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Abstract

Analytical expressions for phenomenologicalmaterialmodels that depend onmultiple inde-
pendent variables are notoriously di�cult to design. Parameter determination is also intimately
tied with the model design process. Soils that exhibit elastic-plastic coupling are particularly
prone to the design problem. It is not uncommon to have to redesign models for every new soil
that is characterized experimentally. An unstated assumption in soil mechanics is that small
inaccuracies in material models do not a�ect the predictive capabilities of those models sig-
ni�cantly. First, we demonstrate that such an assumption in not warranted, particularly in the
large deformation, non-monotonic loading, regime. We then proceed to explore support vector
regression to replace analytical models. We show that even though support vector machines
can �t input data sets accurately, they fail to generalize if the input data are over�t. Also, the
approach used for scaling the input data can have a considerable e�ect on the quality of �ts.
For the small sets of data that are typically available for soils, contrary to the extant literature,
we suggest a poorer �t to the input data that leads to better generalization is more robust. ¿is
approach also has the bene�t that fewer support vectors are needed to model the training data.
¿is study further emphasises the pressing need for physics-based models than can supplement
phenomenological aspects of material modeling for simulations.

1 Introduction

Material test data for soils and rocks o en exhibit elastic behavior that depends on the state of plas-
tic deformation and associated internal variables. To model and simulate such materials accurately,
constitutive models require that the elastic response be dependent on the plasticity state during plas-
tic loading. For example, in the KAYENTAmodel (Brannon et al., 2015) experimental data are used
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to �t the bulk modulus (K) model:

K(I1, εpv ) = fK [b0 + b1 exp(−
b2
∣I1∣

) − b3 exp(−
b4
∣εpv ∣

)] (1)

where I1 is the trace of the Cauchy stress tensor, ε
p
v is the plastic volumetric strain, fK is a joint degra-

dation factor, and (b0, b1, b2, b3, b4) are �tted parameters. If thematerial is fully or partially saturated
with a �uid, these models also need to incorporate information about the porosity (ϕ), saturation
level (Sw), and pore pressure (pw). In the simplest version of the ARENA partially saturated soil
model (Banerjee and Brannon, 2017; Banerjee and Brannon, 2019),

K(Ie�1 , εpv , ϕ, pw) = Kd(I1, εpv ) +
K f (pw)

ϕ
(2)

where Kd is the bulk modulus of the dry material and K f is the bulk modulus of the �uid.

¿e process of determining the parameters needed for these models from multi-dimensional ex-
perimental data is nontrivial even when only two independent variables are involved. Numerous
algebraic expressions have been developed to �t data because a single expression is typically unable
to describe all the variations observed in experimental data.

However, nonlinear and coupled elastic-plastic models are not always thought to be necessary for
accurate prediction even though some papers do discuss the issue (Homel, Guilkey, and Brannon,
2016). It is quite common for a constant bulk modulus to be �t to experimental hydrostatic load-
ing/unloading data using optimization tools such as Dakota (Adams et al., 2009). ¿e e�ect on
predictions of such a choice is rarely discussed. On the other hand, nonlinear models are proposed
without any discussion of the bene�t of such a choice other than a better �t to the available experi-
mental data - typically from a limited number of samples.

In this work, we �rst motivate the need for nonlinear bulk modulus models using a simple soil pen-
etration simulation. In the rest of the paper we focus on support vector regression as a means of
generating models that can replace algebraic expressions. e.g., equation (1). Experimental data on
the hydrostatic compression loading/unloading of dry, poorly graded, concrete sand is used to illus-
trate the process.

Support vector machines (Cortes and Vapnik, 1995; Vapnik, 2013) have been used in numerous stud-
ies on geomaterials, but primarily for classi�cation (Zhao andYin, 2009; Yuvaraj et al., 2013). Regres-
sion studies are fewer in number (Xue et al., 2016; Kohestani and Hassanlourad, 2016; Zhang et al.,
2017) and tend to be used to �t a small set of input data without much attention to generalizability. In
this work, we explore various way in which small input data sets can bemodeled with support vector
regression and suggest that human judgement may be required to select a model that has adequate
prediction power outside the training data set.

