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Abstract

Experimental and microscale simulation data are used to design material models for gran-
ular materials. ¿ese data are collected in tabular form, o en as the outcome of a design-of-
experiments process when multiple independent variables are expected to a�ect the result of
an experiment. Tabular data are collected densely for one independent variable, typically the
strain. Data are obtained sparsely in the other dimensions. In this paper, we discuss possible ap-
proaches to using tabular data directly in material models without attempting to design and �t
closed-form expressions. A dry, poorly-graded, concrete sand is used as the test material and we
focus on the plastic strain-dependent bulkmodulus. Linear interpolation, radial basis functions,
and kriging are explored. ¿e kriging and linear interpolators are found to produce acceptable
predictions provided bulk moduli are computer from the input data and then interpolated. We
recommend kriging for models that involve more than two independent variables.

1 Introduction

Continuum mechanics-based simulations require material models for closure of the governing sys-
tem of partial di�erential equations. ¿ough the primary features of these material models, such
as elasticity, can vary signi�cantly, many standardized models are available. A user can �nd pa-
rameters for these models from handbooks, research articles, or through standardized experiments.
However, many of these models require secondary features such as density dependence, strain-rate
dependence, coupled elasto-plasticity, etc. for accurate representation of the physics.

Granular materials such as soils and rocks are particularly problematic because of the wide range
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of possible secondary material model features. Experimental data for these materials are typically
saved as tables where the primary independent variable (e.g., strain) is densely sampled while sec-
ondary independent variables (e.g., density, plastic strain, etc.) are sparsely sampled. One approach
of dealing with such materials is to develop closed-form expressions for the models and then to �t
parameters.

For example, in the KAYENTA model (Brannon et al., 2015; Banerjee and Brannon, 2019) for gran-
ular solids, experimental data are �tted to the bulk modulus (K) model:

K(I1, εpv ) = fK [{b0 + b1 exp(−b2/∣I1∣)} − b3 exp(−b4/∣εpv ∣)] (1)

where I1 is the trace of the stress, ε
p
v is the plastic volumetric strain, fK is a joint degradation factor,

and (b0, b1, b2, b3, b4) are �tted parameters. When an attempt is made to �t this model to data on
sand and clay, it is quickly discovered that the model is inadequate and has to be reformulated.

¿e process of reformulating and re�tting models whenever a new material is encountered is inef-
�cient and cumbersome, and therefore avoided in practice. Instead, the tabular experimental data
are directly used for simulations. However, there is no universally accepted method of interpolating
tabular data of the form encountered in mechanics.

In previous work, we have discussed support vector machines (Banerjee, Fox, and Regueiro, 2020b)
and arti�cial neural networks (Banerjee, Fox, and Regueiro, 2020a) for interpolating tabular exper-
imental data. In this paper, we discuss approaches for interpolating unstructured tabular data and
focus on simulations where there are multiple independent variables. Linear interpolation, radial
basis function interpolation, and kriging interpolation are explored. ¿ese approaches are applied
to the problem of interpolation of the bulk modulus of a dry poorly-graded concrete sand.

Section 2 discusses the three interpolation approaches explored in this paper. ¿e experimental
data used to compare the three approaches are brie�y described in Section 3. Results are shown in
Section 4 and some concluding remarks are given in Section 5.

2 Interpolating tabular data

Multivariate experimental data are o en collected in the form of ragged tables (Browne et al., 1995).
All independent variables, except one, are kept �xed and dependent variables are measured as the
single independent variable is varied. ¿is process gives a structure to the data because the mea-
sured independent variable is usually identical for each experiment and sampled densely. On the
other hand, the remaining independent variables are sampled relatively sparsely. For example, elas-
tic unloading curves in soil plasticity may have the form shown in Table 1.

