
D
RA

FT
Technical Report PAR-10021867-092020-2

Multilayer perceptron neural networks as
multi-variable material models

Biswajit Banerjee
Parresia Research Limited, Auckland, New Zealand

b.banerjee.nz@gmail.com

David M. Fox
CCDC Army Research Laboratory, Aberdeen Proving Ground, MD, USA

david.m.fox1.civ@mail.mil

Richard A. Regueiro
University of Colorado, Boulder, CO, USA

richard.regueiro@colorado.edu

Tuesday, 29 September, 2020

Abstract

Material models that depend on multiple independent variables are o en necessary for ac-
curate numerical simulations, particularly for applications that involve large stresses and defor-
mations. It is rare that purely physics-basedmodels are used in simulations because of the atten-
dant computational cost. Instead, experimental andmicroscale simulation data are expressed as
phenomenologicalmodels and fed into simulations. As the number of independent variables in-
creases, such models are not only di�cult to design but also need exponentially larger amounts
of data to parameterize accurately. In this paper we examine an alternative procedure for de-
veloping multi-variable phenomenological models via multi-layer perceptron neural networks.
¿emethod is applied to experimental data crush-curve and bulkmodulus data for dry concrete
sand. We �nd that reasonable network topologies and selected optimization parameters can be
discovered by a factorial design of experiments procedure. Networks containing recti�ed linear
unit (ReLU) activation functions are observed to produce excellent �ts to the input data as well
as acceptable generalization provided derivatives of the neural network models are not required
in simulations.

1 Introduction

Experimental stress-strain data for granular materials o en exhibit elastic-plastic coupling where
the elastic moduli depend strongly on the amount of plastic strain. ¿e moduli also depend on the
initial density of the material. For high strain-rate processes in fully or partially saturated granular
media, the moduli additionally vary with the porosity and degree of saturation. Similar dependence
of material properties on multiple, apparently independent, variables are observed for yield limit

1



D
RA

FT
surfaces and also the direction of the plastic strain rate (Brannon et al., 2015; Banerjee and Brannon,
2017; Banerjee and Brannon, 2019).

Numerical simulations of such materials are typically performed with constitutive models that con-
tain a mix of phenomenological and physics-based models for the parts. In this paper we are con-
cerned with phenomenological models that depend onmultiple variables. In particular, we focus on
the model of a material that unloads elastically in volumetric compression and can be represented in
that regime by a mean stress (p) model of the form p = p(εev , ε

p
v ) where εev is the elastic volumetric

strain and εpv is the plastic volumetric strain. ¿e bulk modulus (K) can be extracted from the model
for p and has the form K = K(εev , ε

p
v ). An alternative form that is commonly used is K = K(I1, εp)

where I1 = 3p.

¿e design of closed-form functional expressions for p or K can be non-trivial and time consuming.
A di�erent functional form is required for each material that is tested. For instance, two nominally
identical natural sands can exhibit remarkably di�erent coupled elastic-plastic behavior. Also, the
process of determining the parameters of these models from multidimensional experimental data
is involved even for only two independent variables. ¿erefore, a uni�ed and consistent method of
designing material models is required.

In recent years, developments in machine learning have introduced encouraging possibilities for
model design. ¿ese methods eliminate the model design process to some extent and focus instead
on parameter determination. We have explored the application of support vector machines to data
for a poorly-sorted concrete sand in Banerjee, Fox, and Regueiro (2020) and found that the models
are reasonably accurate but could be improved. In this paper, we study multilayer perceptron (MLP)
arti�cial neural networks and apply it to the same sand data. We �nd that MLP models can be used
to �t the input data extremely well; in fact, better than support vector machines. Recti�ed linear unit
(ReLU) activation functions are found to perform well, particularly when derivatives of the model
function are not required in simulations. Direct �ts to bulk modulus data are found to generalize
better than bulk moduli computed from �ts to pressure data. We also explore the e�ect of MLP
training parameter variation on the �tting process to crush-curve data to obtain a better appreciation
of the adequacy of MLP neural networks.

¿is paper is organized as follows. In Section 2 we brie�y describe the theory behind multilayer
perceptron networks. A summary of the experimental data is provided in Section 3. MLP �ts to
crush-curve data are discussed in Section 4 while those to pressure and bulk modulus data are ex-
amined in Section 5. Some concluding remarks are presented in Section 6.

