaller.

¿e shear modulus is assumed to be either a constant (G0) or determined using a constant Poisson’s
ratio (ν) from the bulk modulus, i.e.,

G(εpv , εev) =
⎧⎪⎪⎨⎪⎪⎩

3K(1−2ν)
2(1+ν) if ν ∈ [−1, 0.5]
G0 otherwise

(8)
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3.2 Plasticity model

¿e yield function is assumed to be of the form

f =
√
J2 − g(p) Fc(p) (9)

where J2 = 1/2s ∶ s is the second principal invariant of the unrotated deviatoric Cauchy stress (σ),
and the deviatoric stress is s = σ − pI. ¿e function g(p) is the deviatoric yield stress, assumed to be
available in tabular form, while Fc(p) is the compression cap. For elastic loading/unloading, f < 0.
During plastic deformation f = 0. Values greater than zero are not allowed, though they are useful
for stress update algorithms. ¿is is expressed as the consistency condition, ḟ = 0.

Since tabular data for the cap are typically not available, we assume an elliptical function (Brannon,
Fuller, et al., 2015):

F2c =
⎧⎪⎪⎨⎪⎪⎩

1 − ( p−κ
pc−κ)

2
for p ≥ κ

1 for p < κ
(10)

¿e value of κ is determined by the location of the compression cap (pc) and a cap ratio (R) using

κ = pt + R(pc − pt) (11)

where pt is the maximum tension that can be supported by the material, determined as the inter-
section of g(p) with the mean stress axis (see Figure 3). A schematic of the two components of the
yield function is shown in Figure 4.

p

g(p)
Fc

p
t cp

Figure 4 – Schematic of the yield functions g(p) and Fc . ¿e notation p is used to
facilitate comparisons with previous work. Note that p = −p when the
convention is that tension is positive.

¿e crush curve table (see Figure 2) is used to determine the location of maximum value of the
compression cap (pc) for a given value of ε

p
v . One-dimensional linear interpolation is used to extract

the value of pc for a given volumetric plastic strain.

¿e tabular model assumes a �ow rule of the form

ε̇p = λ̇M (12)
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where ε̇p is the unrotated plastic strain rate tensor, λ is the consistency parameter, and M is a unit
tensor in the direction of the plastic strain rate. For associated plasticity,M = N̂ where N̂ is the unit
normal to the yield surface:

ε̇p = λ̇N̂ , N̂ = N
∥N∥

, N = ∂ f
∂σ

(13)

where f is the yield function. Note that this normal cannot be determined from tabular data for states
that lie outside the zero level set of the yield function. ¿erefore special consideration is needed. For
non-associated plasticity, the direction of the plastic strain rate tensor is computed using

ε̇p = λ̇M , M = dev(N) + β tr(N)
∥dev(N) + β tr(N)∥

(14)

where β is a parameter that can be adjusted to �t dilatation data, if available.

3.3 Coupled elastic-plastic response

While a continuous representation of elastic-plastic coupling is not essential for the modeling and
simulation of the behavior of the test sand material, it is informative to examine the implications of
that coupling on the governing equations (Brannon, 2007).

Inserting (6) and (5) into (4), we get

σ̇ = C ∶ ε̇e + ∂σ
∂εpv

ε̇pv = 3K ε̇eiso + 2G ε̇edev +
∂σ
∂εpv

ε̇pv (15)

where
ε̇eiso ∶= 1

3 tr(ε̇
e)I and ε̇edev ∶= ε̇

e − ε̇eiso . (16)

If we substitute (1) into (15), we get

σ̇ = 3K(ε̇iso − ε̇piso) + 2G(ε̇dev − ε̇
p
dev) +

∂σ
∂εpv

ε̇pv (17)

where ε̇iso, ε̇dev, ε̇
p
iso, and ε̇

p
dev are de�ned analogously to the de�nitions in (16). Substitution of the

�ow rule (12) into (17) gives

σ̇ = 3K(ε̇iso − λ̇Miso) + 2G(ε̇dev − λ̇Mdev) +
∂σ
∂εpv

ε̇pv (18)

where
Miso ∶= 1

3 tr(M)I and Mdev ∶= M −Miso . (19)

From the de�nition of the volumetric plastic strain rate (3) and using the �ow rule (12), we have

ε̇pv = tr(ε̇p) = λ̇tr(M) . (20)

¿erefore, equation (18) can be written as

σ̇ = 3K(ε̇iso − λ̇Miso) + 2G(ε̇dev − λ̇Mdev) + λ̇
∂σ
∂εpv

tr(M) (21)
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Assuming all other quantities are known, we still need to determine the derivative of the stress with
respect to the volumetric plastic strain and some assumptions are needed for us to be able to compute
that. To determine the coupling term we use the approach suggested in Hueckel and Maier (1977)
where we start with the nonlinear elastic model

εe = εe(σ , εpv ) (22)

¿e rate form of equation (22) is

ε̇e = ∂εe

∂σ
∶ σ̇ + ∂εe

∂εpv
ε̇pv = S(σ , εpv ) ∶ σ̇ +

∂εe

∂εpv
ε̇pv (23)

where S(σ , εpv ) is the rank-4 compliance tensor given by

S = C−1 = 1
3 (

1
3K(p, εpv )

