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Abstract

Penetration of high-speed projectiles into soils and the e�ect of explosions in soils on ob-

jects above the surface have interested civil and military engineers for decades. With the advent

of faster computers and better numerical algorithms, many intractable problems in these do-

mains have become possible to solve. In this paper, we use the Material Point Method (MPM),

and a tabular elastoplastic model for soils, to simulate penetration in dry sand. ¿e projection

and interpolations operations in MPM, and the corresponding functions and their choice are

described. ¿e model is used to simulate the penetration of a punch at 1g and an unexploded

ordnance (UXO) projectile into a dry, poorly-graded, concrete sand at 20g in a centrifuge. An

interpolated tabular model, a support vector regression (SVR) model, and a multilayer percep-

tron (MLP) neural network model are used to compute the elastic moduli from identical input

data. We �nd that even if all the components of the elastoplastic model other than the elastic

modulus model are kept �xed, small di�erences in the moduli can lead to di�erent depths of

penetration. We also �nd that elastoplasticity with an SVR elastic modulus model is almost 10

times as computationally expensive as direct tabular interpolation.

1 Introduction

¿e prediction of the depth of penetration of projectiles into soils has been attempted since at least

1742 (¿ompson, 1966). Recent interest in modern methods for the detection and removal of un-

exploded ordnance in soils has highlighted our incomplete understanding of the processes involved
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and the need for improved predictive tools (Omidvar, Iskander, and Stephan Bless, 2014; Chung et

al., 2017).

Early numerical simulations to tease out important constitutive contributors to the depth of pen-

etration (H. Schreyer and Chiu, 1991) found that the contributions of several variables tended to

cancel each other. Schreyer suggested caution while developing theories based on dimensional anal-

ysis, such that that developed by (Boguslavskii, Drabkin, and Salman, 1996). Modern testing meth-

ods have been able to measure the internal �ow �elds that develop during impact and penetration

events in soils and simulations with peridynamics have produced reasonable matches with exper-

iment (Collins et al., 2011). High-speed experiments by Tanaka et al. (2011) shows that a conical

crushed sand region developed below the punch-like projectile. ¿is region can also be observed in

photographs fromhigh-speed tests by Borg et al. (2013). Large deviations from the initial direction of

impact were observed in experiments and simulations of bullets impacting sand by Børvik, Dey, and

Olovsson (2015). Data on larger projectiles at moderate impact velocities were obtained by Omidvar,

Malioche, et al. (2015). More recently, the e�ect of sand density on penetration has been studied

experimentally (Chian, Tan, and Sarma, 2017). Rate e�ects have also been explored experimentally,

e.g., Bless et al. (2020), but typically have been ignored in the prediction process.

A large number of experiments at several impact rates were performed by¿ompson (1966). Projec-

tile shapes tested included punch-shaped, needle-shaped, and ogive-nosed objects. ¿oughmuch of

these data cannot be used to quantitatively validate simulations because of the di�erences inmaterial

properties of the soil, they do provide a means for qualitative comparison of the punch impact tests

discussed in this work.

Most experiments in the literature have involved full-scale tests or scaled-down laboratory tests.

Scaling relations have been proposed, o en based on ideas developed for impact cratering (K. A.

Holsapple and Schmidt, 1982; K. Holsapple et al., 2002), but not always validated under general

conditions. Centrifuge experiments (Garnier et al., 2007) were �rst performed for the impact and

penetration problemby Fragaszy andT.A. Taylor (1989) andT. Taylor, Fragaszy, andHo (1991). How-

ever, centrifuge models were not explored further until rockfall studies were performed by Chikata-

marla, Laue, and Springman (2006) and dynamically installed anchors were explored byO’Loughlin,

Richardson, and Randolph (2009). Centrifuge models for impact and penetration merit further ex-

perimental and numerical exploration.

Physics-based continuummodels of the penetration process have been proposed in conjunctionwith

many experimental studies, recent examples include Chung et al. (2017) and Dunatunga and Kam-

rin (2017). Numerical methods ranging from �nite elements, meshfree methods (Sheng-Wei, 2017;

Mahdavi, Chi, andAtif, 2020), thematerial pointmethod (Dunatunga andKamrin, 2017), smoothed

particle hydrodynamics, peridynamics (Collins et al., 2011), and discrete elementmethods (N. Zhang

and Evans, 2017) have been explored.

¿e impact and penetration simulations described in this work have used thematerial point method

to solve the momentum equations in conjunction with the tabular elastoplastic material model de-

scribed in (Banerjee, Fox, and Regueiro, 2020d). ¿ematerial model was exercised using tests driven

by prescribed deformation gradient histories on single particles as discussed in (Banerjee, 2020).

Tabular, support vector, and neural network models for the elastic moduli of the dry, poorly-graded,

concrete sand described in Section 3 are compared. ¿ese models have been discussed in detail
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in Banerjee, Fox, and Regueiro (2020d), Banerjee, Fox, and Regueiro (2020c), and Banerjee, Fox,

and Regueiro (2020b). ¿e Vaango (Banerjee, 2014) implementation of the Material Point Method

(MPM) algorithm and the material model has been used for the simulations. Two test geometries

are considered: the impact of a rectangular punch on sand at 1g, and the impact of an unexploded

ordnance (UXO) shell into sand contained in a centrifuge at 20g. Validation simulations have not

been explored in this work, but can easily be performed using experimental data from the extensive

literature on the subject.

We �nd that even though the choice of elastic material model does not a�ect the initial penetration

dynamics signi�cantly, the �nal penetration depth can be di�erent even if the material models pre-

dict small di�erences inmoduli. We also �nd that the support vector regression approach is themost

computationally expensive of the approaches we have explored in this paper.

