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Abstract

Experiments and micromechanical simulations generate tabular data for material behavior.
Typically, models are �t to thesematerial data before engineering simulations can be performed.
In this paper, we compare the response of elastic moduli models for a dry, poorly-graded, sand
that use linear interpolation, support vector regression �ts, and multilayer perceptron neural
networks, respectively. ¿e simulations are driven by deformation gradient and represent hy-
drostatic loading/unloading, uniaxial strain, and multiaxial strain. We observe that the directly
interpolated elastic moduli produce the smallest stresses and the largest elastic strains. ¿e sup-
port vector and neural network models produce sti�er responses and also take longer to com-
pute.

1 Introduction

As more microscale simulation data become available, tabulated data and machine learning models
�tted to these data will increasingly be used as inputs to elastoplastic simulation. In previous work,
we have explored the use of support vector models (Banerjee, Fox, and Regueiro, 2020c) and neu-
ral network models (Banerjee, Fox, and Regueiro, 2020b) to generate functional representations of
multi-variable tabular data for elastoplastic simulations. Various approaches to interpolating tabu-
lar data, e.g., linear interpolation, radial basis function interpolation, and kriging interpolation have
been discussed in Banerjee, Fox, andRegueiro (2020a). An elastoplasticity algorithm that uses linear
interpolation of tabular data has been described in detail in Banerjee, Fox, and Regueiro (2020d).

In this paper, we use the tabular elastoplasticity algorithm to compute the response of single material
points to prescribed deformation gradient time histories. Hydrostatic, uniaxial strain, andmultiaxial
strain deformation histories are used to drive the simulations with the host code Vaango (Banerjee,
2014). Comparisons are made between the responses of tabular model with tabular elastic moduli,
moduli computed from a support vector regression �t, and moduli from a neural network �t to the
data.

¿is paper is organized as follows. Experimental data on a dry, poorly-graded, sand are presented
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in Section 2 and the support vector and neural network �ts to the data are also discussed brie�y in
that section. Single particle tests and comparisons are described in Section 3. Finally, some brief
concluding remarks are given in Section 4.

2 Experimental data

¿e experimental data that have been used as a test-bed for the modeling process are for a dry,
poorly-graded, concrete sand described by Fox et al. (2014) and tested at theUniversity ofMaryland.1
Further details on the particular set used in this work can be found in Banerjee, Fox, and Regueiro
(2020c). In this paper, compressive states are assigned positive values and tensile states are assigned
negative values.

¿e hydrostatic loading-unloading data for that sand is presented as a plot of pressure (p) as a func-
tion of the total volumetric strain (εv) in Figure 1(a). ¿e loading curve, shown in cyan, is used to
�t a crush-curve model. ¿e unloading curves are used to �t a bulk modulus model that depends
on the plastic strain. Tangents to the unloading curves represent the bulk modulus and have been
plotted in Figure 1(b). ¿ere is a strong dependence of the bulk modulus (K) on both the elastic (εev)
and plastic (εpv ) volumetric strains.

(a) Loading-unloading curves (b) Tangent bulk modulus curves

Figure 1 – Hydrostatic loading-unloading data and unloading bulk moduli for dry
poorly-graded concrete sand.

¿e crush-curve extracted from the hydrostatic compression data is depicted in Figure 2(a). Since
the term “crush-curve” is used more commonly to refer to the change in porosity as a function of
pressure form, we shown this form of the curve in Figure 2(b). ¿e porosity (ϕ) has been computed
using ϕ = p3 − εvp where εvp is the volumetric plastic strain and p3 = 0.325 is the volumetric plastic
strain at which all pores have been crushed (Brannon et al., 2015).

1Stephen Akers, 2018, Private communication, CCDC Army Research Laboratory, Aberdeen Proving Ground, MD,
USA
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(a) Pressure crush-curve. (b) Porosity crush-curve.

Figure 2 – Crush-curves for dry poorly-graded concrete sand.

¿e original yield function curve for the concrete sand intersected the deviatoric stress axis approxi-
mately 5 kPa (compression), indicating that a purely elastic response was not possible when the sand
was loaded from zero strain. To ensure that simulations did not run into any di�culty, the function
was shi ed to the tensile regime by 5 kPa to provide a small amount of cohesion. A plot of the yield
function in p-q space is shown in Figure 3. Here p is the mean stress, de�ned as p = 1/3 tr(σ), q is
the deviatoric yield stress given by q =√3J2 where J2 = 1/2 s ∶ s, σ is the Cauchy stress, s = σ − pI is
the deviatoric part of the Cauchy stress, and I is the second-order identity tensor. ¿e crush curve
suggests that nonlinear bulk moduli are not su�cient to explain the observed yield response and a
compression cap is needed to model the material.