− 1
2G(p, εpv )

) I ⊗ I + 1
2G(p, εpv )

I , p = 1
3 tr(σ) . (24)

We can contract C with (23) to get

C ∶ ε̇e = σ̇ + (C ∶ ∂ε
e

∂εpv
) ε̇pv . (25)

Comparing using (15) and (25), we have

σ̇ = C ∶ ε̇e − (C ∶ ∂ε
e

∂εpv
) ε̇pv = C ∶ ε̇e + ∂σ

∂εpv
ε̇pv Ô⇒ ∂σ

∂εpv
= −C ∶ ∂ε

e

∂εpv
. (26)

An estimate for the partial derivative with respect to the plastic volumetric strain can be found by
assuming that

∂εe

∂εpv
≈ ∂S
∂εpv

∶ σ = − [ 1
3K2

∂K
∂εpv

pI + 1
2G2

∂G
∂εpv

s] (27)

¿en the derivative of stress with respect to the volumetric plastic strain can be expressed as

∂σ
∂εpv

= 1
K
∂K
∂εpv

pI + 1
G
∂G
∂εpv

s . (28)

We can now substitute (28) into (21) to get the elastic stress rate model that we seek:

σ̇ = 3K(ε̇iso − λ̇Miso) + 2G(ε̇dev − λ̇Mdev) + λ̇ [
1
K
∂K
∂εpv

pI + 1
G
∂G
∂εpv

s] tr(M) (29)

Note that the above rate-form stress-strain relation has the general form

σ̇ = C ∶ (ε̇ − λ̇M) − λ̇Z (30)

where Z is the elastic-plastic coupling term given by

Z = − [ 1
K
∂K
∂εpv

pI + 1
G
∂G
∂εpv

s] tr(M) . (31)
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3.4 Trial stress and return projection operator

Since tabular data are available only for the zero level set of the yield function, standard return al-
gorithms cannot be used for tabular elastoplasticity. Instead, an appropriate projection operation is
needed to return the trial stress state to the yield surface. In this section we discuss the main features
of such a projection operation.

For the plastic part of the loading process, the evolution of the compression cap requires that we
assume that the stress state must lie on an evolving yield surface which is expressed as

f (σ , εpv ) = 0 . (32)

¿e consistency condition requires that
λ̇ ḟ = 0 . (33)

During plastic loading, λ̇ > 0. Combining the time derivative of f with the �ow rule (20), we have

∂ f
∂σ

∶ σ̇ = −λ̇ ∂ f
∂εpv

tr(M) . (34)

Noting that the derivative of f with respect to σ represents the normal to the yield surface in stress
space, we can write

N̂ ∶ σ̇ = λ̇H (35)

where N̂ is the unit normal to the yield surface, and H is a hardening modulus de�ned as

H ∶= − ∂ f
∂εpv

tr(M)
∥N∥

. (36)

At this stage we can apply the standard projection of a trial stress state on to the yield surface. Let
the rate of the trial stress be given by

σ̇ trial = C ∶ ε̇ . (37)

Using (37) in (30) gives
σ̇ = σ̇ trial − λ̇(C ∶ M + Z) = σ̇ trial − λ̇P (38)

where
P ∶= C ∶ M + Z . (39)

From (35) and (38), solving for λ̇, we get

λ̇ = N̂ ∶ σ̇ trial

N̂ ∶ P +H
. (40)

Substituting (40) in (38), we have

σ̇ = H ∶ σ̇ trial , H ∶= I − P ⊗ N̂
P ∶ N̂ +H

. (41)

Let us de�ne a linear projection operator, P, such that (Brannon, 2007)

P ∶= I − P ⊗ N̂
P ∶ N̂

. (42)
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¿en

P ∶ A = P ∶ B i� A = B + αP (43)

where α is a scalar, and
H = P − ( 1

P ∶ N̂ +H
− 1
P ∶ N̂

)P ⊗ N̂ . (44)

We use the above relation betweenH and P to show that

P ∶ (H ∶ A) = P ∶ A (45)

for any rank-2 tensor A, which implies that H ∶ σ̇ trial can be expressed as a linear combination of
σ̇ trial and P. ¿is observation will be useful for designing a closest point return algorithm in the
appropriate transformed stress space.

4 Stress update

Equation (41) is continuous and the projection operatorH requires that we know the stress state (σ)
at every instant of time before it can be evaluated. For materials where C is a function of the elastic
and plastic strains, even the determination of the trial stress requires that we know the �nal stress.
Since the �nal stress state is unknown and typically cannot be solved in closed-form, a discretized
“stress-update” algorithm is required that can provide an approximate stress. ¿is is achieved by
approximately integrating (41) over a (small) timestep ∆t.

Let the known values at the beginning of the timestep (tn) be σn, εn, (εev)n, (ε
p
v )n, Cn, Kn, and Gn.