¿is paper is organized as follows. Section 2 discusses the MPM approach and the ideas behind the

choice of projection and interpolation functions. An accurate approach for computing the defor-

mation gradient in an explicit time integration scheme is also discussed. ¿e tabular experimental

material data and the corresponding interpolated, support vector, and multilayer perceptron mod-

els for the elastic moduli are discussed in Section 3. Punch penetration simulations are presented

in Section 4 and unexploded ordnance (UXO) simulations are discussed in Section 5. Finally, some

concluding remarks are given in Section 6.

Notation

¿e notation used in this work are as follows. Scalars are represented by normal fonts, e.g., ρ and
m. Bold normal symbols, e.g., b andG, indicate �rst-order tensors. Second-order tensors are repre-
sented by bold italic symbols, e.g., f , F , and σ and their transposes are represented by the superscript
T , e.g., FT . Components of tensors are assumes to be given in rectangular Cartesian coordinates
and the Einstein summation convention is used unless speci�ed otherwise. ¿e inner product of

two �rst-order tensors is de�ned as c = a ⋅ b = aibi while their dyadic (outer) product is de�ned as
c = a ⊗ b = aib j. ¿e inner product of two second-order tensors is given by c = a ∶ b = ai jbi j and
their partial inner product is represented as c = a ⋅ b = ai jb jk . ¿e product of a �rst-order and a

second-order tensor is de�ned as c = a ⋅ b = ai jb j or d = a ⋅ b = aibi j. ¿e gradient of a �rst-order

tensor �eld, a(x), is de�ned as G = ∇a = ∂ai/∂x j = Gi j. ¿e divergence of a second-order tensor

�eld, a(x), is de�ned as a = ∇ ⋅ a = ∂ai j/∂xi .

2 The Material Point Method

¿e following discussion of aspects of the material point method of relevance to impact simulations

is largely based on an exposition by Brannon.
1
For a detailed explanation of various aspects of the

theory and algorithm, please consult the Vaango theory manual (Banerjee, 2014).

2.1 Weak form

¿e spatial form of the governing equations for the balance of linear momentum is

∇ ⋅ σ + ρb = ρa ∀ x ∈ Ω (1)

1
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where σ(x) is the Cauchy stress, ρ is the mass density, b is the body force per unit mass, and a is the
acceleration. ¿e current con�guration of the physical body is represented byΩ. ¿eMaterial Point

Method (MPM), similar to standard �nite element methods, is based on a weak form of (1) (Sulsky,

A. Chen, and H. L. Schreyer, 1994):

∫
Ω

w ⋅ (∇ ⋅ σ) dV + ∫
Ω

ρw ⋅ b dV = ∫
Ω

ρw ⋅ a dV (2)

where w is an arbitrary, vector-valued, test function. A er integration by parts, we get the spatial

weak formulation cast in terms of spatial integrals:

∫
∂Ω

w ⋅ tdA − ∫
Ω

σ ∶ (∇w) dV + ∫
Ω

ρw ⋅ b dV − ∫
Ω

ρw ⋅ a dV = 0 (3)

where t ∶= σ ⋅ n is the surface traction and n is the outward unit normal to the surface ∂Ω.

Because it was originally developed to model large deformations of history-dependent materials,

MPM typically uses an updated Lagrangian formulation. Equation (3) can be converted directly

into an updated Lagrangian form that is cast in terms of integrals and gradients with respect to the

con�gurations at the start of each time step.
2

∫
∂Ωn

Bw ⋅ tdAn − ∫
Ωn

Jn(σ ⋅ f −T) ∶ (∇nw) dVn + ∫
Ωn
ρnw ⋅ b dVn − ∫

Ω

ρnw ⋅ a dVn = 0 (4)

where the subscript n indicates the con�guration at the beginning of the time step tn, ∇n is the
gradient with respect to the updated Lagrangian position vector xn, f is the incremental deformation
gradient, de�ned as

F = f ⋅ Fn ; f ∶=
∂x
∂xn

(5)

where F is the total deformation gradient, and Jn ∶= det( f ). ¿e quantity B is the incremental areal
stretch given by

B ∶= ∥(Jn f −T) ⋅ nn∥ (6)

where nn is the outward unit normal to the surface at time tn.

2.2 Spatial discretization

Equation (4) is discretized in MPM in a manner similar to �nite elements. ¿e test function w and

the displacement �eld u (and consequently the velocity v and the acceleration a) are expressed as
linear combinations of basis functions Si(xn) such that

w(xn , t) =∑
i
wi(t)Si(xn) , u(xn , t) =∑

j
u j(t)S j(xn) Ô⇒

v(xn , t) =∑
j
v j(t)S j(xn) , a(xn , t) =∑

j
a j(t)S j(xn) .

(7)

However, in contrast to �nite elements, the basis functions are de�ned with respect to a background

grid that tessellates the computational domain (including the body) rather than a grid that tessellates

2
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only the body. ¿e basis functions are chosen such that they satisfy a partition of unity and linear

completeness. Note that the Kronecker interpolation property is not required, i.e., Si(xn, j) ≠ δi j
(xn, j indicates the j-th grid node). 3

If we use the same basis functions for the test function and the trial displacement �eld, we get the

discretized grid node equations

fexti + f inti + fbodyi = miai (8)

where

fexti ∶= ∫
∂Ωn

B Si tdAn , f inti ∶= −∫
Ωn

Jn(σ ⋅ f −T) ⋅Gn,i dVn ,

fbodyi ∶= ∫
Ωn
ρn Si b dVn , mi ∶= ∫

Ωn
ρn Si dVn .