2 Multilayer perceptron neural networks

Multilayer perceptron (MLP) neural networks (Rumelhart, Hinton, and Williams, 1985; Haykin,
1994) are a class of graph models that form the foundation for several machine learning models
that have recently regained popularity. A schematic of a typical multilayer neural network is shown
in Figure 1. For the topology shown in the schematic, the network is fed one sample at a time and the
weights are adjusted to minimize the error in the prediction. In this particular example, the input

2



D
RA

FT
consists of a vector x, the connection weightsW , and the bias weights b:

x = [x
1

x2] , W =
⎡⎢⎢⎢⎢⎢⎣

w11 w12

w21 w22

w31 w32

⎤⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎣

b1
b2
b3

⎤⎥⎥⎥⎥⎥⎦
. (1)

Figure 1 – Schematic of a multilayer perceptron neural network.

Nodes in the input layer are assigned weights

a =W ⋅ x + b Ô⇒
⎡⎢⎢⎢⎢⎢⎣

a1
a2
a3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

w11x1 +w12x2 + b1
w21x1 +w22x2 + b2
w31x1 +w32x2 + b3

⎤⎥⎥⎥⎥⎥⎦
. (2)

An activation function g(a) determines the values that are passed on as inputs to the next layer, and
the process is repeated until the output layer is reached.

In general, input samples are can be assumed to be vectors of the form x = (x1, x2, . . . , xd) and
the output is a vector y = (y1, y2, . . . , yp), i.e., we seek a map from Rd to Rp. ¿e network is fully
connected. Each pair of layers has an associated weight matrixW containing componentsw j

i where
j is the index of a node in the current layer and i is the index of a node in the previous layer. ¿ere
is also a set of bias terms b = (b1, b2, . . . , bn) for each layer. ¿e weights and biases are combined
together in each layer and subjected to a nonlinear transformation g, typically of sigmoidal or ReLU
form (Hahnloser et al., 2000), and the output is passed on to the next layer. Because of the application
of the activation function, a node of the graph is more commonly known as a neuron.

¿e functional form of this map for a single hidden layer network is

y = f (x) = g2(W2 ⋅ g1(W1 ⋅ g0(W0 ⋅ x + b0) + b1) + b2) (3)

3



D
RA

FT
whereWi are weight matrices, bi are the bias vectors, and gi are the activation operators for layer i.
Note that the last operator in the sequence is typically scalar-valued for the models we consider in
this paper. Multiple hidden layer networks can be composed using the same approach.

¿e weights are computed by feeding each sample into the network (typically in batches of 32 or
64), solving a least squares minimization problem using gradient descent with backpropagation,
and re�ning the weights by randomly shu�ing the training data over multiple epochs. Consider the
situation where the input data are of the form {(x1, y1), (x2, y2), . . . , (xm , ym)} ⊂ Rd ×R. ¿e goal
of a MLP model is to �nd a function y = f (x) that �ts the data such that the error is minimized:

minimize
W ,b

1
2

mbatch

∑
k=1

∥ f (xk) − yk∥2 (4)

Because of the recursive nature of theMLP approximation in equation (3), gradients are computed by
reverse-mode automatic di�erentiation (Rall and Corliss, 1996), popularly called backpropagation.

¿ere are several tuneable parameters in the optimization process, most of which can be estimated
automatically using modern so ware such as Keras (Gulli and Pal, 2017) and Tensorflow (Abadi
et al., 2016). Accuracy depends strongly on the choice of the nonlinear transformation (also called
an activation function).

3 Experimental data

¿e experimental data that have been used as a test-bed for the modeling process are for a dry,
poorly-graded, concrete sand described by Fox et al. (2014) and tested at theUniversity ofMaryland.1
Further details on the particular set used in this work can be found in (Banerjee, Fox, and Regueiro,
2020).

¿e hydrostatic loading-unloading data for that sand can be seen in Figure 2(a). ¿e loading curve,
shown in green, is used to �t a crush-curve model. ¿e unloading curves are used to �t a bulk
modulus model that depends on the plastic strain. Tangents to the unloading curves represent the
bulk modulus and have been plotted in Figure 2(b).