A schematic of ragged tabular data can be seen in Figure 1. In this particular case there are three
independent variables: the plastic strain (β), the saturation (α), and the total volumetric strain (ε).
¿e pressure (p) is the dependent variable. ¿e data represent a function of the form p = p(ε, α, β).
For a numerical simulation to be able to use such tabular data, we have to compute the pressure (p0)
and its derivatives (∂p/∂α, ∂p/∂β, . . . ) given an input point (ε0, α0, β0) in the three-dimensional
independent variable space. ¿is process involves interpolation. In general, there can be n indepen-
dent variables andm dependent variables. Clearly, the data and the associated interpolation process
can become quite complex as the number of dimensions increases.
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Table 1 – A typical set of tables for the elastic unloading of sand. In the table α

is the water saturation, β is the volumetric plastic strain, ε is the total
volumetric strain, and p is the pressure (mean stress).

α 0 0.1
β 0 0.06 0.14 0 0.07

ε p ε p ε p ε p ε p
0 0 0 55 0.062 155 0 0 0.001 150
0.0003 41 0.0002 266 0.063 486 0.0001 50 0.002 250
0.0005 77 0.0005 479 0.064 817 0.0005 101 0.003 400
0.0008 113 0.0007 691 0.065 1150 0.001 205 . . . . . .
0.001 150 0.001 904 0.066 1480 0.0015 305 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 0.08 20000
0.027 16162 . . . . . . . . . . . . 0.15 20000

0.081 16193 . . . . . .
0.090 63152
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Figure 1 – Schematic plot of tabular material data for a soil with elastic-plastic
coupling. ¿e circle in blue is the data point for which we would like to
�nd the pressure.

Mutivariable curve interpolation has a long history and was initially applied to data that could be
mapped topologically to a planar rectangular grid (Ferguson, 1964). A more general approach that
could be applied to parameterized curves was developed by Coons (Coons, 1967). ¿ough the idea
continues to be in widespread use for two-dimensional surfaces embedded in three dimensions, the
original report explains how surfaces can be �tted and interpolated in higher dimensions. Math-
ematical proofs of the quality of approximation generated by Coons’ blending functions have also
been available for quite some time (Gordon, 1971).
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Adetailed survey and evaluation of algorithms for the interpolation ofmultivariate data by Franke (Franke,
1979; Franke, 1982) indicated that, at the time, there were six major classes of methods in use: in-
verse distance weighted interpolation, triangle-based blending, �nite element interpolation, Foley’s
methods, nodal basis function methods, and Franke’s spline based interpolation methods. How-
ever, Franke did not consider Coons’ geometric approach based on parametric boundary curves,
perhaps because a continuous interpolating parameterization of point data is expensive (Floater and
Surazhsky, 2006).

Improvements in geometric interpolation have continued to be made (Peters, 1991; Barequet and
Sharir, 1996; Lazarus, 1997; Dam, Koch, and Lillholm, 1998; Johan, Koiso, and Nishita, 2000; Good-
man, 2001; Surazhsky and Elber, 2002). In particular, geodesic interpolation methods developed in
recent years have led to high quality interpolants that are both mathematically accurate and visually
satisfactory (Grazzini, Soille, and Bielski, 2007; Sprynski et al., 2008; Farouki, Szafran, and Biard,
2009). However, the focus of these methods has continued to be limited to three-dimensional data
even though the domains of application have broadened to include not only CADdesigns (Xu, Chen,
and Feng, 2002) but also curve and image morphing (Surazhsky and Elber, 2002), reconstruction of
three-dimensional scan data (Baloch et al., 2005), etc.

Since Franke’s work, distance weighted methods have gained in popularity because of their ease of
implementation. In particular, radial basis function methods (Broomhead and Lowe, 1988; Sch-
aback, 1995; Buhmann, 2000) and kriging (Oliver and Webster, 1990; Remy et al., 2002; Gu, 2003)
have exhibited clear advantages over parameterized geometry based method when applied to three
or more dimensions. In this paper, we explore linear interpolation, radial basis functions, and krig-
ing because these do not require meshing and can therefore be easily extended to higher dimen-
sions. However, we have found that geometric interpolation methods work better for two- and
three-dimensional data.

2.1 Linear interpolation

To illustrate the linear interpolation process let us consider the unknown function p = p(α, ε)where
p is the pressure, and the two independent variables are the saturation (α) and the total strain (ε) as
shown in Figure 2(a). We seek to �nd the value of the pressure (p0) at the location (α0, ε0).