1.1 Variable moduli and punch impact simulation

To motivate the need for nonlinear material models, consider the plane strain approximation of a
rectangular punch impacting a soil sample at high velocity. Two di�erent soil models are simulated;
one with a constant bulk modulus and the other with a pressure-dependent bulk modulus described
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by equation 1 with an addition linear pressure-dependent term needed to better �t soil data. ¿e soil
is nominally equivalent to dry Colorado Mason Sand (Banerjee and Brannon, 2019).

¿ese models have been implemented in the Material Point Method code Vaango (Banerjee and
Brannon, 2017) usingArenisca (Homel, Guilkey, andBrannon, 2015). ¿edi�erence between the two
models can be illustrated by subjecting a single particle to a set of prescribed deformation gradients,
a series of hydrostatic compression load/unload steps followed by uniaxial stress compression and
release and then uniaxial tension and release. ¿e resulting stress paths in pq-space1 are shown in
Figure 1(a). ¿ere are small di�erences in the stress paths and the �nal stress state. ¿e di�erences in
the two stress paths are accentuated in Figure 1(b). ¿ough the variable modulus model achieves a
higher peak stress in hydrostatic compression, the unload and uniaxial loading and unloading paths
are similar. ¿at indicates that themodels are essentially identical at small strains but start to diverge
as the strains increase.

Since the constant and variable modulus models produce similar results in a single particle test, we
would intuit that di�erences would be small for more complicated situations. If we use these models
to simulate the impact of a punch on soil, we observe the behavior presented in Figure 2. ¿e punch
is made of a hypoelastic steel-like material that is nominally rigid compared to the soil. ¿e initial
velocity is 200m/s and symmetry conditions are applied to the domain boundaries, emulating plane
strain conditions. At 0.9 milliseconds a er impact, the stress and deformation in both the variable
bulk modulus sand (le half) and the constant bulk modulus material (right half) are approximately
the same. ¿e variable modulus material has bands of higher stress and a less uniform distribution
of stress. However, a er the punch rebounds at the end of the impact event (at 7 milliseconds in the
�gure), the depth of penetration and the shear band shapes are substantially di�erent for the two
cases. ¿is indicates that the extra e�ort needed to develop a nonlinear bulk modulus model may be
justi�ed for better accuracy.

2 Support vector regression

¿e support vector regression (SVR) approach (Schölkopf et al., 2000; Smola and Schölkopf, 2004)
can be used to �t models to data without the need for closed form expressions. ¿e advantage of
this approach is that the resulting model requires few function evaluations and can, in principle, be
computed as fast as a closed-form model.

For the purpose of �tting a model to the yield function, the elasticity model, or the crush curve, we
can assume that the input (training) data are of the form {(x1, y1), (x2, y2), . . . , (xm , ym)} ⊂ Rd ×R.
¿e aim of SVR is to �nd a function y = f (x) that �ts the data such that the function is as �at as
possible (in d + 1-dimensional space), and deviates from yi by at most є (a small quantity).

In nonlinear support vector regression we �t functions of the form

y = f (x) = w ⋅ ϕ(x) + b (3)

where w is a vector of parameters, ϕ(x) are vector-valued basis functions, (⋅) is an inner product,
and b is a scalar o�set. ¿e �tting process can be posed as the following primal convex optimization

1¿emean stress is p = − 1
3 trσ while the equivalent deviatoric stress is q =

√3s ∶ swhere s = σ + pI and σ is the Cauchy
stress.
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Variable bulk modulus Constant bulk modulus

B01 =  8.430e + 01 

(a) Stress paths in pq-space. Le : Variable bulk modulus. Right: Constant bulk modulus

Variable bulk modulus

Constant bulk modulus

(b) Hydrostatic loading/unloading paths for the two models.