¿e crush-curve extracted from the hydrostatic compression data is depicted in Figure 3(a). Since
the term “crush-curve” is used more commonly to refer to the change in porosity as a function of
pressure form, we shown this form of the curve in Figure 3(b). ¿e porosity (ϕ) has been computed
using ϕ = p3 − εvp where εvp is the volumetric plastic strain and p3 = 0.325 is the volumetric plastic
strain at which all pores have been crushed (Brannon et al., 2015).

4 Crush-curve model

¿e crush-curve data available for the sand depends only on the volumetric plastic strain, and is
therefore easier to model. Of course, crush-curves may depend on other variables such as the water
content or some damage parameter, in which case the modeling process is more involved.2

1Stephen Akers, 2018, Private communication, CCDC Army Research Laboratory, Aberdeen Proving Ground, MD,
USA

2 If the crush curve depends only on a single independent variable, it is preferable to use a tabular model if we seek to
approximate the experimental data better and to evaluate the model e�ciently.

4



D
RA

FT 0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Loading
Unload@9.04 strain
Unload@18.08 strain
Unload@27.12 strain
Unload@36.16 strain
Unload@45.20 strain

Total volumetric strain (%)

P
re

ss
u
re

 (
M

Pa
)

(a) Loading-unloading curves (b) Tangent bulk modulus curves

Figure 2 – Hydrostatic loading-unloading data and unloading bulk moduli for dry
poorly-graded concrete sand.

(a) Pressure crush-curve. (b) Porosity crush-curve.

Figure 3 – Crush-curves for dry poorly-graded concrete sand.

5



D
RA

FT
Before the data are modeled with a neural net, the input data need be scaled to that gradient compu-
tations do not lead to �oating point precision errors. From Figures 3(a) and (b) it may appear that the
scaling procedure can be identical for the two representations of the data. However, we have found
that not to be the case. In particular, for the monotonically increasing curve, no �t is computed if
the data are scaled linearly between 0 and 1. A reasonable �t is produced only if the data are centered
around the mean and scaled to unit variance. Note that this is di�erent from the behavior observed
for support vector regression of the same data (Banerjee, Fox, and Regueiro, 2020).

¿e pandas 0.25.3 package (McKinney, 2011) was used to preprocess the data and scikit-learn
0.23.2 (Pedregosa et al., 2011) was used to scale the data. During the �tting process, arrays were
managed using the NumPy 1.17.4 package (Harris et al., 2020) and the neural network model was
implemented and solved with the Keras frontend (Gulli and Pal, 2017) for Tensorflow 2.0.0 (Abadi
et al., 2016). All computations were performed in double precision.3 For reproduceability of the
results, a random number seed of 42 was used for NumPy , 1234 for Tensorflow , and 12345 for the
Python random number generator. ¿e number of input data points for the crush-curve data is 950.

If mechanics simulations, the crush-curve model is expected to be evaluated numerous times per
particle (or per Gauss point) during each timestep. Also, for accuracy requires a large number of
timesteps - particularly for high-rate processes. ¿erefore, an appropriate MLP model should have
as low a computational cost as possible, i.e., the minimum number of layers and neurons per layer,
and a low-cost activation function, needed to achieve a desired level of accuracy.

4.1 One-layer model

We choose a one-layer neural network consisting of 32 neurons in the hidden layer that are densely
connected to a single input and produce a single output. ¿e weights are initialized using a uniform
random number generator. A ReLU activation function is used for the hidden layer:

g(a) ∶= R(W ⋅ x + b) = max(000,W ⋅ x + b) . (5)

If we use this model, and allow Tensorflow to automatically choose the hyperparameters of the
gradient descent process, we are required onlly to control the batch size and the number of training
epochs. For a batch size of 128 and with 800 training epochs, we get the �ts shown in Figure 4.
Notice that the pressure vs. volumetric plastic strain curve appears to be �t better than the porosity
vs, pressure crush-curve.

We can vary the number of samples per batch to observe the e�ect of batch size on the quality of the
�t as is seen in Figure 5. ¿e relative error in the �gures is de�ned as

Error = 2
ypred − yexpt

∣ypred∣ + ∣yexpt∣
(6)

¿eoptimal batch size can be determined by examining theminimum,mean, and standard deviation
of the error. For the pressure vs. plastic strain curve, the minimum absolute error is for a batch size
of 128. ¿is batch size also has the least mean absolute error is 24.6% with a standard deviation of
48.5%. On the other hand, though the minimum error for the porosity vs. pressure curve is also

3If care is not taken to use double precision for computation, the model may produce di�erent results when imported
into a mechanics simulation code.