¿e procedure assumes that the α values are sorted in ascending order. If α0 ∉ [α1, αN], linear
extrapolation is used to extend the data that have been provided. Notice that at least two sets of data
are needed for the interpolation procedure to work.

¿e �rst step in the process is to search for the pressure-strain data from the ragged table that are
needed for the interpolation process. ¿is can be accomplished by iterating through the αs and
�nding a value of the parameter s ∈ [0, 1] where

s = α0 − αk
αk+1 − αk

, k = 1, 2, . . . ,N − 1 (2)

where N is the number of values of α for which data are available. If α0 is such that s < 0 or s > 1,
the �rst two sets of curves or the last two sets in the ragged table are chosen for extrapolation.

Once the two curves needed for interpolation have been identi�ed, the next step is to �nd the seg-
ments of the pressure-strain curves that correspond to the independent variable ε0. ¿ese segments
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(a) Stage 1. (b) Stage 2.

Figure 2 – Schematic of the �rst two steps of linear interpolation for a three variable
table of material data. ¿e circle in blue is the input point for which we
would like to �nd the pressure.

are highlighted with thick lines in Figure 2(b). ¿e two associated parameters t1 and t2 are calculated
using

t1 =
ε0 − ε j,k
ε j,k+1 − ε j,k

, k = 1, 2, . . . ,M j − 1

t2 =
ε0 − ε j+1,k

ε j+1,k+1 − ε j+1,k
, k = 1, 2, . . . ,M j+1 − 1

(3)

where ε j,k is a point on the pressure-strain curve for saturation α j, and M j is the number of points
on the curve.

We can now compute the pressures at these two points, using

p1 = (1 − t1)p j,k + t1p j,k+1
p2 = (1 − t2)p j+1,k + t2p j+1,k+1

(4)

¿e �nal step of the process is to compute the interpolated pressure p0 using

p0 = (1 − s)p1 + sp2 . (5)

If the total strain exceeds the range of data provided in the tables, linear extrapolation can be used
to estimate the pressure. An alternative is to use the end points of the curves as hard limits and
interpolate using these end points. A schematic of this operation is shown in Figure 3.

¿is recursive approach can be extended to multiple dimensions. However, an implementation of
the algorithm becomes nontrivial when the number of independent variables exceeds �ve. Also, the
accuracy of interpolation decreases as the number of independent variables increases unless the data
points correspond to Chebyshev nodes (Trefethen, 2019).
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Figure 3 – Final stage of interpolation of a three variable table of material data.
¿e circle in blue is the input point and the red circle is the interpolated
value.

2.2 Radial basis function interpolation

¿eradial basis function interpolation process approximates a function as a sumof functions that are
centered on a set of input data points. For example, p = p(x)where x = (α, β, ε) can be approximated
as the function that interpolates a set of input points (x1, x2, . . . , xn):

p(x) =
n
∑
i=1
λiφ(∥x − xi∥) =

n
∑
i=1
λiφ(∥ri∥) =

n
∑
i=1
λiφ(ri) , ∥r∥ = r ∶=

√
r ⋅ r . (6)

With this approximation, the interpolation problem reduces to �nding the weights (λi) correspond-
ing to a set of input points and a choice of radial basis function (φ). Radial basis functions that are
multiquadric can be e�ciently evaluated and a common form is

φ(∥x − xi∥) = φ(r) =
√
1 + (ξr)2 (7)

where ξ is a parameter that can be varied to increase or decrease the region of support of the basis
function.

¿e weights (λi) can be found by solving a system of equations that is formed by evaluating (6) at
the input points such that

p(x j) =
n
∑
i=1
λiφ(∥x j − xi∥) =

n
∑
i=1
λiφ(r ji) , j = 1, . . . , n (8)