Let those at the end of the timestep (tn+1) be σn+1, εn+1, (εev)n+1, (ε
p
v )n+1, Cn+1, Kn+1, and Gn+1. In

a strain-driven calculation, we know εn+1 but the rest of the quantities at tn+1 are unknown. If a
�rst-order �nite di�erence scheme and a small timestep (∆t = tn+1 − tn) is used, we have

σ̇ = σn+1 − σn
∆t

and σ̇ trial = σ trialn+1 − σn
∆t

= Cn ∶ (εn+1 − εn)
∆t

. (46)

For elastic-plastic deformations, equation (41) applies for the part of the timestep that is plastic, i.e.,
λ̇ = 0. Let ∆te be the elastic part, if any, of the timestep. ¿en,

σ̇e = σ̇ trial =
σ triale − σn

∆te
= Cn ∶ (εen+1 − εn)

∆te
. (47)

where σ triale is stress at the end of the elastic interval and εen+1 is the elastic strain at the end of the
time increment. For the plastic part of the timestep, ∆tp = ∆t − ∆te , we have

σ̇p = H ∶ σ̇ trial = σn+1 − σ triale
∆tp

(48)

Combining (47) and (48),
σn+1 = σn +H ∶ σ̇ trial∆tp + σ̇ trial∆te . (49)

Substituting for σn with the second of equations (46), we have

σn+1 = σ trialn+1 +H ∶ σ̇ trial∆tp − σ̇ trial∆tp . (50)
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Let us now apply the projection P to equation (50). ¿en

P ∶ σn+1 = P ∶ σ trialn+1 +P ∶ H ∶ σ̇ trial∆tp −P ∶ σ̇ trial∆tp . (51)

Using (45) we get

P ∶ σn+1 = P ∶ σ trialn+1 +P ∶ σ̇ trial∆tp −P ∶ σ̇ trial∆tp = P ∶ σ trialn+1 . (52)

From (43) and (52), we see that
σn+1 = σ trialn+1 + αPn+1 (53)

where α is a scalar and

Pn+1 = Cn+1 ∶ Mn+1 + Zn+1

Zn+1 = −
⎡⎢⎢⎢⎢⎣

1
Kn+1

∂K
∂εpv

RRRRRRRRRRRn+1
pn+1I +

1
Gn+1

∂G
∂εpv

RRRRRRRRRRRn+1
sn+1

⎤⎥⎥⎥⎥⎦
tr(Mn+1) .

(54)

Comparison of (53) with (38) indicates that

α = −(λn+1 − λn) = −∆λ =∶ −Γ . (55)

¿erefore we can write
σn+1 = σ trialn+1 − ΓPn+1 where Γ = λ̇∆tp . (56)

Even though the plastic part of the time step is not necessary to solve this stress update equation, it
still requires an iterative approach if the unknown quantities at tn+1 are to be determined.

4.1 Closest point projection

¿e �rst step in the iterative approach is to compute a closest point projection of a trial stress to the
yield surface. To compute the trial stress, we assume that the sti�ness matrix is constant such that
σ trial = σn+Cn ∶ (εn+1−εn). We also assume that the yield surface is �xed and normals to the surface
do not change over the timestep. Let g(σ trial) be the value of the yield function at the trial state. Let
σn+1 be actual stress under these assumptions and let g(σn+1) = 0 be the value of the yield function
at the actual stress state.

If we assume the actual stress state on the yield surface is at the closest distance from the trial stress,
we can devise the primal minimization problem:

minimize f (σ) = ∥σ trial − σ∥2 , ∥σ∥ ∶=
√
σ ∶ σ

subject to g(σ) ≤ 0
(57)

¿e Lagrangian for this problem is

L(σ , λ) = f (σ) + ∆λg(σ) = ∥σ trial − σ∥2 + ∆λg(σ) (58)

¿e Karush-Kuhn-Tucker conditions for this problem at the optimum value σn+1 are

g(σn+1) ≤ 0 , ∆λ ≥ 0 , ∆λg(σn+1) = 0 ,
∂ f (σn+1)

∂σ
+ ∆λ ∂g(σn+1)

∂σ
= 0 . (59)
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From the last condition we see that the closest distance using this criterion leads to a stress value of

σn+1 = σ trial − 1
2∆λ

∂g(σn+1)
∂σ

(60)

But we have seen previously in equation (56) that the �rst-order stress update leads to

σn+1 = σ trial − ΓPn+1 = σ trial − ∆λ(Cn+1 ∶ Mn+1 + Zn+1) . (61)

For associated plasticityMn+1 = N̂n+1 = ∂gn+1/∂σ , andwith the assumption thatC is �xed,Cn+1 = Cn
and Zn+1 = 000. Incorporating the normalizing factor for the yield surface normals into λ, we have

σn+1 = σ trial − ∆λCn ∶
∂g(σn+1)

∂σ
. (62)

¿e similarity between the (60) and (62) indicates that the actual stress state is at a “closest” point
from the trial stress state. However, the correct closest distance is not in the standard standard stress
space, but in a space where the norm to be minimized is given by (Simo and Hughes, 2006)

∥σ∥C−1 =
√
σ ∶ C−1 ∶ σ =

√
σ ∶ S ∶ σ = ∥σ∥S . (63)

¿is can be veri�ed by computing the optimality conditions for a minimization problem with the
modi�ed norm.