(9)

In the above, the basis function gradient is de�ned as

Gn,i ∶=
dS(xn)
dxn

= ∇nSi . (10)

Note that the quantities B, f , t, b, and σ may vary over both space and time over a time step and a
midpoint time integrator must evaluate these quantities at the middle of the time step.

Evaluation of the grid node integrals in (9) requires information carried by the Lagrangian MPM

particles. For the external force term, we have
4

fexti = ∫
∂Ωn

B Si tdAn = ∫
∂Ω
Si tdA =

np
∑
p=1
∫
∂Ωp∩∂Ω

Si tdA =∶

np
∑
p=1

Ap⟨fextip ⟩ (11)

where Ap ∶= A∂Ωp∩∂Ω is the area of intersection between the particle surface (area Ap) and the do-
main boundary, and

⟨fextip ⟩ ∶=
1

Ap ∫∂Ωp∩∂Ω
Si tdA . (12)

For the internal force term,

f inti = −∫
Ωn

Jn(σ ⋅ f −T) ⋅Gn,i dVn = −∫
Ω

σ ⋅Gi dV = −

np
∑
p=1
∫
Ωp∩Ω

σ ⋅Gi dV =∶

np
∑
p=1

V p⟨f intip ⟩ (13)

where V p ∶= VΩp∩Ω is the volume of intersection of the particle and the domain, and

⟨f intip ⟩ ∶= −
1

V p ∫
Ωp∩Ω

σ ⋅Gi dV . (14)

¿e body force term is discretized as

fbodyi = ∫
Ωn
ρn Si b dVn = ∫

Ω

ρ Si b dV =

np
∑
p=1
∫
Ωp∩Ω

ρ Si b dV =∶

np
∑
p=1

V p⟨fbodyip ⟩ (15)

3

R.M. Brannon, 2015, A primer on the material point method. Personal Communication.

4

R.M. Brannon, 2015, A primer on the material point method. Personal Communication.



D
R
A
F
T

Biswajit Banerjee Technical Report PAR-10021867-092020-6: Parresia Research Limited 6

where

⟨fbodyip ⟩ ∶=
1

V p ∫
Ωp∩Ω

ρ Si b dV . (16)

Finally, for the lumped nodal mass, we have

mi = ∫
Ωn
ρn Si dVn = ∫

Ω

ρ Si dV =

np
∑
p=1
∫
Ωp∩Ω

ρ Si dV =∶

np
∑
p=1

V p⟨mip⟩ (17)

where

⟨mip⟩ ∶=
1

V p ∫
Ωp∩Ω

ρ Si dV . (18)

2.3 Moving information from grid to particles and back

Various versions of MPM have been proposed in the literature (Sulsky, Zhou, and H. L. Schreyer,

1995; S. G. Bardenhagen and Kober, 2004; Sadeghirad, Rebecca M Brannon, and Burghardt, 2011),

some of which have been incorporated into the Vaango so ware (Banerjee, 2014).
5
¿ese are dis-

tinguished by the choice made in evaluating the averages in (12), (14), (16), and (18). In general, these

averages can be expressed as

⟨Fip⟩ ∶=
1

V p ∫
Ωp∩Ω

Fi(x) dV . (19)

Typical MPM approximations of these averages take the form

⟨Fip⟩ ≈
1

V p,⋆ ∫
Ω
⋆

p

F⋆i (x) χ
p,⋆

(x) dV where V p,⋆
∶= ∫

Ω
⋆

p

χp,⋆(x) dV (20)

and χ is a particle indicator function. Note that whileΩp tessellate the body, the domainsΩ
⋆

p do not

necessarily do so. In typical MPM implementations, the approximate function F⋆i is almost always
used instead of the exact Fi .

We de�ne ⟨Sip⟩ as the average of the i-th grid basis function over the p-th particle:

⟨Sip⟩ ∶=
1

V p ∫
Ωp∩Ω

Si(x) dV ≈
1

V p,⋆ ∫
Ω
⋆

p

S⋆i (x) χ
p,⋆

(x) dV (21)

where V p
is the volume of the MPM particle Ωp. For traditional MPM (Sulsky, Zhou, and H. L.

Schreyer, 1995), the functions, Si , have the form shown in Figure 1 while the characteristic functions,

χp,⋆ are Dirac delta functions.

For the GIMP approach (S. G. Bardenhagen and Kober, 2004) used in this work, we have

⟨fextip ⟩ ≈ Apn ⟨Sip⟩A tp where ⟨Sip⟩A ∶=
1

Apn
∫
∂Ωp∩∂Ω

Si dAn

⟨f intip ⟩ ≈ −V
p
n σ p ⋅ ⟨Gip⟩ where ⟨Gip⟩ ∶=

1

V p
n
∫
Ωp∩Ω

Gn,i dVn

⟨fbodyip ⟩ ≈ mp
⟨Sip⟩bp where ⟨Sip⟩ ∶=

1

V p
n
∫
Ωp∩Ω

Si dVn

⟨mip⟩ ≈ mp
⟨Sip⟩

(22)

5

A detailed exposition of the MPM theory and algorithms can be found in the Vaango theory manual (Banerjee,

2014).
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Figure 1 – Linear grid node shape functions, Si(x), for traditional MPM in two
dimensions. Balls indicate grid node locations.

where Apn, V
p
n are the surface area and volume of particle p at the beginning of the time step, tp is

the traction applied on the particle, σ p is the Cauchy stress in the particle, bp is the particle body
force, and mp

is the mass of the particle. Note that particle �eld quantities are actually averages

over the particle volume. ¿e GIMP shape functions are compared to traditional shape function in

Figure 2(a). ¿e characteristic functions, χp,⋆, are square and the e�ective shape function, Sip, has
the form shown in Figure 2(b).