¿e resulting system of equations has the form

⎡⎢⎢⎢⎢⎢⎢⎢⎣

φ(r11) φ(r21) . . . φ(rn1)
φ(r12) φ(r22) . . . φ(rn2)
⋮ ⋮ ⋱ ⋮

φ(r1n) φ(r2n) . . . φ(rnn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1
λ2
⋮
λn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p(x1)
p(x2)
⋮

p(xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(9)
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As long as points xi are not repeated, the system is non-singular. However, in some situations the
matrix can have a small condition number. ¿e matrix is also dense and can become large if the
number of input points is large. Once the values of λi have been found, the value of p at a given
location x0 = (α0, β0, ε0) is computed using

p(x0) =
n
∑
i=1
λiφ(∥x0 − xi∥) . (10)

¿e problem of inversion of largematrices, as well as the associated cost of evaluating a sumof a large
number of functions, can be ameliorated by reducing the number of inputs points and performing a
local approximation. For tabular data of the formof interest in this work, we can represent each input
curve as a k-dimensional tree (kd-tree) (Moore, 1991). Nearest neighbors to these curves can then be
found e�ciently. A small set of nearest neighbors on each curve surrounding an interpolation point
(x0) can then be used to form and solve equation (9) as depicted in the schematic in Figure 4.

Nearest neighbors

Interpolation point
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Plastic Strain

Figure 4 – Nearest neighbor based interpolation used in radial basis function and
kriging interpolation.

While the approach shown in the �gure is e�cient, it su�ers from the problem of discontinuous
derivatives because of the local nature of the approximation. However, this issue can be eliminated
if the derivatives of the input curves are also interpolated.

2.3 Kriging interpolation

Kriging also involves a distance-weighted approximation and interpolates using a function similar
to equation (6):

p(x) =
n
∑
i=1
λi p(xi) (11)
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If the additional constraint

n
∑
i=1
λi = 1 (12)

is applied, then the process is called “ordinary” kriging. ¿e kriging method can be classi�ed as a
Gaussian process model (Schobi, Sudret, and Wiart, 2015).

To �nd the weights (λi), kriging treats the variable p as the realization of a random variable P(x) in
the space spanned by x. With that interpretation, the problem of �nding λi can be expressed as a
least squares minimization problem:

minimize
λ

Var [P⋆(x) − P(x)] (13)

where Var(⋅) is the variance, P⋆(x) is the estimate, and λ = (λ1, λ2, . . . , λn). Note that mean value
terms are o en included in the objective function to arrive at equations that involve covariance ma-
trices. However these mean values cancel out in ordinary kriging.

¿e objective can also be expressed in terms of expected values,

minimize
λ

E [(P⋆(x) − P(x) −E [P⋆(x) − P(x)])2] (14)

where E(⋅) indicates the expected value. Alternatively,

minimize
λ

E [(P⋆(x) − P(x))2] − (E [P⋆(x) − P(x)])2 (15)

With the unbiasedness constraint, E[P⋆(x)] = E[P(x)], the problem simpli�es to

minimize
λ

E [(P⋆(x) − P(x))2] (16)

To minimize the objective function, we take derivatives with respect to λ and set the values to zero:

∂I
∂λ

∶= ∂
∂λ

E [(P⋆(x) − P(x))2] = 2E [(P⋆(x) − P(x)) ∂
∂λ

(P⋆(x) − P(x))] = 000 (17)

Using the same notation, the kriging approximation (11) can be written as

P⋆(x) =
n
∑
i=1
λiP(xi) =∶ λ ⋅ P (18)

where P = (P(x1), P(x2), . . . , P(xn)). Substitution into (17) gives

E [(λ ⋅ P − P(x)) ∂
∂λ

(λ ⋅ P − P(x))] = 000 (19)

or
E [(λ ⋅ P − P(x)) P] = 000 . (20)

Reorganizing,

E[P ⊗ P] ⋅ λ = E[P(x)P] where (P ⊗ P)i j = P(xi)P(x j) . (21)
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¿is system can be used to solve for the weights (λi) given a set of input points (xi) and an interpo-
lation point (x0). Expressed in matrix form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E[P(x1)P(x1)] E[P(x1)P(x2)] . . . E[P(x1)P(xn)] 1
E[P(x2)P(x1)] E[P(x2)P(x2)] . . . E[P(x2)P(xn)] 1