Figure 1 – Stress paths for single particle tests of the two material models using
Vaango and Arenisca3.
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Constant bulk 
modulus

t = 0 t = 0.9 ms t = 7 ms

200 m/s

Figure 2 – Punch impacting sand at 200 m/s. Sand particles have been colored
based on values of q.

problem (Vapnik, 1998):

minimize
w,b,ξ,ξ⋆

1
2w ⋅w + C

m
∑
i=1

(ξi + ξ⋆i )

subject to
⎧⎪⎪⎨⎪⎪⎩

−(ξi + є) ≤ yi −w ⋅ ϕ(xi) − b ≤ ξ⋆i + є
ξi , ξ⋆i ≥ 0 , i = 1 . . .m

(4)

where C is a constraint multiplier, m is the number of data points, and ξi , ξ⋆i are constraints.

In practice, it is easier to solve the dual problem for which the expansion for f (x) becomes

y = f (x) =
m
∑
i=1

(λ⋆i − λi)K(xi , x) + b , K(xi , x) = ϕ(xi) ⋅ ϕ(x) (5)

where xi are the sample vectors, λi and λ⋆i are dual coe�cients, and K(xi , x) is a kernel function.
¿e dual convex optimization problem has the form

minimize
λ,λ⋆

1
2

m
∑
i , j=1

(λi − λ⋆i )K(xi , x j)(λ j − λ⋆j ) + є
m
∑
i=1

(λi + λ⋆i ) +
m
∑
i=1

yi(λi − λ⋆i )

subject to
⎧⎪⎪⎨⎪⎪⎩

∑m
i=1(λi − λ⋆i ) = 0

λi , λ⋆i ∈ [0,C] , i = 1 . . .m .

(6)

¿e free parameters for the �tting process are the quantities є and C. SVR accuracy also depends
strongly on the choice of kernel function. In this paper, we use the Gaussian radial basis function:

K(xi , x j) = exp [−
(xi − x j) ⋅ (xi − x j)

dσ2
] (7)

where d is the dimension of x and σ2 is the width of the support of the kernel (assumed to be equal
to the norm of the covariance matrix of the training data in this paper).

¿eminimization problem solves for the di�erence in the dual coe�cients (λ−λ⋆) and the intercept
(b), and outputs a reduced set (mSV < m) of values of xi called “support vectors”. Given these quan-
tities, the function (5) can be evaluated quite e�ciently, particularly if the number of support vectors
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is small. SVR �ts to data can be computed using so ware such as the LIBSVM library (Chang and
Lin, 2011). A variation of the above approach, called ν-SVR (Schölkopf et al., 2000) can also be used
if su�cient computational resources are available.

3 Experimental data

In this reportwewill attempt to �t SVRmodels for the bulkmodulus and crush curve of a dry, poorly-
graded, concrete sand described by Fox et al. (2014) and tested at the University of Maryland.2 ¿e
hydrostatic loading-unloading data for that sand are shown in Figure 3(a). ¿e loading curve, shown
in green, is used to �t the crush curve model. ¿e unloading curves are used to �t a bulk modulus
model that depends on the plastic strain. Zoomed plots of these unloading curves, and the associated
volumetric plastic strains, are shown in Figure 3(b).
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(a) Loading-unloading curves (b) Zoomed elastic unloading curves

Figure 3 – Hydrostatic loading-unloading data for poorly-graded dry sand.

Strains are assumed to be additively decomposable into elastic and plastic parts. ¿e plastic volumet-
ric strain for each elastic unloading curve is therefore assumed to remain constant. ¿e value of the
plastic volumetric strain at for an unloading curve is determined by computing the intersection of
the curve with the total strain axis. Elastic strains are computed by subtracting the plastic volumetric
strain from the total strain. Figure 4(a) shows the unloading curves for the dry sand as a function
of the elastic volumetric strain. Tangents to the curves represent the bulk modulus and have been
plotted in Figure 4(b). to accentuate the behavior at low pressures.