(a) Two-dimensional GIMP shape functions, S i(x),
compared to those for traditionalMPM (blue).

(b) Two-dimensional GIMP e�ective shape functions,

S i χp .

Figure 2 – GIMP grid shape functions and e�ective grid-particle shape functions.

A er the discretized balance of linear momentum has been solved on the grid, the next step is to

move the updated �eld quantities back to the particles. Let fi is the nodal values of a �eld on the
grid. We assume that

f (x) =∑
i
fiSi(x) . (23)

¿e value of the �eld at a particle p is assumed to be the weighted average of the �eld over the particle
domain:

f p(xp) =
1

W p ∫
Ωp∩Ω

f (x)wp
(x) dV where W p

∶= ∫
Ωp∩Ω

wp
(x) dV . (24)
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¿e weighting functionwp
can be chosen to be one, in which case the particle value is just a average

over the particle volume V p
. In our MPM approach, the average in (24) is approximated as

f p ≈
1

W p,⋆ ∫
Ωp∩Ω

f (x)wp,⋆
(x) dV where W p,⋆

∶= ∫
Ωp∩Ω

wp,⋆
(x) dV (25)

with the weighting function de�ned as

wp,⋆
∶= wp

(x)χp,∗ . (26)

¿e particle averaging function χp,∗ is required to have compact support only in a neighborhood
containing particle p. ¿ese particle neighborhoods do not typically tessellate the body because a

perfect description of Ωp is not generally available. Combining (23) and (25), we have

f p ≈∑
i
fi

1

W p,⋆ ∫
Ωp∩Ω

Si(x)wp,⋆
(x) dV =∑

i
fiϕip (27)

where the weighted average ϕip is de�ned as

ϕip ∶=
1

W p,⋆ ∫
Ωp∩Ω

Si(x)wp,⋆
(x) dV . (28)

Note that we may choose the weighting function to be wp,⋆ = 1 in which case ϕip = ⟨Sip⟩ (see (21)).

¿e inverse operation ofmoving particle information to the gridmay be interpreted as a least squares

minimization problem. Recall from (23) that the �eld over the body can be expressed as

f (x) =∑
i
fiSi(x) . (29)

An alternative particle-based representation of the �eld is

f (x) =∑
p
f pχp(x) (30)

where χp is the particle characteristic function that typically has the form

χp(x) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if x ∈ Ωp

0 otherwise .

(31)

We would like to minimize the weighted square error between the two representations:

e = ∫
Ω ∥∑i

fiSi(x) −∑
p
f pχp(x)∥

2η(x) dV (32)

where η(x) is a weighting function satisfying

∫
Ω

η(x) dV = 1 . (33)

Given particle �eld values f p, we can minimize e with respect to fi to get

∑
j
µi j f j =∑

p
νip f p (34)
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where, using (31),

µi j = ∫
Ω

Si(x)S j(x)η(X) dV and νip = ∫
Ωp∩Ω

Si(x)η(X) dV . (35)

Using a lumped approximation for µi j and assuming that the weight function η(x) is a normalized
form of wp(x), we get the particle-to-node mapping

fi =∑
p
f pψpi where ψpi ∶=

V pϕip
∑p V pϕip

. (36)

Alternatively, we can write the above equation as

fi∑
p
V pϕip =∑

p
f pV pϕip . (37)

Let us de�ne two extensive nodal quantities, the nodal volume (Vi) and the nodal mass (mi), as

Vi ∶=∑
p
V p

⟨Sip⟩ and mi ∶=∑
p
mp

⟨Sip⟩ . (38)

If we consider the choice wp,⋆(x) = 1 in which case ϕip = ⟨Sip⟩, equation (37) can be written as

fiVi =∑
p
f pV p

⟨Sip⟩ . (39)

¿is is the volume-weighted mapping from particles to the grid that is used in many MPM algo-

rithms. Alternatively, if we choose ϕip = ρp⟨Sip⟩where themass density ρp is assumed to be constant
over a particle, we have

fi∑
p
V pρp⟨Sip⟩ =∑

p
f pV pρp⟨Sip⟩ (40)

or

fimi =∑
p
f pmp

⟨Sip⟩ . (41)

¿is mapping is the mass-weighted form that is also used extensively in MPM algorithms. In our

implementation, we use a volume-weighted map for the momentum per unit volume (ρv) and, im-
plicitly, a mass-weighted map for the velocity. A mass-weighted map is also used for the Cauchy

stress, though it may be argued that a volume-weighted map is more appropriate for the stress be-

cause of its units of energy per volume.

2.4 Time integration

In this work we use an explicit time integrator:

xi(t) = xn,i + vn,i (t − tn) + 1

2
an,i (t − tn)2 , vi(t) = vn,i + an,i (t − tn) . (42)

Once these grid quantities are known, an end-of-step mapping operation is needed in MPM to map

�elds to a new grid. In MPM, the body Ω is discretized into np non-overlapping particles that tes-
sellate the body. Grid values are �rst transferred to MPM particles and then remapped to the new

grid. Accelerations are mapped from the grid to particles using

apn =∑
i
an,i⟨Sip⟩ (43)



D
R
A
F
T

Biswajit Banerjee Technical Report PAR-10021867-092020-6: Parresia Research Limited 10

where ⟨Sip⟩ is the average of the i-th grid basis function over the p-th particle:

⟨Sip⟩ ∶=
1

V p ∫
Ωp∩Ω

Si(x) dV (44)

where V p
is the volume of the MPM particle Ωp. ¿e particle positions and velocities are subse-

quently updated using

vpn+1 = vpn + apn∆t , xpn+1 = xpn + vpn∆t + 1

2
apn∆t2 . (45)