6



D
RA

FT

Figure 4 – Single layer perceptron neural network �ts to the crush-curve for poorly-
graded concerete sand.

attained for a batch size of 64, the mean absolute error is least for a batch size of 16 (4.9%) as is the
standard deviation (7.7%).

Figure 5 – Relative prediction error for one-layer neural network �ts to the crush-
curve for varying batch sizes and 800 training epochs.

If we vary the number of training epochs while keeping the batch size �xed at 128, we obtain the error
curves in Figure 6. In this case, the minimum (as well as the smallest mean and standard deviation)
error in the pressure vs. plastic strain curves is attained in 400 epochs. For the porosity vs. pressure
curves, the best �t is obtained in 100 epochs and further improvement is not observed as the number
of epochs is increased. Better �ts may be obtained as the number of epochs increases if the data are
shu�ed during each epoch. Sigmoidal activation functions have been observed to produce worse
�ts to the data.

7



D
RA

FT

Figure 6 – Relative prediction error for one-layer neural network �ts to the crush-
curve for a batch size of 128 and various training epochs.

4.2 Two-layer model

Since the model with a single hidden layer does reproduce the crush-curve data accurately, it is
worth considering a two-layer model. Let us design a model with 32 neurons in the �rst hidden
layer and 64 neurons in the second hidden layer. Both layers use the ReLU activation function. ¿e
network is initialized with uniform randomnumbers. Randomnumber generator seeds are identical
to those used for the one-layermodel. ¿e plots in Figure 7 show the experimental data overlaid with
model predictions from the two-layer neural net for a batch size of 128 and 800 training epochs. ¿e
predictions are visually quite close to the experimental data.

Figure 7 – Two-layer neural network �ts to the crush-curve for poorly-graded con-
crete sand.

¿e relative prediction error for 800 training epochs and various batch sizes are shown in Figure 8.
Statistics extracted from the absolute values of the relative error are presented in Table 1. ¿e errors
are smaller in magnitude for the two-layer model compared to the single layer neural network. It

8



D
RA

FT
is instructive to observe the 75 percentile error given in the table. For both the pressure and the
porosity model, a batch size of 64 produces the least error. However, the mean error is lowest for a
batch of 128 as is the standard deviation.

Figure 8 – Relative error in predicted vs. experimental values for neural network
�ts to the crush-curve for varying batch sizes and 800 training epochs.

Table 1 – Prediction error statistics for concrete sand crush-curve data modeled
with a two-layer network trained for 800 epochs.

Batch size 16 32 64 128 256
Absolute relative error (pressure)

Mean - 24.018766 11.757296 5.676102 8.937993
Std. dev. - 54.073757 37.683897 19.975843 32.369637
Min. - 0.008027 0.000001 0.000411 0.000232
25% - 0.809280 0.443495 0.297135 0.247213
50% - 2.772000 1.623539 1.423406 1.088924
75% - 11.467700 4.400210 5.743104 3.109625
Max. - 200.000000 200.000000 200.000000 200.000000

Absolute relative error (porosity)
Mean 0.962467 1.367971 0.850818 0.271043 -
Std. dev. 1.469681 3.046689 0.959453 0.459972 -
Min. 0.003487 0.000037 0.002541 0.000553 -
25% 0.317387 0.119464 0.224664 0.057574 -
50% 0.509094 0.248237 0.433117 0.154398 -
75% 0.951461 0.913366 1.225882 0.302870 -
Max. 11.948615 16.814478 5.283357 6.035958 -

Training time is not a limiting factor for small data sets such as those for the crush curve. However,
the number of epochs can make a di�erence in the accuracy of the �t. ¿is can be observed in Fig-
ure 9, where the predicted pressure settles to a relatively steady value only a er 400 epochs. Similar
behavior is observed for the predicted porosity curves.