Figure 3 – Yield function for dry poorly-graded concrete sand.
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In the simulations described in this paper, tabularmodels are used for the crush curve and yield func-
tion as described in (Banerjee, Fox, andRegueiro, 2020d)with linear interpolation of the data (Baner-
jee, Fox, and Regueiro, 2020a). Comparisons with support vector regression (Banerjee, Fox, and
Regueiro, 2020c) and neural network models (Banerjee, Fox, and Regueiro, 2020b) are performed
by varying the approach used to model the elastic bulk modulus function.

2.1 Tabular model

¿e bulk modulus vs. pressure data shown in Figure 4 are interpolated to determine the value of
the tangent bulk and shear moduli at a given value of mean stress and volumetric plastic strain.
Derivatives of the bulkmodulus with respect to plastic strain are computed using a central di�erence
scheme using two nearby values of plastic strain that di�er by 2.0×10−6. A constant Poisson’s ratio
of 0.189 is used to compute the shear modulus from the interpolated bulk modulus.

Figure 4 – Bulk modulus table expressed as a function of pressure.

¿e data are read is as a JSON �le (Crockford, 2006). ¿e format of the �le is described in Banerjee
(2014).

2.2 Support vector regression model

¿e support vector regression (SVR) model used in these simulations is the pressure vs. total volu-
metric strain �ts to the experimental data compute with a value of C = 10 and є = 0.001 as described
in Banerjee, Fox, and Regueiro (2020c). Pressure curves predicted by the model are shown in Fig-
ure 5. Bulk modulus are extracted from the predicted pressures by analytical di�erentiation of the
pressure SVR model.

¿e SVR model is also read into Vaango as a JSON �le as described in Banerjee (2014).
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C = 10, є = 0.001.

Figure 5 – Support vector regression predictions of pressure as a function of the
total volumetric strain.

2.3 Multiplayer perceptron neural network model

A dense, multilayer perceptron (MLP) model is used to model the elastic modulus data as described
in Banerjee, Fox, and Regueiro (2020b). ¿e three-layer model of the bulk modulus as a function of
elastic volumetric strain is used in this paper. ¿emodel containing 64 neuronswith ReLU activation
in layer 1, 32 neurons with ReLU activation in layer 2, and 32 neurons with ReLU activation in layer 3.
¿emodel was trained for 800 epochs with batch sizes of 32. Predictions from that model are shown
in Figure 6. Note that this model uses a linear extrapolation of the experimental pressure curves
before computing the bulk modulus instead of assuming constant bulk moduli outside the range
of the experimental data. ¿e �tted model is saved as a HDF5 �le (Koranne, 2011) by Tensor�ow
2.0 (Abadi et al., 2016) and read into Vaango using the HDF5 library.

3 Single particle tests

¿e Vaango implementation of the tabular plasticity model in conjunction with the tabular elastic-
ity model (Table ), the support vector regression elasticity model (SVR ), and the multilayer percep-
tron elasticity model (MLP ) has been exercised on single particles driven by a deformation gradient
curve. ¿ree tests are discussed in this paper: hydrostatic strain compression with unloading, uni-
axial strain compression with unloading, and multiaxial strain loading and unloading.

3.1 Hydrostatic strain loading and unloading

¿e deformation gradients used to drive the hydrostatic strain test problem are shown in Figure 7.
¿e components Fxx , Fyy, and Fzz of the deformation gradient F are set to equation values. ¿e
shear deformation components, Fxy, Fyx etc.,are set to zero. ¿e material is compressed and then
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Figure 6 –Multilayer perceptron neural network predictions of bulk modulus as a
function of the elastic volumetric strain.

unloaded in a sequence of steps that mimic the experiments described in Section 2.

Figure 7 – Input deformation gradient history for hydrostatic loading and unload-
ing of a single particle.

¿e bulk modulus evolution for this deformation history is shown in Figure 8. ¿e SVRmodel
produces the smoothest bulk modulus evolution, while the values predicted by the other models
tend to �uctuate considerably. ¿e Tablemodel predicts the smallest overall bulk moduli.