A signi�cant component of anyMPM implementation is the nonlinear constitutive model that maps

deformations to stresses (σ p) at each particle. ¿ese models typically require the spatial velocity

gradient (l) and the deformation gradient (F), de�ned as

l ∶=
∂v
∂x

=
∂v
∂xn

⋅
∂xn
∂x

= ˙f ⋅ f −1 and F ∶=
∂x
∂X

=
∂x
∂xn

⋅
∂xn
∂X

= f ⋅ Fn (46)

where x is the current position of a material point and X is the position of the material point at time

t = 0. Using the Galerkin expansion (7) for position vectors on the grid:

x(xn , t) =∑
i
xi(t)Si(xn) (47)

and substituting into (5) (using (10)), we have

f =∑
i
xi ⊗

∂Si
∂xn

=∑
i
xi ⊗Gn,i , ˙f =∑

i
vi ⊗Gn,i , ¨f =∑

i
ai ⊗Gn,i . (48)

At t = tn, we then have

fn =∑
i
xn,i ⊗Gn,i = I , ˙fn =∑

i
vn,i ⊗Gn,i , ¨fn =∑

i
an,i ⊗Gn,i . (49)

Also, using the explicit integration scheme in (42), we have

∑
i
xi(t)⊗Gn,i =∑

i
xn,i ⊗Gn,i +∑

i
vn,i ⊗Gn,i (t − tn) + 1

2
∑
i
an,i ⊗Gn,i (t − tn)2

∑
i
vi(t)⊗Gn,i =∑

i
vn,i ⊗Gn,i +∑

i
an,i ⊗Gn,i (t − tn) .

(50)

Using (49) in the above leads to

∑
i
xi ⊗Gn,i = f (t) = I + ˙fn (t − tn) + 1

2

¨fn (t − tn)2

˙f (t) = ˙fn +∑
i

¨fn (t − tn) , ¨f (t) = ˙fn .
(51)

We may now compute the deformation gradient increment at any t ∈ [tn , tn+1], e.g.,

fn+12 =∑
i
xn+12 ,i ⊗Gn,i , fn+1 =∑

i
xn+1,i ⊗Gn,i (52)
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where

xn+12 ,i = xn,i + vn,i ∆t
2
+ an,i ∆t

2

8
, xn+1,i = xn,i + vn,i∆t + an,i ∆t

2

2
. (53)

Since the spatial velocity gradient and the deformation gradient are evaluated at MPM particles, the

above functions must be evaluated as a weighted average over the particle domain. ¿en we can

write

f pn = I , f pn+12 =∑i
xn+12 ,i⟨Gn,ip⟩ , f pn+1 =∑

i
xn+1,i⟨Gn,ip⟩ (54)

and

˙f pn =∑
i
vn,i⟨Gn,ip⟩ , ˙f pn+12 =∑i

vn+12 ,i⟨Gn,ip⟩ , ˙f pn+1 =∑
i
vn+1,i⟨Gn,ip⟩ . (55)

¿ese averaged incremental particle deformation gradients and their rates are related to the particle

velocity and deformation gradients via

l pn = ˙f pn ⋅ ( f
p
n )

−1
, l pn+12 =

˙f pn+12 ⋅ ( f
p
n+12

)
−1
, l pn+1 = ˙f pn+1 ⋅ ( f

p
n+1)

−1
(56)

and

F pn = f pn ⋅ F
p
n , F

p
n+12

= f pn+12 ⋅ F
p
n , F

p
n+1 = f pn+1 ⋅ F

p
n . (57)

¿e particle volumes may then be computed from the deformation gradients using

V p
n = det(F pn )V

p
0 , V p

n+12
= det(F pn+12)V

p
0 , V p

n+1 = det(F
p
n+1)V

p
0 (58)

whereV p
0 is the particle volume at t = 0. Note that for the incremental rate-form constitutive models

in this work we use particle values at t = tn + 1
2∆t to compute the rate of deformation tensor.

3 Experimental data

¿e experimental data used in this work as a test-bed for the modeling process are for a dry, poorly-

graded, concrete sand described by Fox et al. (2014) and tested at the University of Maryland.
6
Fur-

ther details on the particular data set used in this work can be found in Banerjee, Fox, and Regueiro

(2020c). Compressive stress and strain states have been assigned positive values while tensile states

are assigned negative values.

Hydrostatic loading-unloading data for the concrete sand are presented in the form of pressure (p) as
a function of the total volumetric strain (εv) in Figure 3(a). ¿e loading curve, shown in cyan, is used

to �t a crush-curve model. ¿e unloading curves are used to �t a bulk modulus model that depends

on the volumetric plastic strain. Tangents to the unloading curves represent the bulk modulus and

have been plotted in Figure 3(b). Observe that there is a strong dependence of the bulk modulus (K)
on both the elastic (εev) and plastic (ε

p
v ) volumetric strains.

¿e crush-curve extracted from the hydrostatic compression data is shown in Figure 4(a). Since

the term “crush-curve” more commonly refers to the change in porosity as a function of pressure,

we show that curve in Figure 4(b). For the crush-curve, the porosity (ϕ) has been computed using
ϕ = p3 − εvp where εvp is the volumetric plastic strain and p3 = 0.325 is the volumetric plastic strain at

which all pores have been crushed (R. M. Brannon et al., 2015).

6

Stephen Akers, 2018, Private communication, CCDC Army Research Laboratory, Aberdeen Proving Ground, MD,

USA
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(a) Loading-unloading curves (b) Tangent bulk modulus curves

Figure 3 – Hydrostatic loading-unloading data and unloading bulk moduli for dry
poorly-graded concrete sand.