Similarly, the crush-curve can be extracted from the hydrostatic compression data in Figure 3(a).
¿e initial bulk modulus is assumed be constant (425 MPa) for states with volumetric plastic strains
less than 6.28%. To compute the crush-curve pressure as a function of the plastic strain, values from

2Stephen Akers, 2018, Private communication, CCDC Army Research Laboratory, Aberdeen Proving Ground, MD,
USA
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Figure 4 – Elastic unloading curves and tangent bulk modulus for poorly-graded
dry sand.

the hydrostat are interpolated linearly between adjacent unloading points. Figure 5(a) depicts the
hydrostat with unloading points marked with �lled circles. ¿e processed crush-curve is shown in
Figure 5(b).

(a) Hydrostatic compression curve. (b) Crush-curve.

Figure 5 – Hydrostatic compression curve and crush-curve for poorly-graded dry
sand.

Note that the term “crush-curve” is used more commonly to refer to the representation of the same
data in a porosity versus pressure form. ¿e porosity (ϕ) is computed using ϕ = p3 − εvp where εvp
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is the volumetric plastic strain and p3 is the maximum volumetric plastic strain, at which all pores
have been crushed (Brannon et al., 2015).

¿e plastic-strain dependence of the tangent bulk modulus of the sand in Figure 4 does not satisfy
any obvious analytical form. It is more convenient to use a support vector regression approach to �t
models to data of this nature. Also, the shapes of the stress-strain curves are more regular than the
derived tangent bulk modulus curves and easier to approximate. Since we do not have unloading
data for zero volumetric plastic strain, we assume that the associated stress-stress curve is identical
to that for a plastic strain of 6.28%. ¿e same assumption is made for tensile volumetric strain states,
if any are present in a simulation.

4 Fitting a crush-curve model

¿e crush-curve depends only on the volumetric plastic strain and is thereforemore straightforward
to �t than the elastic unloading curves. For the regression process, the data in Figure 5(b) was read
into a pandas data frame (McKinney, 2011) and scaled using the Yeo-Johnson power transform (Yeo
and Johnson, 2000). 3 SVR �ts to the data were computed using the SVR front-end for the LIBSVM
library (Chang and Lin, 2011) provided by scikit-learn (Pedregosa et al., 2011). A radial basis function
kernel was used for the �tting process.

Support vector regression predictions are compared with the experimental data for �xed є and vary-
ing C in Figure 6. ¿e experimental curve is depicted with a solid line, while SVR �ts are shown as
dashed lines of varying color. Figure 6(a) shows �ts to the pressure vs. plastic strain curve and the
error in the computed pressure (pSVR− pexpt.). ¿e �ts are relatively accurate up to plastic volumetric
strains of around 20%. Errors increase in magnitude as the pressure increases. But, as the value of C
increases, these di�erences decrease as a fraction of the pressure. ¿e number of support vectors is
important for the fast evaluation of the SVR model in a plasticity simulation, the smaller the better.
For the data under consideration, 236 support vectors were needed for C = 1, while 133 were needed
for C = 100, and 83 for C = 10,000.

Alternatively, if we �t the data in porosity vs. pressure form, the SVR �ts and experimental curve are
as shown in Figure 6(b). Note that the error is reported as a percentage of the experimental value.
Visual examination of the �ts immediately show that these are superior to the pressure vs. plastic
strain �ts. In fact, any of the three �ts could be used as an approximation of the crush-curve. An
artifact from the input data that shows as a discontinuous slope in the crush-curve is also handled
gracefully by the SVR �ts. ¿e number of support vectors are 66, 34, and 24 for C = 1, 100, and
10,000, respectively. ¿e quality of �t and the small number of support vectors suggest that using
the pressure as the independent variable may be preferable when �tting crush-curves.