¿e distance measure
∥σ∥S =

√
σ ∶ S ∶ σ (64)

can be interpreted as a standard Euclidean distance measure in a transformed stress space by ob-
serving that (Homel, 2015)

∥σ∥S =
√

(σ ∶ S1/2) ∶ (S1/2 ∶ σ) =
√

(S1/2 ∶ σ) ∶ (S1/2 ∶ σ) =
√
σ⋆ ∶ σ⋆ = ∥σ⋆∥2 (65)

where we have used the major symmetry of S = S1/2 ∶ S1/2.

Note that this particular closest-point interpretation applies only for perfect plasticity and only asso-
ciative �ow rules. For hardening plasticity, the space in which the actual stress is closest to the trial
stress is di�erent. For non-associative plasticity, it is unclear whether any closest-point approach can
be rigorously justi�ed.

¿e transformed stress tensor can expressed as (Homel, 2015)

σ⋆ = S1/2 ∶ σ = [ 1
√
3κ

Piso + 1
√2µ

Psymdev] ∶ (z Ez + r Er) . (66)

where
Piso = 1

3 I ⊗ I , Psymdev = I −Piso (67)

and the stress tensor has been expressed in the Lode basis (Brannon, 2007)

σ = z Ez + r Er , z = 1
√3 tr(σ) , r = ∥s∥2 , Ez = 1

√3 I , Er =
s

∥s∥2
. (68)
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We can show that

Piso ∶ Ez = Ez , Piso ∶ Er = 000 , Psymdev ∶ Ez = 000 , Psymdev ∶ Er = Er . (69)

¿erefore,
σ⋆ = z

√
3κ

Ez +
r

√2µ
Er . (70)

¿e transformed stress remains geometrically unchanged (angles do not change) if we express it as

σ⋆ = z Ez +
√

3κ
2µ

r Er =∶ z Ez + r′ Er . (71)

¿is straightforward way of computing stresses in the transformed space can be used directly in a
geometrical closest point projection algorithm.

4.2 Iterative solution

We can now apply a multi-stage return algorithm (Brannon and Leelavanichkul, 2010) to determine
the updated state. ¿e trial stress is computed using σ trialn+1 = σn +Cn ∶ (εn+1 − εn). ¿e algorithm has
four stages:

1. Keeping all quantities �xed at the beginning of the timestep, use a geometric closest point
return algorithm to determine an estimate of σn+1. Let us call this estimate σCn+1 with the
superscript C indicating that this is the geometric closest point.

2. Still keeping all quantities �xed, compute an improved estimate for σn+1. Let us denote this
estimate as σFn+1 with the superscript F indicating that the elastic moduli and internal variables
have been kept �xed. ¿e elastic and plastic strains for this state are (εen+1)F and (εpn+1)F , and
their volumetric components are (εev)F and (εpv )F , respectively.

3. In the third step we �nd estimates of σn+1 = σHn+1, εen+1 = (εen+1)H and εpn+1 = (εpn+1)H while
varying the internal variables. ¿e superscript H indicates that during this stage hardening is
included in the algorithm.

4. In the �nal step, a closest point projection is used to move σHn+1 back to the yield surface to
the point σn+1. ¿e elastic and plastic strains, εen+1 and ε

p
n+1, are computed and used to update

the elastic moduli. ¿is procedure implicitly assumes that elastic moduli vary in a stepped
manner and therefore requires that time increments be small.

Assume that we have an estimate for σCn+1. ¿en we can write,

σFn+1 − σ trialn+1 = (σFn+1 − σCn+1) + (σCn+1 − σ trialn+1 ) (72)

Let the yield function unit normal evaluated at the closest-point stress estimate be

N̂C = NC

∥NC∥ , N
C = ∂

∂σ
[ f (σ , εpv )]

RRRRRRRRRRRσ=σCn+1 ,εpv=(εpv )n
. (73)

¿en
(σFn+1 − σ trialn+1 ) ∶ N̂C = (σFn+1 − σCn+1) ∶ N̂C + (σCn+1 − σ trialn+1 ) ∶ N̂C (74)
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When the states σFn+1 and σCn+1 are close to each other (or when the curvature of the yield surface
between these points is relatively small), we can make the assumption that

(σFn+1 − σCn+1) ∶ N̂C ≈ 0 . (75)

Also, for a �xed yield surface, with ΓF ∶= λFn+1 − λn,

σFn+1 − σ trialn+1 = −ΓFPn . (76)

Substituting (75) and (76) into (74) we have

ΓF ≈ −(σCn+1 − σ trialn+1 ) ∶ N̂C

Pn ∶ N̂C
. (77)

¿e improved stress estimate, σFn+1, is obtained by substituting (77) into (76):

σFn+1 ≈ σ trialn+1 +
(σCn+1 − σ trialn+1 ) ∶ N̂C

Pn ∶ N̂C
Pn . (78)

¿e updated unit normal to the yield surface is

N̂F = NF

∥NF∥ , N
F = ∂

∂σ
[ f (σ , εpv )]

RRRRRRRRRRRσ=σ F
n+1 ,ε

p
v=(ε

p
v )n

. (79)

¿e stress state σFn+1 likely does not lie on the yield surface, and an iterative method is required to
make sure it is close to the yield surface as shown in the following pseudo-code.