Components of the stress, σ , computed using the algorithmdescribed in Banerjee, Fox, andRegueiro
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Figure 8 – Evolution of bulk modulus for hydrostatic loading and unloading of a
single particle.

(2020d) and the associated invariants, p and q, are shown in Figures 9(a) and (b), respectively. ¿e
stress components σxx , σyy and σzz are equal while the shear stress component, σxy etc., are zero as
is the deviatoric stress invariant, q. ¿e Tablemodel produces the smallest peak normal stress while
theMLPmodel produces the largest value. Stresses predicted by the SVRmodel are almost identical
to those from the Tablemodel until the �nal loading step. At that point the SVR and MLPmodels
produce nearly identical results.

(a) Stress (b) p and q.

Figure 9 – Comparison of computed stress history for hydrostatic loading and un-
loading of a single particle.
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Plots of the predicted elastic (εe) and plastic strains (εp) are shown in Figure 10. ¿e MLPmodel
produces the sti�est elastic response and, consequently, the smallest elastic strains, εexx = εeyy = εezz .
¿e shear strain components are zero. ¿e largest elastic strains are predicted by the SVRmodel
while theTablemodel predicts strains that are close to the tabularmodel. On the other hand, because
of the assumption ε = εe + εp, the plastic strains εpxx = εpyy = εpzz predicted by the MLPmodel are
the largest while the Table and SVRmodels produce nearly identical predictions. While the plastic
strain components predicted by the Tablemodel are monotonically increasing, both the SVR and
MLPmodels show a decrease in plastic strain at the start of reloading a er an unload step. ¿is is
because the deformation pushes the stress state to the tension regime during which the plastic strain
tensor changes sign.

Figure 10 – Comparison of computed elastic and plastic strain history for hydro-
static loading and unloading of a single particle.

Plots of the normal components of stress as functions of the corresponding normal components of
strain are presented in Figure 11. We observe that the algorithm produces the correct stress-strain
symmetry because the plots of σxx−εxx and σyy−εyy are identical. ¿e Tablemodel produces results
that are close to those predicted by the SVRmodel up to strains of around 13%. ¿eMLPmodel pre-
dicts larger stresses a er around 4% strain. However, beyond 13% strain, the SVRmodel produces
a sti�er response than either the Table or the MLPmodel. Beyond 14% strain the SVRmodel pro-
duces the larges stress while the Tablemodel predicts a value that is almost half that predicted by the
SVRmodel.

Figure 12 shows plots of the pressure (mean stress) as functions of various components of the vol-
umetric strain, εv . ¿e experimental pressure-volumetric strain data are plotted as solid blue lines.
¿e crush-curve extracted from experiments is shown as solid green line. All three models pre-
dict stresses that are lower than experimental values at peak compression. Tablemodel predictions,
shown as dashed lines, indicate a response that is so er than those from theMLP andSVR predictions.
Plots of the pressure as a function of the volumetric plastic strain, εpv , are shown in green. ¿emodels
follow the crush-curve accurately. However, the peak plastic strains achieved by the Tablemodel are
smaller than those reached by the SVR and MLPmodels. Because of the rapid increase in stress at
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Figure 11 – Comparison of computed stress-strain history for hydrostatic loading
and unloading of a single particle.

these plastic strain values, small di�erences in plastic strain can lead to large di�erences in the stress
state. ¿e elastic response, the pressure as a function of the elastic strain (εev), is shown in orange in
the �gure. ¿e initial response of the MLPmodel is sti�er than that of the Table and SVRmodels.
However, as deformation progresses, theSVRmodel produces a sti�er response and catches up with
theMLPmodel while the Table ode continues to predict a so er elastic response. ¿ese results indi-
cate that the calibration of the elastic model and the crush curve from the experimental hydrostatic
load-unload data requires consideration of deformation-induced anisotropy and elastic-plastic cou-
pling for better matches to the experimental data are to be achieved.

¿e evolution of the yield surface for the three models is shown in Figure 13. Solid lines are used to
represent the location of the cap at the values of εv at the peak of each loading step. ¿e corresponding
locations of the cap predicted by the Table , SVR , MLPmodels are show as dashed, dash-dot, and
dotted lines, respectively. ¿eSVRmodel produces the best approximation to the experimental data.
However, as observed in previous �gures, the peak pressure achieved by the simulation is close to
half that achieved in the experiments. ¿e predicted values are relatively close to experimental values
only for volumetric strains less than 27%. ¿e Table and SVRmodels produce approximately the
same response for strains less than 35%, while the MLPmodel generates higher values up to around
42% strain.