⋮ ⋮ ⋱ ⋮ ⋮
E[P(xn)P(x1)] E[P(xn)P(x2)] . . . E[P(xn)P(xn)] 1

1 1 . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1
λ2
⋮
λn
µ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E[P(x0)P(x1)]
E[P(x0)P(x2)]

⋮
E[P(x0)P(xn)]

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

where µ is a dummy parameter used to enforce the constraint on λ. ¿e quantities E[P(xi)P(x j)]
are called semi-variances and are typically estimated using variograms, de�ned as (Matheron, 1967)

γ(h) = γ(xi , x j) = 1
2E[P(x j) − P(xi)]2 , h = x j − xi . (23)

A discrete model that can be used to estimate semi-variances is the Matheron estimator

γ̂(h) = 1
2Nh

Nh

∑
i=1

(P(xi + h) − P(xi))2 where Nh = #N(h) , N(h) = {(xi , x j) ∶ x j − xi = h} .

(24)
Since few pairs of points will occur at exactly the same distance, ∥h∥, a binning procedure is typically
applied and points that fall in each bin are summed. A continuous model is then typically �tted to
the discretemodel using a least squares curve �t and used for the interpolation process. For example,
the spherical variogram model has the form (Cressie, 1985)

γ(h) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C0 + Cs
⎡⎢⎢⎢⎢⎣
3
2

∥h∥

As
− 1

2 (
∥h∥

As
)
3⎤⎥⎥⎥⎥⎦

for 0 < ∥h∥ ≤ As

C0 + Cs for ∥h∥ ≥ As

(25)

where C0 is called the nugget, Cs the sill, and As is an e�ective range. With these de�nitions, the
kriging problem reduces to solving the system of equations

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ(x1, x1) γ(x1, x2) . . . γ(x1, xn)] 1
γ(x2, x1) γ(x2, x2) . . . γ(x2, xn)] 1

⋮ ⋮ ⋱ ⋮ ⋮
γ(xn , x1) γ(xn , x2) . . . γ(xn , xn) 1

1 1 . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1
λ2
⋮
λn
µ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ(x0, x1)
γ(x0, x2)

⋮
γ(x0, xn)

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

Once the value of λi have been found, the interpolated value p0 = p(x0) is estimated using

p(x0) =
n
∑
i=1
λi p(xi) . (27)

¿e kriging interpolator, like the radial basis function one, can be either applied in the global sense to
the full input data or to local patches of the data as shown in Figure 4. In the local case, the procedure
for �nding the nearest neighbors is identical to that for radial basis function interpolation. ¿e
caveats discussed previously for computing derivatives of local radial basis function approximations
also apply to local kriging interpolation.
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3 Experimental data

¿e experimental data that have been used as a test-bed for the interpolation process are for a dry,
poorly-graded, concrete sand described by Fox et al. (2014) and tested at theUniversity ofMaryland.1
Further details on the particular set used in this work can be found in (Banerjee, Fox, and Regueiro,
2020b).

¿e hydrostatic elastic unloading data for that sand can be seen in Figure 5(a). Tangent bulk moduli
at intermediate values of volumetric elastic and plastic strains are computed by interpolating between
the input data. Tangents to the unloading curves represent the bulk modulus and have been plotted
in Figure 5(b).

(a) Elastic unloading curves (b) Tangent bulk modulus curves

Figure 5 – Hydrostatic elastic unloading data and the corresponding tangent bulk
moduli for dry poorly-graded concrete sand.

As discussed in Banerjee, Fox, and Regueiro (2020a), the data are extended and padded prior to
interpolation to prevent nonphysical behavior outside the available range. ¿e extended unloading
and bulk modulus curves are shown in Figure 6.

4 Interpolation of experimental data

4.1 Linear interpolation

¿e process of linear interpolation of the experimental tabular data is the most straightforward,
though a generalized implementation in a host code becomes complex when many independent
variables are involved. For the two variable data discussed in the previous section, the linear inter-
polation process leads to the pressure vs. strain predictions shown in Figure 7. If we examine the
curves predicted for volumetric plastic strains (εpv ) of 10% and 20%, we notice that the interpolation

1Stephen Akers, 2018, Private communication, CCDC Army Research Laboratory, Aberdeen Proving Ground, MD,
USA
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Figure 6 – Hydrostatic elastic unloading data and the corresponding tangent bulk
moduli for dry poorly-graded concrete sand.

does not appear to be accurate for a given value of pressure, particularly at low pressures. ¿is appar-
ent error is caused by the fact that the curvatures of the two adjacent input curves are not identical
for a given value of the total volumetric strain. Amore visually appealing interpolation can be found
if we use pressure as an independent variable. However, the fundamental problem still remains.