(a) Pressure crush-curve. (b) Porosity crush-curve.

Figure 4 – Crush-curves for dry poorly-graded concrete sand.
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¿e yield function data for the concrete sand intersects the deviatoric stress axis in the compressive

half-space, at an abscissa of approximately 5 kPa, indicating that a purely elastic response is not

possible when the sand was loaded from zero strain in either tension or compression. To ensure

robustness of our simulations, the yield data were shi ed to the tensile regime by 5 kPa to provide a

small amount of cohesion. A plot of the yield function in p-q space is shown in Figure 5. Here p is
the mean stress, de�ned as p = 1/3 tr(σ), q is the e�ective deviatoric yield stress given by q =

√
3J2

where J2 = 1/2 s ∶ s, σ is the Cauchy stress, s = σ − pI is the deviatoric part of the Cauchy stress, and I
is the second-order identity tensor. Note that the existence of a crush curve indicates that nonlinear

bulk moduli are not su�cient to model the observed yield response and a compression cap model is

essential.

Figure 5 – Yield function for dry poorly-graded concrete sand.

In the simulations described in this paper, tabularmodels are used for the crush curve and yield func-

tion as described in Banerjee, Fox, andRegueiro (2020d)with linear interpolation of the data (Baner-

jee, Fox, and Regueiro, 2020a). ¿e purely tabular approach is compared with models where elastic

moduli are computed using support vector regression (SVR) (Banerjee, Fox, and Regueiro, 2020c)

andmultilayer perceptron (MLP) neural networkmodels (Banerjee, Fox, andRegueiro, 2020b). Fur-

ther detail can be found in the deformation-driven simulations in Banerjee (2020).

3.1 Tabular model

¿e bulk modulus vs. pressure data shown in Figure 6 are interpolated to determine the value of

the tangent bulk and shear moduli at a given value of mean stress and volumetric plastic strain.

Derivatives of the bulkmodulus with respect to plastic strain are computed using a central di�erence

scheme using two nearby values of plastic strain that di�er by 2.0×10−6. A constant Poisson’s ratio

of 0.189 is used to compute the shear modulus from the interpolated bulk modulus.

¿e data are read is as a JSON �le (Crockford, 2006). ¿e format of the �le is described in Banerjee

(2014).
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Figure 6 – Bulk modulus table expressed as a function of pressure.

3.2 Support vector regression model

¿e support vector regression (SVR) model used in these simulations is the pressure vs. total volu-

metric strain �ts to the experimental data compute with a value of C = 10 and є = 0.001 as described

in Banerjee, Fox, and Regueiro (2020c). Pressure curves predicted by the model are shown in Fig-

ure 7. Bulk modulus are extracted from the predicted pressures by analytical di�erentiation of the

pressure SVR model.

C = 10, є = 0.001.

Figure 7 – Support vector regression predictions of pressure as a function of the
total volumetric strain.
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¿e SVR model is also read into Vaango as a JSON �le as described in Banerjee (2014).

3.3 Multiplayer perceptron neural network model

A dense, multilayer perceptron (MLP) model is used to model the elastic modulus data as described

in Banerjee, Fox, and Regueiro (2020b). ¿e three-layer model of the bulk modulus as a function of

elastic volumetric strain is used in this paper. ¿emodel containing 64 neuronswith ReLU activation

in layer 1, 32 neurons with ReLU activation in layer 2, and 32 neurons with ReLU activation in layer 3.

¿emodel was trained for 800 epochs with batch sizes of 32. Predictions from that model are shown

in Figure 8. Note that this model uses a linear extrapolation of the experimental pressure curves

before computing the bulk modulus instead of assuming constant bulk moduli outside the range

of the experimental data. ¿e �tted model is saved as a HDF5 �le (Koranne, 2011) by Tensor�ow

Figure 8 –Multilayer perceptron neural network predictions of bulk modulus as a
function of the elastic volumetric strain.

2.0 (Abadi et al., 2016) and read into Vaango using the HDF5 library.

4 Rectangular punch penetration

Plane strain simulations were performed of a rectangular steel punch 30 cm × 20 cm impacting the

dry, poorly-graded, concrete sand discussed in Section 3. ¿e sand was modeled as contained in a

box of dimension 100 cm× 50 cm, with re�ecting boundaries. ¿e density of the soil was 1050 kg/m
3
.

Contact between the punch and the sand was modeled using a frictional contact algorithm (S. Bar-

denhagen et al., 2001) with a friction coe�cient of 0.1. ¿e computational domain had dimensions

100 cm × 80 cm and was discretized using 100 × 80 grid cells, partitioned into four patches for par-

allel computation. ¿e initial velocity of the punch was 200 m/s. Spatial interpolation was carried

out using the GIMP approach and explicit time integration was used, with a timestep multiplier of

0.05. Arti�cial viscosity was used to damp the simulations but no damage models were activated. A
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gravity body force was applied in the direction of punchmotion based on an acceleration of 1g = 9.81

m/s
2
.

¿ree models for the elastic moduli of the sand have been compared in this section. ¿e �rst used a

tabular interpolation model (Table ) as described in (Banerjee, Fox, and Regueiro, 2020a; Banerjee,
2020). ¿e second used a support vector regression model (SVR ) for the elastic moduli (Banerjee,

Fox, and Regueiro, 2020c; Banerjee, 2020). ¿e third model for the elastic moduli used a multilayer

perceptron (MLP ) neural net (Banerjee, Fox, and Regueiro, 2020b; Banerjee, 2020). Figure 9 shows

the penetration depths predicted by the three models. All three models predict almost identical

penetration depths, with theSVRmodel predicting the deepest crater and theMLPmodel predicting

the shallowest one. ¿e pro�les of the ejecta are also slightly di�erent. ¿e MLPmodel is the most

computationally expensive of the three, and the Tablemodel takes the least time to run.