If C is kept constant at 10,000 and є varied, SVR �ts to the porosity-pressure crush-curve suggest
that lower values of є lead to better models of the experimental data. ¿e SVR �ts to the data and the
percent error are shown in Figure 7. ¿e overall quality of the �t is excellent. However, the number
of support vectors are (24, 505, 570) for є =(0.01, 0.001, 0.0001), respectively. Given the quality of
the model for the smallest value of є and also the small number of support vectors needed to achieve
that accuracy, that model should be chosen for numerical simulations.

3Other transformations are possible but have been found to lead to poorer �ts to the data.
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(a) Fit to pressure-plastic strain curve.

(b) Fit to porosity-pressure curve.

Figure 6 – Support vector regression �ts, at various values of C, to the crush-curve
for ARL dry sand.
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Figure 7 – Support vector regression �ts, at various values of є, to the porosity-
pressure crush-curve for poorly-graded dry sand.

To summarize the results from this section, accurate and e�cient support vector models for crush-
curves can be �t if the data are expressed in porosity vs. pressure form, scaled using a power trans-
formation, and parameters selected to optimize for both prediction accuracy and the number of
support vectors.

5 Fitting a bulk modulus model

¿e bulk modulus for the sand in Section 3 depends on both the elastic and the plastic volumetric
strain. In plasticity models, the stress and the plastic strain are typically computed before the elastic
strain is known. Hence, a bulk modulus model that depends on the pressure and the plastic strain is
more convenient for computations. In this paper, for convenience, we �t models for the pressure (p)
as a function of elastic (εev) and plastic (ε

p
v ) strains. A pressure-dependent bulk modulus model can

be extracted from the p = p(εev , ε
p
v )model by switching the independent and dependent variables.

Assuming that each unloading curve has been sampled uniformly, from Figure 3(b) it can be seen
that fewer experimental data points are available at smaller plastic strains. When SVRs are �tted to
these data, the curves with larger numbers of samples tend to bias the �tting process. To overcome
this problem bootstrapped samples are generated where needed. Bootstrapping allows better �ts to
be produced in regions where physical constraints apply, such as zero pressure at zero volumetric
elastic strain.

¿ebootstrap procedure involves resampling fromexisting datawith orwithout replacement (Mooney,
Duval, and Duvall, 1993) and can be used to produce samples from the underlying distribution. In
the sand data set, there is only one set of unloading curves. ¿erefore, we repeat values at the smaller
strains to increase the number of samples available for �tting. Note that increasing the number of
samples can lead to a signi�cant increase in training time and should be avoided in support vector
regression if possible.
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5.1 Fitting to pressure vs. elastic strain

¿e hydrostatic unloading data can be expressed in the form of pressure as a function of the elastic
volumetric strain. Figure 4(a)) shows the pressure evolution for several volumetric plastic strain.
During the regression process, data for all the plastic strain values were concatenated into a single
data frame and a SVR�t to the datawas computed using theSVR front-end for LIBSVM from scikit-
learn . Both the strains and the pressures were scaled to lie between 0 and 1 before the optimization
algorithm was invoked.

If the input data are not shu�ed and bootstrapping is not used, we get the �ts shown in Figure 8(a)
for C = 1000 and є = 0.01. ¿e default radial basis function kernel parameter γ = 1/(2σ2) was with
σ2 = variance([εev , ε

p
v ]). ¿e e�ect on the �t of changing C was found to be minimal but decreasing

the value of є was found to improve the quality of the �t.4 From the �gure (part (b)) we also see that
the error in the predicted pressure increases as the elastic volumetric strain decreases.

(a) Fit to elastic unloading curves. (b) Error in the �t.

Figure 8 – Support vector regression �ts (C = 1000, є = 0.01) to the original elastic
unloading curves for poorly-graded dry sand.