Figure 7 – Linear interpolation of the pressure vs. total strain data for a dry poorly-
graded concrete sand. Predictions for various values of volumetric plas-
tic strain (εpv ) are shown as dashed lines while the solid lines are the
input experimental data.

Since we are concerned with computing the bulk modulus rather than the pressure, it is worth com-
paring the bulk moduli computed from the data shown in Figure 7 with those from direct linear in-
terpolation of input bulk moduli curves. Figure 8(a) shows the moduli computed from interpolated
pressures while Figure 8(b) shows directly interpolated moduli. ¿e moduli computed from inter-
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polated pressures are inaccurate at smaller values of strain and sometimes deviate from monotonic
behavior. On the other hand, directly interpolated moduli behave much better because derivatives
do not need to be computed.

(a) Computed from interpolated pressures. (b) Directly interpolated moduli.

Figure 8 – Predicted bulk moduli for a dry poorly-graded concrete sand using lin-
ear interpolation. Predictions are shown as dashed lines and the input
data as solid lines.

4.2 Radial basis function interpolation

When using radial basis functions, if the number of input data points is relatively small, a global
distance matrix (see equation (9)) can be formed and used to compute the weights needed for inter-
polation. However, that matrix can be quite large and even though it has to be inverted only once,
each interpolated point requires a sumover all input points (equation (10))many of which contribute
little to the interpolated value.

An alternative is to select a subset of the nearest neighbors to the interpolation point (x0) using
a distance-based criterion. ¿is reduces the matrix size. However, a matrix has to be created and
inverted for each value of x0. Also, even though the matrix is not singular, the condition number
can be small and a Moore-Penrose pseudo-inverse o en has to be computed.

Figure 9 shows the predicted values of pressure using radial basis functions to interpolate between
the input curves. Nearest neighbors are determined based on all the input data and a minimum
of 100 data points were chosen. ¿e plots of pressure as a function of elastic volumetric strain in
the �gure show that the interpolation is not smooth and signi�cant �uctuations occur when there
are insu�cient nearby data points for interpolation. ¿is issue is also clearly evident in the plots
of pressure vs. total volumetric strain. As a consequence, the bulk moduli computed from these
interpolated curves also shown signi�cant errors and cannot be used in numerical simulations.

An improved interpolation can be computed if the two closest curves to a the interpolation point are
found and then nearest neighbors on both curves are determined as depicted in Figure 4. ¿e two
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Figure 9 – Radial basic function interpolation of the pressure vs. strain data for
a dry poorly-graded concrete sand. All of the input data were used for
nearest neighbor searches. Solid curves represent the input data.

closest curves are determined based on the volumetric plastic strain value to be interpolated. ¿e
outcome of that process is shown in Figure 10. ¿ough the interpolated curves are smoother than
those in Figure 9, there are jumps in the values in regions where su�cient data are not available for
accurate interpolation.

Figure 10 – Radial basic function interpolation of the pressure vs. strain data for a
dry poorly-graded concrete sand. Two closest input data curves were
used for nearest neighbor searches. Solid curves represent the input
data.

Figure 11(a) shows the bulk moduli computed from the pressure-strain curves in Figure 10. ¿e
predicted bulk moduli do not vary smoothly and jumps are observed at several points. On the other
hand, if the radial basic interpolation process is applied directly to bulk modulus data, predicted
values vary more smoothly (see Figure 11(b)). ¿ough there are some jumps in the predicted bulk

13



D
RA

FT
moduli, and the predicted values outside the range of input data are dubious, the interpolated values
are reasonable and can be used in simulations.

}

{

(a) Computed from interpolated pressures. (b) Directly interpolated moduli.