From these experiments, it can be seen that the process of �tting a neural network model to a set
of data requires a design of experiments grid to be explored, even for the simplest one-dimensional

9



D
RA

FT

128 x 200

128 x 100

128 x 400

128 x 400

128 x 100

Figure 9 – Relative error in predicted vs. experimental values for neural network
�ts to the crush-curve for a batch size of 128 and various training epochs.

case. ¿e selection of the most appropriate model can be facilitated by exmining error statistics
systematically. For instance, a metric that selects the model with the least mean, standard devia-
tion, minimum, and fourth-quartile error can be designed and used to determine an optimal model.
Over�tting is not a signi�cant issue for the crush-curve model because physical considerations can
be used to control the behavior of the model beyond the range where it has been trained.

5 Bulk modulus model

Abulkmodulusmodel can either be �tted directly to bulkmodulus data (such as those in Figure 2(b))
or derived indirectly from pressure vs. strain data shown in Figure 2(a). ¿e latter may be preferable
for plasticity models where the stress integration algorithm uses K = K(I1, εpv ) while the former is
more convenient when K = K(εev , ε

p
v ) where εep is the elastic volumetric strain.

In Banerjee, Fox, and Regueiro (2020) we explored the possibility of using data of the form p =
p((εev , ε

p
v ) as input to the �tting process and discovered that the constraints of zero pressure at zero

volumetric elastic strain cannot be readily applied during the optimization process. ¿e same situ-
ation arises when using MLP neural nets. ¿erefore, the model development process discussed in
this paper uses input data of the form p = p(εv , εpv ) where the total volumetric plastic strain is given
by εv = εev + ε

p
v . Multilayer perceptron neural nets can be also used to directly �t data of the form

K = K(εev , ε
p
v ) and we discuss such models too.

We have also found that bootstrapping (Mooney, Duval, and Duvall, 1993) the input data improves
the quality of the �t, particularly for the low strain regime where fewer samples are available along a
given unloading path. Before bootstrapping the data, a linear interpolation-based smoothing opera-
tion is used to sample each unloading curve at regular intervals. ¿e input data where then extended
in the tension and compression regimes and assumed curves were added to estimate behavior out-
side the range of the experimental data. ¿ese are required to avoid arbitrary behavior from the �tted
neural net models for regimes where experimental data are not available.

¿e extended and padded input data are given in Figures 10(a) and (b). ¿e curves in part (a) of

10



D
RA

FT
the �gure, shown the modi�ed input data when the bulk moduli are assumed to be constant in
the regions where the data have been extended. On the other hand, if we linearly extrapolate the
bulk modulus and compute the corresponding pressures by integration, we get the data shown in
part (b) of the �gure. Note that bulk moduli can become zero and negative if extrapolated linearly.
However, the elastic strain at which such behavior occurs is tensile and the neural network model is
not applicable in that regime.

-10.00%
0.00%

6.28%

14.51%

22.59%

30.19%

32.00%

33.00%

-10.00%

0.00%
6.28% 14.51%

22.59%

30.19%

32.00%

33.00%

(a) Assuming constant bulk modulus.

14.51%

22.59%

30.19%

32.00%

6.28%-10.00%

33.00%

0.00% -10.00% 0.00% 6.28% 14.51%

22.59%

30.19%

32.00%

33.00%

(b) Assuming linear bulk modulus.

Figure 10 – Extended and padded elastic unloading curves and bulk moduli for
dry poorly graded concrete sand. ¿e solid lines show the original
data. ¿e dashed lines are the extended data. Percent volumetric plas-
tic strains corresponding to each curve are also shown.

5.1 Fits to pressure-volumetric strain data

Neural networks topologies that can be evaluated rapidly are essential if such models are to be used
in computational mechanics applications. We have discovered that at three-layer networks are the

11



D
RA

FT
minimum depth at which the input pressure-strain data can be reproduced reasonably well. How-
ever, MLP models fail to generalize well for batch sizes larger than 32.

Visual examination of the MLP �ts to the extended unloading curves in Figures 11(a) and (b) shows
that the �t appears excellent. In fact, the absolute relative error between the experimental and pre-
dicted values of pressure is less than 20% at almost all points along each curve. ¿ough slight per-
turbations are observed in the data extended assuming a linear bulk modulus, these do not appear
signi�cant.