A better �t to the input data is obtained for є = 0.0001 as can be seen in Figure 9(a). ¿e e�ect of
bootstrapping is shown in Figure 9(b), where the SVR �t used C = 1000 and є = 0.0001 and the data
at the three lowest plastic strains were repeated and then the full data set was shu�ed randomly. If
the data are bootstrapped, the training error is typically lower for the bootstrapped samples. Also,
even though large errors persist at low strains in percent terms, the absolute errors are relatively small
(of the order of 10-100 MPa).

¿ese �tted curves can be processed to extract the �tted bulk moduli. For the bootstrapped input,
the �tted bulk moduli curves and the error in the �t are shown in Figure 10. ¿e SVR �ts are shown
as dashed lines while the solid lines represent the experimental data. ¿e �ts increase in relative
accuracy as the volumetric plastic strain increases. Also, as indicated for the previous �gure, the
error percentages are largest at small strains even though their magnitude is relatively small.

4If the pressure is not scaled, the e�ect of C on the quality of the �t is substantial while that of є is negligible.

11



D
RA

FT

(a) Original elastic unloading curves.

(b) Bootstrapped elastic unloading curves.

Figure 9 – Support vector regression �ts (C = 1000, є = 0.0001) to the original and
the bootstrapped elastic unloading curves for poorly-graded dry sand.
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Figure 10 – Tangent bulk modulus computed from support vector regression �ts
(C = 1000, є = 0.0001) to bootstrapped elastic unloading curves for
poorly-graded dry sand.

How well the �tted model generalize to plastic strains outside those used to train the model? Fig-
ure 11(a) shows the predictions of the SVR model trained on the bootstrapped data (C = 1000, є =
0.0001) for a range of volumetric plastic strains. ¿e corresponding bulk modulus predictions are
shown in Figure 11(b). ¿e solid lines in the plots show the input data while the dashed lines show
predicted values. From the pressure-elastic strain plots we can see that, at zero plastic strain, the pre-
dicted pressure is approximately 500 MPa while negative pressures and bulk moduli are predicted
by the SVR model at 10% plastic strain. ¿e �ts improve as the plastic strain increases and the ex-
pected monotonic increase in pressure with strain holds approximately. Also, the tangent modulus
curves exhibit in�ection points. Clearly, even though the training data are �tted accurately by the
SVR model, we cannot use the model for simulations because of its failure to generalize.

5.2 Fitting to pressure vs. total volumetric strain

¿e results from the previous section indicate that additional constraints, e.g., the elastic strain must
be zero at zero pressure, and the pressure-strain curve at 0 plastic strain must be close to that at
6% plastic strain, are necessary for better �ts to the data at small strains and better generalization.
However, such constraints require the support vector regression optimizer to be modi�ed. Since
that option is not available for most users of LIBSVM and other open-source libraries, it is more
convenient to examine alternative approaches to achieve the desired outcome.

One alternative is to �t support vectors to the pressure data as a function of the total volumetric
strain. As before, the data are bootstrapped at plastic strains where the number of data points is
small and then the data are shu�ed before the �tting algorithm is invoked. Figure 12(a) shows �ts to
the pressure-total strain data for C = 1000 and є = 0.0001. As before, the e�ect of varying C is small
but the �t deteriorates when є is increased. ¿e ν-SVR algorithm (Schölkopf et al., 2000) produces
similar results for ν = 0.5 and the sameC. Cross-validation can be used to select optimal values of the
control parameters. ¿e corresponding �ts to the bulk modulus are reasonable, as can be observed
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(a) Predicted pressure. (b) Predicted bulk modulus.

Figure 11 – Support vector regression �ts (C = 1000, є = 0.0001) to the original and
the bootstrapped elastic unloading curves for poorly-graded dry sand.

from Figure 12(b). However, the bulk modulus goes to zero for both 6.28% and 14.51% plastic strain
due to in�ections in the pressure-strain curves. ¿erefore, this model cannot be used in a simulation
without modi�cation.