Figure 9 – Penetration depths predicted by the Table , SVR , and MLPmodels for
a punch impacting a dry poorly-graded concrete sand at 200 m/s.

It is informative to examine the evolution of various state variables in the sand during the impact

and penetration event. We �rst compare the predictions of the SVR and Tablemodels, followed by
the MLP and Tablemodels.

4.1 SVR vs. Table

¿e evolution of velocity in the sand is shown in Figure 10. Initial velocities predicted by the Ta-
blemodel are marginally faster than those from the SVRmodel. A plug is formed at approximately

1 ms. Within 2 ms of impact, the sand has slowed down the punch signi�cantly, a er which the

majority of the energy is used to impart momentum to the ejecta and the soil above the punch. ¿e

SVRmodel predicts a slightly larger depth of penetration than the Tablemodel.

Figure 11 plots the evolution of bulk modulus in the dry sand with colors assigned on a logarithmic

scale. Even though the initial bulk modulus is higher in the SVRmaterial and, a er 0.5 ms, the bulk

modulus of the material in the triangular plug is larger on average for the SVRmodel than for the
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(a) t = 0.5 ms (b) t = 1.0 ms

(c) t = 2.0 ms (d) t = 2.7 ms

Figure 10 – Evolution of the particle velocity magnitudes during the punch impact
event. ¿e SVR predictions are on the le half of each image while the
Table predictions are on the right half.
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Tablemodel. However, outside the plug region, the bulk modulus is lower in the SVRmodel. ¿is

allows the deformation wave to move faster in the Tablematerial. ¿e bulk modulus increases faster

in the Tablematerial as observed from the snapshot at 1 ms. At 2.7 ms, the bulk modulus of the plug

from the SVRmodel is visibly higher than that from the Tablemodel.

(a) t = 0.5 ms (b) t = 1.0 ms

(c) t = 2.0 ms (d) t = 2.7 ms

Figure 11 – Evolution of the particle bulk moduli during the punch impact event.
¿e SVR predictions are on the le half of each image while the Ta-
ble predictions are on the right half.

¿e evolution of the position of the apex of the pressure cap is shown in Figure 12 (using a loga-

rithmic color scale). Even at 0.5 ms a er impact, the cap pressure is observed to have evolved to

approximately 9 MPa over a large region of the sand. Cap expansion is experienced by all particles

except a few near the surface and in high tension/shear regions by 2 ms. As the release wave propa-

gates through the sand, thematerial experiences tension, and the cap pressure drops o� to its original

value 2.7 ms a er impact. It is at this stage that di�erences between the SVR and the Tablemodels
become apparent.

¿e mean stress, p = tr(σ), predicted by the two models in presented in Figure 13. Interestingly,
the evolution of the mean stress is almost identical for the SVR and the Tablemodels. ¿e same

is observed for the e�ective deviatoric stress, q =
√
3J2, shown in Figure 14. However, the values
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(a) t = 0.5 ms (b) t = 1.0 ms

(c) t = 2.0 ms (d) t = 2.7 ms

Figure 12 – Evolution of the particle cap pressure during the punch impact event.
¿e SVR predictions are on the le half of each image while the Ta-
ble predictions are on the right half.
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predicted by the SVRmodel are slightly higher than those from the Tablemodel.

(a) t = 0.5 ms (b) t = 1.0 ms

(c) t = 2.0 ms (d) t = 2.7 ms

Figure 13 – Evolution of the particle mean stress during the punch impact event.
¿e SVR predictions are on the le half of each image while the Ta-
ble predictions are on the right half.

Figure 15 shows the evolution of the volumetric elastic strain. ¿evalues predicted by theSVRmodels

are higher than those from the Tablemodel. At 2.7 ms, the SVRmodel shows that loading is contin-

uing because of the existence of relatively large elastic strains, which the Tablemodel has unloaded
to a larger extent. Plastic volumetric strains are depicted in Figure 16. We observe that tensile vol-

umetric plastic strains develop in the ejecta and regions close to the surface. However, the plastic

strains predicted by both the models are nearly identical though there are di�erences in the shear

bands at 2.7 ms.
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(a) t = 0.5 ms (b) t = 1.0 ms

(c) t = 2.0 ms (d) t = 2.7 ms

Figure 14 – Evolution of the particle e�ective deviatoric stress during the punch
impact event. ¿e SVR predictions are on the le half of each image
while the Table predictions are on the right half.
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(a) t = 0.5 ms (b) t = 1.0 ms

(c) t = 2.0 ms (d) t = 2.7 ms

Figure 15 – Evolution of the particle elastic volumetric strain during the punch im-
pact event. ¿eSVR predictions are on the le half of each image while
the Table predictions are on the right half.
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(a) t = 0.5 ms (b) t = 1.0 ms

(c) t = 2.0 ms (d) t = 2.7 ms

Figure 16 – Evolution of the particle plastic volumetric strain during the punch im-
pact event. ¿eSVR predictions are on the le half of each imagewhile
the Table predictions are on the right half.
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4.2 MLP vs. Table

Comparisons of the predictions from the MLPmodel are compared with those of the Tablemodel
in this section. Figure 17 show the bulk modulus in the dry sand as the impact event progresses, with

colors on a logarithmic scale. ¿e initial bulk modulus is signi�cantly higher in the MLPmaterial.