14.51% 22.59%

30.19% 32.00%

6.28% 6.28%

14.51%
22.59%

30.19% 32.00%

64 sigmoid + 32 sigmoid + 32 ReLU 64 ReLU + 32 ReLU + 32 ReLU

(a) Constant bulk modulus extended curves.

14.51% 22.59%

30.19% 32.00%

6.28%

14.51% 22.59%

30.19% 32.00%

6.28%

64 sigmoid + 32 sigmoid +
32 ReLU

64 ReLU + 32 ReLU +
32 ReLU

(b) Linear bulk modulus extended curves.

Figure 11 –¿ree-layer MLP �ts to pressure vs. total volumetric strain curves for
concrete sand. ¿e models on the le used sigmoid and ReLU activa-
tions. ¿ose on the right used only ReLU activations.

Note that the plots on the le use a topology containing 64 neurons in the �rst layer and sigmoid
activation, 32 with sigmoid activation in the second layer, and 32 with ReLU activation in the third
layer. ¿e plots on the right are for the same topology but ReLU activation for all three layers.

If we examine the derivatives of these curves in the form of the tangent bulk modulus shown in

12



D
RA

FT
Figure 12(a) and (b), we observe remarkable di�erences between the two �ts. ¿e sigmoid-based
models are smoother but tend to average out the sharp changes in gradient. However, the purely
ReLU-based model appears to have produced a piecewise linear �t to the pressure-strain data that is
re�ected as stepped bulk modulus values.

6.28%

14.51%

22.59%
30.19%

32.00%

64 sigmoid + 32 sigmoid + 32 ReLU 64 ReLU + 32 ReLU + 32 ReLU

6.28%

14.51%

22.59%

30.19%

32.00%

(a) Constant bulk modulus extended curves.

6.28%

14.51%

22.59%

30.19%

32.00%

64 sigmoid
32 sigmoid
32 ReLU

64 ReLU
32 ReLU
32 ReLU

6.28%

14.51%

30.19%

32.00%

22.59%

(b) Linear bulk modulus extended curves.

Figure 12 – Bulk moduli computed from three-layer MLP to elastic unloading
curves for concrete sand. ¿e purely ReLU-based models are on the
right. ¿emodels on the le used a combination of sigmoids and ReLU.

When theMLPmodels with sigmoid activation are used to predict elastic unloading curves and then
used to compute the bulkmodulus for plastic strains outside the training set, we observe the behavior
shown in Figures 13(a) and (b). If the model was obtained from �ts to data extended assuming
constant bulk moduli, the moduli for 5% and 10% plastic strain are reasonable. On the other hand,
the modulus for 20% plastic strain is larger than that for 22.6% plastic strain up to an elastic strain
of 2.5%. At 25% plastic strain, the predicted modulus is reasonable at strains below 2.5%, decreases
to almost the initial value at 0% plastic strain, before increasing rapidly a er around 8.5% strain. A

13



D
RA

FT
similar trend is observed at 35% plastic strain. For the model �t to the linear bulk modulus extended
data, the bulk modulus turns negative for several volumetric plastic strain values.

5%

10%

20%25%

35%

(a) Constant bulk modulus extended curves.

6.28%

14.51%

22.59%

30.19%

32.00%

5%

10%

20%

25%

35%

(b) Linear bulk modulus extended curves.

Figure 13 – Predicted behavior of bulkmodulus fromMLPmodels of concrete sand
for volumetric plastic strains outside the training set. Text labels indi-
cate volumetric plastic strains. Both sets of data were modeled with
MLP networks containing a combination of sigmoid and ReLU activa-
tion functions.

¿e observations in this section suggest that �ts to data of pressure vs. strain form may not be
appropriate for MLP models because the derivatives need to be calculated to determine the bulk
modulus. Similar results have been obtained for a range of batch and epoch sizes, various network
topologies, and di�erent types of scaling of the input data. However, the accurate �ts to the input
data indicate that direct �ts to bulk modulus curves may be easier to generalize.

5.2 Fits to bulk modulus-volumetric strain data

Instead of computing derivatives as a secondary step a er �tting pressure-strain data, it is more
convenient to �t MLP models directly to bulk modulus-strain data. We focus on the data extended
with a constant bulk modulus assumption as seen in Figure 13(a). Notice from Figure 13(b) that
multiple values of bulk modulus occur at the same volumetric plastic strain in the experimental data
extended using a linear bulkmodulus assumption, causing themodel to fail to generalize adequately.
¿is issue is less relevant for the data in Figure 13(a).