(a) Pressure vs. total volumetric strain. (b) Bulk modulus vs. total volumetric strain.

Figure 12 – Support vector regression �ts (C = 1000, є = 0.0001) to the bootstrapped
unloading curves for poorly-graded dry sand.

We can examine the generalizability of the �t from the predicted curves shown in Figures 13(a) and
(b). ¿e predicted purely elastic response at 0% plastic strain indicates a stress of 1250 MPa at 0 vol-
umetric strain. ¿e pressure decreases with increasing strain before catching up with the predicted

14
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curve for 5% plastic strain which is also slightly negative at 5% total strain. Similar unreasonable be-
haviors are predicted at all the other values of plastic strain chosen for this experiment. As expected,
the bulk modulus starts at a negative value or turns negative for at least two of the selected values of
plastic volumetric strain. ¿erefore, the SVR �t not only is not very accurate but also not general.

(a) Predicted pressure. (b) Predicted bulk modulus.

Figure 13 – Support vector regression predictions from �ts to total strain data for
poorly-graded dry sand.

Predictions from the ν-SVR algorithm (Schölkopf et al., 2000) are shown in Figures 14(a) and (b).
¿ough the response is better behaved, negative initial bulk moduli are predicted for plastic vol-
umetric strains less than approximately 6%. Also, the pressures predicted for the various plastic
volumetric strains are nonphysical.

5.3 Extended data, overfitting and cross-validation

Since the strain regime of interest in sand simulations is predominantly compressive, we require the
SVR �ttedmodel to be accurate and predictive in that regime. ¿e results from the previous sections
show that even though SVR �ts to the training data are reasonable to a large extent, predictions
outside the training set are inadequate for modeling the material.

We can attempt to obtain better predictions by extending the input data in the tension regime by
linearly extrapolating the inputs as depicted by dashed lines in Figure 15. Support vectors are �t to
the extended data a er shu�ing but without bootstrapping. 5

In the previous sections, the entire input data set was used to �t (train) SVR models. ¿ough the
�ts to the input data were excellent, the models failed to generalize adequately to plastic strains not
included in the training set. ¿is problem is common inmachine learning and is typically addressed

5If bootstrapping is used on the extended data, the number of samples can become larger than 10,000. Because the
LIBSVM implementation is serial, bootstrapped data containing 10,000 or more samples take several hours to �t on a
single core of an Intel i7 processor without producing any signi�cant improvements to the �ts and predictions.
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Figure 14 – ν-SVR (Schölkopf et al., 2000) predictions from �ts to total strain data
for poorly-graded dry sand.

Figure 15 – Extended input data (dashed lines) using linear extrapolation.
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by splitting the input data into test and training sets and using cross-validation to test the quality of
generalization.

Since the amount of data available is small, we cannot keep aside, during training, all the data for
a given plastic strain so that they can later be used to test the quality of the �t. Instead, we keep
aside 40% of the combined data set for testing and train the model on the remainder. Shu�ed cross-
validation on several randomly chosen training data sets (ten sets in our tests) provide an estimate
of the quality of generalizability for the plastic strains in the input data. An optimal value of є can be
extracted from the process. However, cross-validation is inadequate if we wish to generate a model
that is generalizable to plastic strains that are not included in the training set and other metrics are
required to select the best model as we shall see later in this section.

Compare the є-SVR �ts shown in Figures 16(a) and (b) which have been trained with C = 1 and
є = 0.001 on 60% of the input data with the plots in Figures 16(c) and (d) that used C = 10. ¿e SVR
model �ts the data better at C = 10, though the �ts are worse than those seen in the previous section
where the full data set was used for training. Notably, no negative bulk moduli are predicted and
monotonic increase with strain is observed. ¿e observations suggest that tension-extended data
are required for �tting physically reasonable models in the absence of explicit extra constraints in
the SVR optimization problem.