Figure 11 – Predicted bulk moduli for a dry poorly-graded concrete sand using ra-
dial basis function interpolation. Both plots have used nearest neigh-
bors from the two curves closest to the plastic volumetric strain to be
interpolated. Predictions are shown as dashed lines and the input data
as solid lines.

4.3 Kriging interpolation

If we replace the radial basis function interpolation processwith kriging, and use the entire input data
set for nearest neighbor searches, the predicted pressure-strain curves are as seen in Figure 12. ¿e
predicted curves are smoother than those computed using radial basis functions and the interpolated
values appear reasonable. However, the curves tend to �atten out in regions where su�cient nearest
neighbor data are not available.

Instead, if we use nearest neighbors from the two curves closest to an interpolated value of volumet-
ric plastic strain, we observe the interpolated curves shown in Figure 13. ¿e interpolated curves
from this process exhibit a slight improvement over those in Figure 12. However, the bulk moduli
computed from the interpolated pressure curves show cyclic behavior with periods that depend on
the number of nearest neighbors used in kriging and the distance between adjacent curves. ¿is
variability is problematic for coupled elastic-plasticity because derivatives of the bulk modulus are
needed in the associated stress update algorithms.

¿e variability in the bulkmoduli computed from interpolated pressure-strain curves can be avoided
if the bulk moduli are computed from the input data before interpolation. In Figure 14(a), interpo-
lated values of bulk moduli are shown for the cases where nearest neighbors are selected from the
entire input data set. ¿e predicted curves are observed to be smooth even in regions where rapid
changes in slope are observed in the input data. On the other hand, if nearest neighbors are com-
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shown as solid lines.

Figure 13 – Kriging-based interpolated data (pressure and bulk modulus) a dry
poorly-graded concrete sand using the two input curves closest to an
interpolation point. Predictions are shown as dashed lines and the in-
put data as solid lines.
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puted only from two curves adjacent to the interpolation point, we observe the predictions shown
in Figure 14(b). ¿e predicted values are better behaved and reasonably accurate in this case.

(a) Nearest neighbors from all input data. (b) Nearest neighbors from two closest curves.

Figure 14 – Kriging interpolation of precomputed bulk moduli for a dry poorly-
graded concrete sand. ¿e input data are depicted with solid lines.

5 Concluding remarks

Linear interpolation is an e�cient and accurate method of interpolating tabular data that can be
represented as y = f (x), where x is a scalar independent variable. If the data can be arranged such
that the values of x can be sorted without changing the function f , a binary search can be used to
locate a point in O(log n) where n is the number of data points.

However, if y = f (x)where x is a vector of independent variables, not only is interpolation procedure
not unique but the accuracy of the interpolation degrades with increasing dimensions. We have
discussed one approach for linear interpolation in this work and examined the bulk moduli for a dry
poorly-grade concrete sand predicted by this approach. Our results show that better interpolations
are produced when, instead of derivatives of interpolated data, direct interpolation of derivatives are
used.

Linear interpolation can potentially be improved upon by the use of radial basis function interpo-
lations. We have found that, for the sand data set, radial basis functions lead to poorer predicted
values when a �xed search distance is used to �nd nearest neighbors. Instead, if we select closest
points from a set of nearest data curves, a superior result is obtained. Also, similar to what was ob-
served for linear interpolation, direct interpolations of derivatives produce better estimates of bulk
moduli.

Finally, we have explored kriging-based interpolations of the sand data. ¿e interpolations produced
by kriging are quite accurate whether nearest neighbors from the entire data set or nearest neighbors
from the closest curves are used. However, derivatives of interpolated curves are not smooth. If
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kriging interpolation is applied to bulk moduli curves computed from the input data, interpolation
of data from the closest curves appear to produce better bulk modulus predictions.

¿e theoretical accuracy of kriging interpolations are known to be better than those for linear inter-
polation, unless the input data are at Chebyshev points, But visual examination of our results does
not indicate any signi�cant reason for choosing one over the other when data from only the closest
curves are used for interpolation. On the other hand, as the number of independent variables in-
creases kriging becomes preferable because the implementation e�ort remains small while accuracy
improves over linear interpolation.
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