¿e bulk moduli were computed from smoothed and resampled pressure-volumetric strain curves
extended in tension and compression. Extra data at plastic strains of -10%, 0%, and 33% were added
to the data set as shown in Figure 10. ¿e data were were then translated to have zero mean and
scaled such the standard deviation was 1. A er that the scaled data were bootstrapped such that the
bulk modulus curves at all values of volumetric plastic strain had an approximately equal number of
samples. ¿e procedure discussed earlier was used to �t neural network models to these data.

14



D
RA

FT
Models produced by the following three dense three-layer neural network topologies are discussed:

1. Model A: 64 neurons with sigmoid activation in layer 1, 32 neurons with sigmoid activation in
layer 2, 32 neurons with ReLU activation in layer 3.

2. Model B: 64 neurons with ReLU activation in layer 1, 32 neurons with ReLU activation in layer
2, 32 neurons with ReLU activation in layer 3.

3. Model C: 64 neurons with sigmoid activation in layer 1, 32 neurons with sigmoid activation in
layer 2, 32 neurons with sigmoid activation in layer 3.

Note that Model B is the least computationally expensive to evaluate while Model C is the most
expensive due to the need to evaluate exponentials. Model A has an intermediate cost.

Fits to the bulk modulus data produced by Model A are shown in Figure 14 (a). ¿e model repro-
duces the input data remarkably well and is a signi�cant improvement over support vector regression
(see Banerjee, Fox, and Regueiro (2020)). We can observe the generalizability of the model in Fig-
ure 14 (b). ¿emodel performs well for volumetric plastic strains below 14% but produces inaccurate
results at larger plastic strains (when compared with linear interpolation between the input curves).

6.28%

14.51%

22.59%

30.19%

32.00%

(a) Fits to input data.

10%

5%

20%

25%

35%

(b) Predicted curves.

Figure 14 –Model A: Predicted behavior of bulk modulus from three-layer MLP
models of concrete sand. ¿e model used 64 sigmoid neurons in the
�rst layer, 32 sigmoid neurons in the second, and 32 ReLU neurons in
the third. Text labels indicate volumetric plastic strains.

¿e ReLU-based Model B produces a piecewise linear approximation to the input curves and is also
quite accurate (Figure 15(a)). As can be seen from Figure 15(b), the quality of generalization is better
than that produced by Model A.

In Figure 16 we see the �ts to the data produced by the sigmoid-based Model C. ¿e �ts are again
quite accurate and the model also generalizes reasonably well - better than Model A but worse than

15



D
RA

FT

6.28%

14.51%

22.59%30.19%

32.00%

(a) Fits to experimental data.

5%

10%

20%

25%

35%

(b) Predicted curves.

Figure 15 –Model B: Predicted behavior of bulkmodulus fromMLPmodels of con-
crete sand for volumetric plastic strains outside the training set. Text
labels indicate volumetric plastic strains.

model B.

6.28%

14.51%

22.59%

30.19%

32.00%

(a) Fits to experimental data.

5%

10%

20%

25%

35%

(b) Predicted curves.

Figure 16 –Model C: Predicted behavior of bulk modulus from MLP models of
concrete sand for volumetric plastic strains outside the training set.
Text labels indicate volumetric plastic strains.

¿e results in this section suggest that ReLU-dominant neural networks can �t data and also gener-
alize reasonably well. Of course, the choice of topology depends strongly on the type of data being
modeled. For the bulk modulus data discussed in this paper, a purely ReLU-based model is signif-
icantly more computationally e�cient while producing reasonable generalization to plastic strains

16



D
RA

FT
outside the training set.

6 Concluding remarks

We have discussed the process of designing and �tting multilayer perceptron neural networks for
modeling material models that involve multiple independent variables. Even when there is only a
single independent variable, we �nd that at least two layers are need to �t the input data within a
few percent relative error. In general, the larger the number of independent variables, the larger the
number of layers needed to �t the input data. Clearly, the number of possible topologies increases
exponentially as the number of layers increases. Until an automated search of the design space can
be performed at reasonable cost, a design of experiments combined with best practices is currently
the most feasible way to design topologies.