When pressure vs. total volumetric strain curves are computed using these �tted models for plastic
strains that are not in the training/test set, we get the predicted curves shown in Figure 17(a) and (b).
Visual examination of the predicted curves at 5% and 10% plastic strain suggests that the predicted
pressures for C = 1 are a better generalization of the input data than those for C = 10, even though
the �ts to the training data are better for C = 10. Models that �t the training data better can be found
for higher values of C combined with smaller values of є, and a grid search indicated that the least
error was for C = 10,000 and є = 0.0001. However, for those models the generalization to plastic sets
outside the training values was poorer.

Figure 18(a) and (b) show the corresponding bulk modulus predictions for various plastic strains. In
this case, the generalization is marginally better for C = 10. Given that the �t to the training data is
also better at this value of C, we can choose this SVR model as the optimal one given the input data.
¿ough the quality of the �ts to the input data from this model are not the best possible, the clear
improvement in generalization capability makes it the best choice under the circumstances.

6 Concluding remarks

Di�erences in material properties that appear small can have a signi�cant e�ect on the mechanical
response ofmaterials, particularly in the non-linear and high strain-rate regimes. We have illustrated
the e�ect with a simple rectangular punch impacting sand. As a consequence, we expect predictive
simulations to be sensitive to the accuracy of material models, at least for the case we have discussed
in this report. Nonlinear material models are o en purely phenomenological, in which case the de-
velopment of an accurate model involves two steps. In the �rst step, the model developer explores
various functional forms that may possibly model the data and chooses one that appears suitable
(and also satis�es constraints imposed by the second law of thermodynamics). Next, model param-
eters are determined via a convex optimization step. ¿e model function depends strongly on the
particular set of data being examined. It is not unusual to see both steps being repeated for what
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(a) Pressure (C = 1, є = 0.001). (b) Bulk modulus (C = 1, є = 0.001).

(c) Pressure (C = 10, є = 0.001). (d) Bulk modulus (C = 10, є = 0.001).

Figure 16 – є-SVR �ts to tension extended elastic unloading curves for poorly-
graded dry sand.
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Figure 17 – є-SVR prediction of pressure vs. elastic strain at various values of plas-
tic strain outside the training set for poorly-graded dry sand.

(a) C = 1, є = 0.001. (b) C = 10, є = 0.001.

Figure 18 – є-SVR prediction of bulk modulus vs. elastic strain at various values
of plastic strain outside the training set for poorly-graded dry sand.

19



D
RA

FT
appears nominally to be the same material. ¿is is particularly true of granular materials.

In this report, we suggest that the two-stage model development process may be reduced to one
step. In particular, we explore the support vector regression approach. Future work will present
similar studies on multi-layer perceptron neural networks. Support-vector regression requires just
an optimization step because the functional form is �xed at the outset. However, as we have seen,
�tting the model accurately to the input data is not a guarantee that the model will be unusable in a
predictive simulation. ¿e issue of over�tting can be addressed by accepting poorer �ts to the input
data. ¿e support vectormodel typically generalizes better under those conditions aswe demonstrate
in this report. ¿e machine learning/statistics literature discusses reasons extensively. However, the
selection of a good model still remains somewhat of an art and depends on the scaling of the input
data, the choice of support vector kernel, and the judgement of the modeler.

¿is report has explored a crush-curve model and a nonlinear, plastic strain-dependent bulk mod-
ulus model. As we have seen, the bulk modulus model we consider acceptable still fails to �t the
input data accurately. ¿ough the model is an improvement over a constant bulk modulus model
(or even the Arenisca model), the strong sensitivity of the bulk modulus on sand impact simulations
suggests that the support vector model would also be inadequate for predictive simulations. It is
unlikely that any purely phenomenological model will be accurate enough and these models should
be supplemented by physical models based on micromechanical considerations. Recent progress in
discrete element and micromorphic modeling, in conjunction with tabular interpolation, indicates
a potential way forward.
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