Figure 14(a) plots the evolution of the size of the timestep as the simulation proceeds. ¿e timestep
size decreases during the loading stage and increases during unloading because of the decrease in
bulk modulus during unloading. However, since the bulk modulus continues to increase as com-
pression increases with time, the timestep also decreases according to the computed p-wave speed.
¿e MLPmodel initially requires the smallest timesteps but the size of the timestep required by the
SVRmodel becomes the smallest a er around 0.5s of simulation time. Memory usage evolution
during the course of the simulation is shown in Figure 14(b). As the yield surface expands, the num-
ber of points needed to discretize the yield surface also increases and this is re�ected in the memory
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Figure 12 – Comparison of computed pressure-volumetric strain history for hydro-
static loading and unloading of a single particle.

Figure 13 – Evolution of the yield surface for hydrostatic loading and unloading of
a single particle.
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usage. Memory leaks are avoided in Vaango by the use of smart pointers.

(a) Timestep size. (b) Memory usage.

Figure 14 – Timestep size evolution and memory usage during hydrostatic loading
and unloading of a single particle.

¿e time taken to compute each timestep is shown in Figure 15(a). All three models take approxi-
mately the same time to run during the course of the simulation, except for the SVRmodel which
takes approximately twice as long per timestep towards the end of the simulation ( 1s). Figure 15(b)
shows the time taken by each simulation. ¿e Tablemodel is the most e�cient in terms of compu-
tation, followed by the MLPmodel. ¿e SVRmodel is the least e�cient in hydrostatic loading/un-
loading. ¿e time taken is, of course, a function of the computed bulk modulus and the volumetric
plastic strain which determine how e�ciently closed points and normals to the yield surface can be
evaluated.

3.2 Uniaxial strain loading and unloading

¿e hydrostatic test has been compared with experimental data. However, uniaxial strain experi-
mental data are not available for the poorly graded dry concrete sand. ¿erefore, the results in this
section are predictions from the tabular cap plasticity model that can potentially be compared to ob-
servations from split-Hopkinson pressure bar experiments. Figure 16 shows the deformation gradi-
ent that is used to drive the simulation. ¿e deformation gradient component Fxx is decreased from
1.0 to 0.6 during the compression step and then increased during unloading until a small amount of
tensile deformation is achieved. ¿e components Fyy = Fzz are kept constant at 1.0 while the shear
components Fxy etc. are �xed at zero.

Bulkmoduli for this deformationhistory are shown inFigure 17. As observed earlier, theTablemodel
predicts the smallest values of bulk modulus. ¿e SVRmodel produces the smoothest evolution of
moduli while the MLPmodel exhibits the largest �uctuations.
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(a) Time per timestep. (b) Simulation time.

Figure 15 – Time per timestep and total simulation runtime for hydrostatic loading
and unloading of a single particle.

Figure 16 – Input deformation gradient history for uniaxial strain loading and un-
loading of a single particle.
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Figure 17 – Evolution of bulk modulus for uniaxial strain loading and unloading
of a single particle.

¿e evolution of the predicted stress components σxx , σyy, and σxy during the course of the defor-
mation are shown in Figure 18(a). We observe that the σxx values produce by the Tablemodel are the
smallest at the peak compression state. ¿e SVR and MLPmodels produce approximately the same
stresses at maximum compression. ¿e unloading rate is slower for the Tablemodel until around
1.25s, a er which all three models unload at approximately the same rate. Transverse stress σyy and
σzz are equal and typically lower than σxx during loading. However, the transverse stresses are higher
than σxx during the unloading stage. Stress invariants p and q are plotted in Figure‘18(b). ¿e rate of
increase of p during loading is larger than the rate of decrease during unloading. A similar trend is
observed for the value of q (which has been given a sign based on the value of J3, the third invariant
of the deviatoric stress). ¿e sign of J3 is negative during compressive loading and changes to positive
during unloading.

Elastic and plastic strain components are plotted in Figure 19. ¿e largest values of εexx are pro-
duced by the Tablemodel, while the MLPmodel predicts the smallest values because of the large
bulk modulus. During unloading, the elastic strain drops before setting to a nearly constant value.
¿e corresponding values of εeyy are shownwith thinner lines and reach tensile states during unload-
ing. ¿e plastic strain component εpxx is almost identical for the three models. However, dilation is
observed in the εpyy strain during the loading phase.