Algorithm 1 Computing σFn+1, N̂F , PF , HF , and ΓF iteratively.

Require: σn, Cn, Zn, Nn, Mn, σ trialn+1
1: procedure computeSigmaF
2: k ← 0, ΓFk ← 0, σFn+1,k ← σ trialn+1 .
3: repeat
4: Compute σCn+1,k+1 using closest point return to yield surface of σ

F
n+1,k .

5: Compute NC
n+1,k+1 using (73).

6: Compute MC
n+1,k+1 using (14).

7: Update Pn,k+1 = Cn ∶ MC
n+1,k+1 + Zn.

8: Compute ΓFk+1 using (77)
9: Compute σFn+1,k+1 ← σ trialn+1 − ΓFk+1Pn,k+1
10: Update k ← k + 1
11: until (ΓFk+1 − Γ

F
k ) < є

12: Update σFn+1 ← σFn+1,k+1, P
F ← Pn,k+1, and ΓF ← ΓFk+1

13: Update N̂F ,NF ,MF using (79).

14: Compute HF = −
⎛
⎜
⎝
∂ f
∂εpv

RRRRRRRRRRRσ=σ F
n+1 ,ε

p
v=(ε

p
v )n

⎞
⎟
⎠

tr(MF)
∥NF∥ .

15: return σFn+1, PF , N̂F , HF , and ΓF
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16: end procedure

In the third stage of the process, we have to consider changes to the yield surface due to the evo-
lution of internal variables. From the consistency condition (35), a �rst order approximation of the
displacement of the yield surface (along the yield surface normal) during the time increment ∆t is
(using (55))

N̂ ∶ (σn+1 − σn) = (λn+1 − λn)H = ΓH . (80)

We implicitly assume that the normal to the yield surface does not change during the timestep. ¿is
observation indicates that we can update the value of Γ for hardening/so ening plasticity using the
approximation (Brannon, 2007)

ΓH = ΓF PF ∶ N̂F

PF ∶ N̂F +HF
(81)

A er ΓH has been found, we can compute σHn+1 using

σHn+1 = σ trialn+1 − ΓHPF . (82)

¿is stress state may not lie on the yield surface, and a closest point projection is needed to force it
back to the yield surface. ¿is is the �nal stress state, σn+1.

¿e corresponding increment in elastic strain can be computed using

∆(εen+1) = (εen+1) − εen = C−1n ∶ (σn+1 − σn) . (83)

¿e incremental plastic strain can then be computed using

∆(εpn+1) = (εpn+1) − ε
p
n = (εn+1 − εn) − ∆(εen+1) . (84)

Volumetric components of these strains can then be computed by taking the trace of these increments
and adding them to the accumulated values. ¿ese are then used to update the elastic moduli in
preparation for the next timestep.

5 Special considerations for tabular data

During the stress update process, a trial stress state is computed using the discretized trial stress rate
in (46). ¿is computation requires the elastic moduli, C, to be extracted from the tabular data as
described in previous work (Banerjee, Fox, and Regueiro, 2020a). ¿e elastic moduli table can also
be used to compute the derivatives needed in the elastic-plastic coupling term, Z. Since a return
algorithm is used, the stress state is available before the elastic strain. ¿erefore, computation more
convenient if we use a table of bulk moduli as a function of pressure (mean stress) as depicted in
Figure 5. As can be seen in the �gure, the experimental data are not smooth and improved inter-
polations of the data can be performed if the input tables are smoothed prior to use in simulations.

A er the trial stress state has been computed, a check is needed to determine whether this state in
inside or outside the yield surface. To ensure convexity of yield surface, a convex hull of the tabular
data representing g(p) should be computed (see Figure 6) and points that do not fall on the hull
should be removed from the table.
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Figure 6 –¿e function g(p) corrected using a convex hull. ¿e notation p is used
to facilitate comparisons with previous work. Note that p = −p when
the convention is that tension is positive.
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Since the yield surface consists of a table for g(p) and a continuous function for Fc(p) (see equa-
tion (9)), a preliminary check for the whether a stress state is plastic can be performed by comparing
it with the rectangle bounding the yield function. A secondary test, applicable when p ≤ κ is to use
linear interpolation to �nd the value of the yield function, g(p), at a given value of p and compare
the trial value of

√
J2 at that state. A direct evaluation of the yield function is possible for p > κ.

However, the composite yield function used in this process contains numerous vertices where the
normal to the yield surface is not well-de�ned. If these vertices are to be avoided, the straightfor-
ward checks in the previous paragraph are not su�cient. A more elaborate approach is needed to
determine the value of f (p,

√
J2) and ∂ f /∂σ .