From a computational mechanics point of view, we would like to minimize the cost of evaluation
of material models. ¿e ReLU function is the computationally least expensive activation function
that produces a good �t to the data and also generalizes well. As has become best practice in the
machine learning world, we also suggest the use of this activation function. However, the piecewise
linear �ts produced by a ReLU-based model may not be appropriate if derivatives of the model are
to be computed. In such situations we suggest �tting the neural network model to the derivatives
and integrating to recover the original signal.

Acknowledgements

¿is research has been partially funded by the USO�ce of Naval Research PTE Federal award num-
ber N00014-17-1-2704.

References

Abadi,Martín et al. (2016). “Tensor�ow:A system for large-scalemachine learning”. In: 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16), pp. 265–283 (cit. on
pp. 4, 6).

Banerjee, B. and R.M. Brannon (2017).¿eory, veri�cation, and validation of the ARENA constitutive
model for applications to high-rate loading of fully or partially saturated granular media. Tech. rep.
PAR-10021867-1516.v1. Parresia Research Limited and University of Utah. doi: 10.13140/RG.
2.2.10671.53922 (cit. on p. 2).

— (2019). “Continuummodeling of partially saturated soils”. In: Shock Phenomena in Granular and
Porous Materials. Ed. by T. Vogler and A. Fredenburg. Springer (cit. on p. 2).

Banerjee, B., D. M. Fox, and R. A. Regueiro (2020). Support vector regression for �tting multi-variable
material models. Tech. rep. PAR-10021867-092020-1. Parresia Research Limited (cit. on pp. 2, 4,
6, 10, 15).

Brannon, R.M. et al. (2015). “KAYENTA:¿eory andUser’s Guide”. In: Sandia National Laboratories
report SAND2015-0803 (cit. on pp. 2, 4).

Fox,D.M. et al. (2014). “¿e e�ects of air �lled voids andwater content on themomentum transferred
from a shallow buried explosive to a rigid target”. In: International Journal of Impact Engineering
69, pp. 182–193 (cit. on p. 4).

17

https://doi.org/10.13140/RG.2.2.10671.53922
https://doi.org/10.13140/RG.2.2.10671.53922


D
RA

FT
Gulli, Antonio and Sujit Pal (2017).Deep Learning with Keras. Packt Publishing Ltd (cit. on pp. 4, 6).
Hahnloser, RichardHRet al. (2000). “Digital selection and analogue ampli�cation coexist in a cortex-

inspired silicon circuit”. In: Nature 405.6789, p. 947 (cit. on p. 3).
Harris, Charles R. et al. (Sept. 2020). “Array programmingwithNumPy”. In:Nature 585.7825, pp. 357–

362. issn: 1476-4687. doi: 10.1038/s41586-020-2649-2. url: https://doi.org/10.1038/
s41586-020-2649-2 (cit. on p. 6).

Haykin, Simon (1994).Neural networks: a comprehensive foundation. Prentice Hall PTR (cit. on p. 2).
McKinney, Wes (2011). “pandas: a foundational Python library for data analysis and statistics”. In:

Python for High Performance and Scienti�c Computing 14 (cit. on p. 6).
Mooney, Christopher Z, Robert D Duval, and Robert Duvall (1993). Bootstrapping: A nonparametric

approach to statistical inference. 94-95. Sage (cit. on p. 10).
Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of Machine Learn-

ing Research 12, pp. 2825–2830 (cit. on p. 6).
Rall, Louis B and George F Corliss (1996). “An introduction to automatic di�erentiation”. In: Com-

putational Di�erentiation: Techniques, Applications, and Tools 89 (cit. on p. 4).
Rumelhart, David E, Geo�rey E Hinton, and Ronald J Williams (1985). Learning internal represen-

tations by error propagation. Tech. rep. California Univ San Diego La Jolla Inst for Cognitive
Science (cit. on p. 2).

18

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

	Introduction
	Multilayer perceptron neural networks
	Experimental data
	Crush-curve model
	One-layer model
	Two-layer model

	Bulk modulus model
	Fits to pressure-volumetric strain data
	Fits to bulk modulus-volumetric strain data

	Concluding remarks
	References