Figures 20(a) and (b) plot the stress components σxx and σyy = σzz as functions of the axial strain
εxx , respectively. As expected from the hydrostatic compression tests, the Tablemodel produces the
smallest peak compressive stresses, followed by the theMLPmodel. ¿e largest stresses are predicted
by the SVRmodel.

¿e corresponding volumetric stress-strain plots are shown in Figure 21. Since the evolution of the
cap is identical for the Table , SVR , and MLPmodels, the di�erence in predicted pressures is con-
trolled by the sti�ness of the volumetric elastic response (which also depends on the plastic strain).
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(a) Stress (b) p and q.

Figure 18 – Comparison of computed stress history for uniaxial strain loading and
unloading of a single particle.

Figure 19 – Comparison of computed elastic and plastic strain history for uniaxial
strain loading and unloading of a single particle.
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(a) σxx . (b) σy y .

Figure 20 – Comparison of computed stress-strain history for uniaxial strain load-
ing and unloading of a single particle.

¿e Tablemodel predicts the least sti� response, followed by the MLPmodel. ¿e SVRmodel pre-
dicts the sti�est response.

Figure 21 – Comparison of computed pressure-volumetric strain history for uniax-
ial strain loading and unloading of a single particle.

Plots of the yield surface and its evolution are shown in Figure 22. ¿ough the yield surface cap lo-
cation predicted by the three models is nearly identical at small compressive stresses, the locations
di�er by nearly 50% at peak compression. As observed earlier, the SVRmodel predicts the largest
plastic volumetric strains and therefore the largest value of the compression cap location. ¿e stress
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state is also observed to push further into the cap region as the compressive stress increases, indicat-
ing that the stress state tends towards hydrostatic compression. Unloading is largely along the yield
surface a er an initial elastic unloading phase.

Figure 22 – Evolution of the yield surface for uniaxial strain loading andunloading
of a single particle.

Figure 23(a) plots the evolution of the size of the timestep while memory usage during the course
of the simulation is shown in Figure 23(b). ¿e timestep decreases as the compression proceeds fol-
lowed by an increase during the unloading phase. ¿e tensile loading phase requires approximately
the same time per timestep because the elastic moduli do not evolve and the yield surface remains
�xed. ¿e memory usage increases linearly a er a constant phase, indicating a potential memory
leak, probably caused by the XML or HDF5 libraries used in Vaango .

¿e time per timestep is shown in Figure 24(a) and Figure 24(b) shows the accumulated time taken
to complete each simulation. As for the hydrostatic compression tests, the Tablemodel takes the
least time to compute, followed by the MLPmodel during most of the course of the simulation.
However, toward the end of the simulation the time take by the MLPmodel overtakes that taken by
the SVRmodel.

3.3 Multiaxial strain loading and unloading

It also informative to examine the response of the models to a bi-directional loading-unloading pro-
cess as shown in the deformation gradient history in Figure 25. ¿e shear components Fxy etc. the
deformation gradient are �xed at zero. ¿e normal components Fxx , Fyy, and Fzz are identical com-
pressive values until 1s a er which Fxx continues in compression while Fyy = Fzz are unloaded. At
2s, the Fxx component of the deformation gradient is unloaded until tensile strains are achieved,
while the Fyy = Fzz components are loaded back to compressive states until 3s. At that point the
deformations are again reversed as shown in the �gure.



D
RA

FT
Biswajit Banerjee Technical Report PAR-10021867-092020-5: Parresia Research Limited 17

(a) Timestep size. (b) Memory usage.

Figure 23 – Timestep size evolution and memory usage during uniaxial strain
loading and unloading of a single particle.

(a) Time per timestep. (b) Simulation time.

Figure 24 – Time per timestep and total simulation runtime for uniaxial strain
loading and unloading of a single particle.
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Figure 25 – Input deformation gradient history for multiaxial strain loading and
unloading of a single particle.

Since the amount of compression is relatively small, the bulk modulus remains approximately con-
stant for this deformation history as shown in Figure 26. A logarithmic scale has been used in the
ordinate to highlight the fact that theMLPmodel produces the largest values of initial bulkmodulus,
almost an order of magnitude larger than those predicted by the Table and SVRmodels.