First, Fc(p) is discretized and appended to the table for g(p) (which is truncated or extended by
linear extrapolation as required) as shown in Figure 7. ¿e number of points, (p,

√
J2), in the com-

posite discretized yield function can be large (of the order of > 103). To facilitate searches, we can
create a kd-tree (Blanco and Rai, 2014) from the point set. ¿e closest segments on the yield sur-
face from a given trial stress can then be computed using a nearest neighbor search of the kd-tree.
¿e three points corresponding to the two closest segments can then be used to �t a open, uniform,
quadratic B-spline. A Newtonmethod, as described below, can then be used to �nd the closest point
on the spline from the trial stress.

Figure 7 –¿e cap function Fc(p) is discretized and joined to a truncated or ex-
tended table of values of g(p) to form the composite yield function.

Let p0, p1 and p2 be the three control points of the quadratic B-spline. Inmatrix form, the parametric
equation of the spline, b(t) is (Gordon and Riesenfeld, 1974)

[bx by] = [1 t t2] [S]
⎡⎢⎢⎢⎢⎢⎣

p0x p0y
p1x p1y
p2x p2y

⎤⎥⎥⎥⎥⎥⎦
(85)
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where the spline matrix [S] is one of

[S]0 =
⎡⎢⎢⎢⎢⎢⎣

2 0 0

−4 4 0

2 −3 1

⎤⎥⎥⎥⎥⎥⎦
, [S]1 =

⎡⎢⎢⎢⎢⎢⎣

1 1 0

−2 2 0

1 −2 1

⎤⎥⎥⎥⎥⎥⎦
, [S]2 =

⎡⎢⎢⎢⎢⎢⎣

1 1 0

−2 2 0

1 −3 2

⎤⎥⎥⎥⎥⎥⎦
. (86)

¿e matrix [S]0 is used if the closest segments include the starting point of the yield function, [S]2
if the segments include the last point, and [S]1 is used for all other segments. ¿e closest point pc
from a point ptrial to the spline b is the zero of the function

χ(t) = [ptrial − b(t)] ⋅
db
dt
. (87)

¿e Jacobian of this function is

dχ
dt

= −
db
dt

⋅
db
dt

+ [ptrial − b(t)] ⋅
d2b
dt2

. (88)

Newton’s method for �nding the value of t at which χ = 0 can then be expressed as

tk+1 = tk − [
dχ
dt

]
−1

k
χ(tk) (89)

Upon termination of the iterative process, the closest point on the spline is computed using pc =
b(tk+1) and the tangent at that point is tc = db/dt∣k+1. A schematic of the closest point computation
process is depicted in Figure 8.

-1500 -1000 -500 0 500

-500

0

500

1000

1500

Yield function

B-splines

Closest points

Figure 8 –¿e closest point is computed to a smooth B-spline based approximation
to the yield function. ¿is process becomesmore accurate as the number
of points representing the yield function increases.

¿e closest point computed with this process represents the actual location of the smoothed yield
surface, and trial stress states determined to be elastic using the simple checks discussed earlier may
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no longer be elastic with respect to the actual yield surface. However, whether the trial stress is inside
or outside the spline can be determined by examining the sign of the implicit function B(x , y) that
corresponds to the parameterized curve b(t). An easier alternative is to �nd the orientation of the
polygon (p0, pc , p1, ptrial) using the Shoelace formula (Feito, Torres, and Urena, 1995)

Q = (pcx−p0x)(pcy+p0y)+(p1x−pcx)(p1y+pcy)+(ptrialx −p1x)(ptrialy +p1y)+(p0x−ptrialx )(p0y+ptrialy )
(90)

and checking (sign will change depending on the orientation of the yield function polyline)
⎧⎪⎪⎨⎪⎪⎩

Q < 0 elastic (clockwise orientation)
Q > 0 plastic (counter-clockwise orientation) .

(91)

Since the plastic part of the stress-update algorithm also requires a closest point calculation in z and
r′-space, the procedure for evaluating the yield condition discussed above should be carried out in
that space for e�ciency. Once the closest point has been found and transformed back into p-

√
J2

space, the stress tensor at that point can be computed using

σ c = pcI +
√
Jc2√
Jtrial2

strial (92)

where the superscript c indicates quantities at the closest point and the superscript “trial” indicates
the corresponding trial stress values.

¿e stress update process also requires the computation of the yield surface normal at the closest
point. ¿e composite yield function is

f =
√
J2 − h(p) (93)

and the normal is given by

N = ∂ f
∂σ

= ∂ f
∂p

∂p
∂σ

+ ∂ f
∂J2

∂J2
∂σ

= ∂ f
∂p

∂p
∂σ

+ ∂ f
∂J2

∂J2
∂s

∶ ∂s
∂σ

. (94)

Since p = 1/3 I ∶ σ , s = (I − 1/3I ⊗ I) ∶ σ , and J2 = 1/2 s ∶ s, we have

∂p
∂σ

= 1
3 I ,

∂s
∂σ

= I − 1
3 I ⊗ I ,

∂J2
∂s

= s . (95)

¿erefore,

N = ∂ f
∂p
I + ∂ f

∂J2
s = −

dh
dp
I + 1

2
√
J2
s . (96)

At the closest point, the tangent is tc = (tcx , tcy) and we have

dh
dp

=
tcy
tcx

and s =
√
Jc2√
Jtrial2

strial . (97)

¿e normal at the closest point is therefore given by

N c = −
tcy
tcx
I + 1

2
√
Jc2

√
Jc2√
Jtrial2

strial = −
tcy
tcx
I + 1

2
√
Jtrial2

strial . (98)
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¿us we have all the quantities needed for the elastic-plastic stress update algorithm. ¿e projection
directions for determining the closest point and the normals to the yield surface at these points are
shown in Figure 9. ¿e two-dimensional plot in Figure 9(b) shows that the normals to the yield
surface do not necessarily appear to be perpendicular to the yield function in p-

√
J2 space, which is

not the case when they are plotted in principal stress space (Figure 9(a)).

Normal

Projection direction

Yield surface

(a) Principal stress space.

Yield function

Normal

Projection
direction

(b) p-
√
J2 stress space.

Figure 9 – Projection directions andnormals to the yield surface at the closest point
from a trial value of stress. Note that these directions are generally not
identical.

6 Model response

¿e approach discussed in this work has been implemented in Vaango (Banerjee, 2014).2 To verify
the overall implementation, the suite of tests suggested by Kamojjala et al. (2015) were performed
on single particles by driving the simulation with a prescribed deformation gradient time history.
To check the validity of the tabular models of the poorly-graded sand, a single-particle hydrostatic
compression test was simulated and compared with the experimental data. Model responses were
also computed for uniaxial compression and simple shear using the sand tabular data.

6.1 Hydrostatic compression

¿e hydrostatic compression simulation was driven by a deformation gradient computed from vol-
umetric strains in the loading-unloading curves of the poorly-graded concrete sand. ¿e strains in
the experimental curves were assumed to be logarithmic strains, related to the deformation gradient,
F = RU , by ε = ln(U) where U is the stretch tensor and R is the rotation tensor. Figure 10(a) shows
the deformation gradient time history, while Figure 10(b) shows the evolution of stress components
as a function of time.

2¿e model can be accessed in Vaango using the material tag tabular_plasticity_cap . ¿e elastic modulus model is
invoked with the tabular_bulk tag, the yield condition model with tabular_cap , and the cap evolution model is activated
with the internal variable model tag tabular_cap .
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(a) Deformation gradient vs. time. (b) Stress vs. time.

Figure 10 –¿e deformation gradient used to drive the hydrostatic compression
test, and the computed stress-time histories.

A comparison of the experimental hydrostatic stress-strain curve with simulation results is shown
in Figure 11(a). ¿e �gure also shows the pressures as functions of the volumetric elastic and plastic
strains (εev , ε

p
v ). Dashed lines indicate experimental data. ¿ough the unloading points are simulated

exactly as per the experiments and the cap crush-curve is also followed accurately, the predicted
pressure starts to deviate from experiment at around 25% volumetric strain. ¿e unloading bulk
moduli are observed to be smaller that the experimental values when unloading at a volumetric
strain of 36%. ¿e discrepancy in �nal pressure can also be observed from the evolution of the yield
surface in p-q–space, presented in Figure 11(b). ¿e experimentally observedmaximum value of the
cap is more than two times the predicted value.

A er careful examination of the implementation and veri�cation of individual components of the
model we were convinced that the implementation and approach were reasonable. ¿e discrepancy
between experiments and simulation could only be explained if the assumptions used to determine
the plastic strains, bulk moduli, and cap pressures from the experimental data were not true. ¿is
includes the additive decomposition of strains into elastic and plastic parts, the assumption that
plastic strains remain constant during unloading, and that the crush-curve plastic strains could be
interpolated based on the elastic strains at the beginning of unloading. ¿ese issues require further
investigation using micromechanical methods.

In the absence of improved theories of sand behavior, and to satisfy the need for e�cient predictive
models, we can scale the bulk modulus and cap pressure to �t observations as is usually done while
�tting material models. If the bulk modulus is scaled by a factor of 1.7 and the crush-curve pressure
is scaled by a factor of 1.2, we observe the results shown in Figure 12 (a) and (b). ¿e elastic strain
is considerably larger even though the e�ect on plastic strains is small, and the simulations match
experimental data quite well. Better �ts can, of course, be obtained using nonlinear optimization
tools.
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1
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(b) Evolution of yield surface in p-q–space.

Figure 11 – Evolution of stress and the yield surface in hydrostatic compression.
Dashed lines indicate experimental values.

(a) Mean stress vs. volumetric strain. (b) Evolution of yield surface in p-q–space.

Figure 12 – E�ect of scaling the bulk modulus and cap pressure on the evolution of
stress/yield surface in hydrostatic compression. Dashed lines indicate
experimental values.
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6.2 Uniaxial strain compression

¿e behavior of the model in uniaxial strain, with scaled values of bulk modulus and compression
cap, has been simulated for the strain history shown in Figure 13(a). It produces the stress-time
response in Figure 13(b). ¿e material is compressed to around 51% strain and then uncompressed
until the stresses are zero. Notice that, beyond 38% axial strain, the model produces almost identical
stresses in the x and y directions.