Figure 26 – Evolution of bulkmodulus formultiaxial strain loading and unloading
of a single particle.

¿e stress histories shown in Figure 27 re�ect the fact that the bulk moduli are roughly constant
for this simulation. ¿e trends of the stresses are similar to those observed for the uniaxial strain



D
RA

FT
Biswajit Banerjee Technical Report PAR-10021867-092020-5: Parresia Research Limited 19

and hydrostatic loading simulations discussed earlier. We also note that the di�erence in predicted
stresses between the three models is marginal for small deformations.

(a) Stress (b) p and q.

Figure 27 – Comparison of computed stress history for multiaxial strain loading
and unloading of a single particle.

Elastic and plastic strain histories plotted in Figure 28 also indicate that the three models predict
almost identical elastic and plastic strains. In particular, the plastic strain components attain both
positive and negative values as the deformation continues.

Figure 28 – Comparison of computed elastic and plastic strain history for multi-
axial strain loading and unloading of a single particle.

If we consider the stress-strain response shown in Figure 29, we see that the MLPmodel produces
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that largest stresses. ¿e unloading paths are nearly identical for the three models and the cycling
around tensile stress states produces reasonable results.

(a) σxx . (b) σy y .

Figure 29 – Comparison of computed stress-strain history for multiaxial strain
loading and unloading of a single particle.

¿e order-of-magnitude di�erence in the initial bulk modulus predicted by the MLPmodel is re-
�ected in the volumetric stress-strain response plotted in Figure 30, especially when we closely ex-
amine the unloading curves for the three models. ¿ough this di�erence is small compared to the
magnitudes of the bulk moduli at large compressive strains, it is indicative of the need for better �ts
to the experimental data in the small-strain regime when that in the regime of interest.

Figure 31 shows the evolution of the yield surface and the stress paths taken by the three models.
¿e MLPmodel produces the largest plastic strains and hence the largest elastic domain. ¿e Ta-
ble and SVRmodels produce approximately the same plastic volumetric strains. During unloading,
the stress reaches a high curvature region of the yield surface where the iterative approach described
in Banerjee, Fox, and Regueiro (2020d) converges slowly. ¿e stress follows the yield surface until it
reaches the tensile peak and cycles around that region during the last phase of deformation.

Figures 32(a) and (b) show the evolution timestep size and memory usage for the simulation, re-
spectively. ¿e timestep size remains nearly constant for the course of the simulation, with the Ta-
blemodel using the largest values because of the lower bulk modulus. ¿e memory usage, once
again, shows an increase with time even though the yield surface doe snot evolve much - indicating
a potential memory leak.

¿e time per timestep and total simulation time are presented in Figures 24(a) and (b), respectively.
All three models take approximately the same time per timestep. ¿is is further demonstrated in
the plots of the total simulation time which is almost identical for the Table and SVRmodels and
slightly larger for the MLPmodel.
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Figure 30 – Comparison of computed pressure-volumetric strain history for mul-
tiaxial strain loading and unloading of a single particle.

Figure 31 – Evolution of the yield surface formultiaxial strain loading and unload-
ing of a single particle.
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(a) Timestep size. (b) Memory usage.

Figure 32 – Timestep size evolution and memory usage during multiaxial strain
loading and unloading of a single particle.

(a) Time per timestep. (b) Simulation time.

Figure 33 – Time per timestep and total simulation runtime for multiaxial strain
loading and unloading of a single particle.
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4 Concluding remarks

In this paper we have exercised the algorithm described in (Banerjee, Fox, and Regueiro, 2020d)
on a dry, poorly-graded, concrete sand with three di�erent models for the elastic moduli. ¿e Ta-
blemodel used linear interpolation of bulk modulus vs. pressure data assuming that the modulus
remained constant beyond the range of available data. ¿e SVRmodel used analytical derivatives of
a support vector regression �t to experimental pressure vs. volumetric strain data. ¿e MLPmodel
used a three layer neural network �t to bulk modulus vs. elastic volumetric strain.

Hydrostatic loading/unloading, uniaxial strain loading/unloading, andmultiaxial strain loading/un-
loading simulations were used to compare the response of the three elastic modulus models. We
observe that the SVR and MLPmodels predict larger bulk moduli and, therefore, a sti�er response
of the material with larger overall peak compressive stresses. ¿e so er response of the Tablemodel
leads to lower simulation times because the yield surface does not expand as much as for the other
two models.
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