(a) Deformation gradient vs. time. (b) Stress vs. time.

Figure 13 –¿e deformation gradient used to drive the uniaxial compression test,
and the compute stress-time evolution.

¿e σxx and σyy components of stress are plotted as a function of the uniaxial strain in Figure 14(a).
Expressed as a p-q plot, the stress path can be more readily visualized from Figure 14(b). ¿e stress
is approximately parallel to the initial yield surface up to a plastic strain of around 33% a er which
it turns towards the cap. During unloading, the stress follows an elastic path until it meets the yield
surface. Further unloading is along the yield surface until the tension vertex is reached.

6.3 Simple shear deformation

A simple shear can be used to test the response of the model for a situation where the cap does not
evolve. We used the scaled moduli and cap pressure, and the deformation gradient history shown
in Figure 15(a) to simulate simple shear. ¿e corresponding stresses have been plotted as a function
of time in Figure 15(b). ¿e shear stress rapidly reaches the yield surface, a er which it follows the
surface and drops to a negative value when unloading begins. ¿e model predicts a normal stress
that is approximately twice the shear stress in magnitude.

To determine whether the results in the previous �gure are reasonable, we can examine the strain
evolution plots shown in Figure 16. Elastic shear strains are small and the normal components sum
to zero, as expected. ¿e elastic shear strain increases to 0.01% before decreasing slightly. ¿e trend is
reversed during unloading. Plastic shear strains, on the other hand, are quite signi�cant and increase
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Figure 14 – Evolution of stress and the yield surface in uniaxial strain compression.
Dashed lines indicate experimental values.

(a) Deformation gradient vs. time. (b) Stress vs. time.

Figure 15 –¿e deformation gradient used to drive the simple shear test, and the
computed stress-time evolution.
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to around 40% before decreasing to zero at the end of unloading. Plastic normal strains are also non-
zero but cancel out, leading to zero volumetric plastic strain during the entire load-unload cycle.

Figure 16 –¿e evolution of strain tensor components in the simple shear test.

Figure 17(a) shows a plot of the shear stress as a function of the shear strain (εxy). ¿e rapid change
in the shear stress indicates that the material does not resist shear and deforms rapidly under shear
strains. ¿e same behavior can be observed in the yield surface plot shown in Figure 17(b). ¿e stress
state cannot go into the cap region of the model and remains at the top of cap. ¿e plot also shows
that a small amount of volumetric plastic strain is computed by themodel, possibly due to numerical
imprecision.

(a) Stress vs. strain in the compression direction. (b) Evolution of yield surface in p-q–space.

Figure 17 – Evolution of stress and the yield surface in uniaxial strain compression.
Dashed lines indicate experimental values.
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7 Concluding remarks

¿e algorithm described in this work involves a number of table searches at each timestep of an
simulation. ¿e search process is considerably sped up when a kd-tree is used, particularly at high
pressures when the yield surface can easily contain several thousand discretization points. We have
observed that speed improvements of the order of 5-10 times over the course of a simulation when
kd-trees are used, even when the index is recomputed for each closest point calculation, than when
linear searches of the yield function or bulk modulus tables are used.

Improved estimates of the unloading paths during hydrostatic compression are produced when the
elastic moduli data are input in the form of bulk modulus vs. pressure data, rather than as bulk
modulus vs. strain tables. ¿is is partly because the stress state on the yield surface is geometrically
accurate and elastic strains are computed on the basis of the stress state. While pressure vs. total strain
curves could have been used instead, we have shown (Banerjee, Fox, and Regueiro, 2020a) that the
interpolated moduli are less accurate in that case and also produce steeper unloading curves.

¿e elastic-plastic coupling term (Z) typically contributes around 1% to the value of the projection
tensor P. However, at high pressures the value of derivative of the bulk modulus with respect to
plastic volumetric strains becomes large, such that Z ≥ C ∶ M. As a result P switches direction and
can cause the computed value of Γ, the plastic strain rate factor, to become negative. Since the e�ect
of the coupling term is small when we use the iterative algorithm with small timesteps discussed in
this paper, we ignore that terms in our calculations.

Another e�ect that is observed is that the iterations for ΓF may fail to converge near regions of large
curvature in the yield surface. A bisection algorithm such as that discussed in previous work (Baner-
jee and Brannon, 2017; Banerjee and Brannon, 2019) can be used to produce more accurate results
in these regions of stress space. However, the overall e�ect on the �nal solution has not been found
to be signi�cant enough to justify the extra computation work needed.

¿e most signi�cant physical observation from this study is that the assumptions that were used to
extract the bulk modulus and crush curve from experimental data may not be accurate, as exhibited
by the failure to reproduce experimental hydrostatic compression data without increasing the bulk
modulus and cap pressure. ¿is indicates that these assumptions need to be re-examined, particu-
larly the assumption of continued isotropy of the material upon compressive loading and unloading.
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