¿e bulk moduli of the MLP and Tablematerials become compared in the triangular plug a er 0.5
ms, and a region in the Table sand even exhibits a higher bulk modulus than the MLP sand at 1 ms

and 2ms. However, the releasewave leads to a reduction of the bulkmodulus as thematerial goes into

tension at 2.6 ms, the Table sand again reaches a state with bulk moduli lower than the MLPmodel.

Note that the bulk moduli in the MLP sand outside the plug remain remarkably uniform through

the event.

(a) t = 0.5 ms (b) t = 1.0 ms

(c) t = 2.0 ms (d) t = 2.6 ms

Figure 17 – Evolution of the particle bulk moduli during the punch impact event.
¿e MLP predictions are on the le half of each image while the Ta-
ble predictions are on the right half.

¿e MLPmodel predicts a smaller depth of penetration than the Tablemodel. ¿e evolution of

velocity in the sand is shown in Figure 18. Initial velocities predicted by the MLPmodel are faster

than those from the Tablemodel. ¿e �nal velocity distributions predicted by the two models are
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close to each other.

(a) t = 0.5 ms (b) t = 1.0 ms

(c) t = 2.0 ms (d) t = 2.6 ms

Figure 18 – Evolution of the particle velocity magnitudes during the punch impact
event. ¿eMLP predictions are on the le half of each image while the
Table predictions are on the right half.

¿e evolution of the cap pressure is compared in Figure 19. Initially, a faster increase in the cap

pressure is predicted by the MLPmodel. However, as the impact event progresses, the cap pressures

in the two materials become comparable. A peak value of around 400 MPa is observed in the Ta-
ble sand at 2 ms. Interestingly, the MLPmodel predicts a peak value of only around 270 MPa at that

time.

Mean stress evolution in the two materials is shown in Figure 20. ¿e initial wave speed in the

MLPmaterial is faster because of the larger bulkmodulus. At 1ms, bothmaterials have approximately

the same peak pressures (180MPa inMLP vs. 166 in Table ). However, at 2ms, the unloading process
in already underway in theMLPmaterial (peak pressure of 156 MPa) while the Tablematerial is still
loading (peak pressure 315 MPa). At 2.6 ms, both materials have unloaded signi�cantly except for

the plug region below the punch.

¿e e�ective deviatoric stress is shown in Figure 21. Initial shear wave speeds are also higher in the
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(a) t = 0.5 ms (b) t = 1.0 ms

(c) t = 2.0 ms (d) t = 2.6 ms

Figure 19 – Evolution of the particle cap pressure during the punch impact event.
¿e MLP predictions are on the le half of each image while the Ta-
ble predictions are on the right half.
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(a) t = 0.5 ms (b) t = 1.0 ms

(c) t = 2.0 ms (d) t = 2.6 ms

Figure 20 – Evolution of the particle mean stress during the punch impact event.
¿e MLP predictions are on the le half of each image while the Ta-
ble predictions are on the right half.
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MLPmaterial. At 1 ms, e�ective stresses in the two materials are comparable with peak values of

around 145MPa. At 2 ms, theMLPmaterial has unloaded signi�cantly more than the Tablematerial
as can be seen by the peak pressures of 124MPa and 276MPa, respectively. At 2.6 ms, both materials

have unloaded further and exhibit peak deviatoric stresses of 50 MPa and 60 MPa, respectively.

(a) t = 0.5 ms (b) t = 1.0 ms

(c) t = 2.0 ms (d) t = 2.6 ms

Figure 21 – Evolution of the particle e�ective deviatoric stress during the punch
impact event. ¿e MLP predictions are on the le half of each image
while the Table predictions are on the right half.

Figure 22 shows the evolution of the volumetric elastic strain in the two materials. As expected, the

elastic strains in theMLPmaterial are approximately 50% less than the Table predictions. By 2.6 ms,
the MLPmaterial has unloaded almost completely from compression and is largely in the tensile

regime, while the Tablematerial continues to be compressed.

On the other hand, plastic volumetric strains are almost identical in the two materials, as seen in

Figure 23. ¿e predicted plastic strains from the MLP , SVR , and Tablemodels are all within a few
percent of each other.
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(a) t = 0.5 ms (b) t = 1.0 ms

(c) t = 2.0 ms (d) t = 2.6 ms

Figure 22 – Evolution of the particle elastic volumetric strain during the punch im-
pact event. ¿eMLP predictions are on the le half of each imagewhile
the Table predictions are on the right half.
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(a) t = 0.5 ms (b) t = 1.0 ms

(c) t = 2.0 ms (d) t = 2.6 ms

Figure 23 – Evolution of the particle plastic volumetric strain during the punch im-
pact event. ¿eMLP predictions are on the le half of each imagewhile
the Table predictions are on the right half.
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5 Unexploded ordnance in a centrifuge

In these simulations, we model the entry of a 4.1 cm long unexploded ordnance (UXO) projectile

into dry sand contained in a centrifuge bucket rotating at 6 radians/s. ¿e centrifuge arm is 7 m

long, leading to an acceleration of 20g at the bottom of the bucket. Standard scaling laws for length

imply that the real world projectile being modeled is 82 cm long. ¿e projectile is initially oriented

at 45
○
to the vertical. ¿e projectile density is 5000 kg/m

3
, and its bulk and shear moduli are 140 GPa

and 8 GPa, respectively. ¿e initial axial velocity of the projectile is 283 m/s. Figure 24(a) shows the

geometry of the projectile.

¿e bucket is modeled with rigid walls and �oor, and �lled with sand to a height of 10.7 cm. For

computational convenience, a section of the bucket 15 cm long and 10 cm thick is modeled. Friction

between the projectile and the sand is modeled with a friction coe�cient of 0.1. ¿e initial sand

density is 1624 kg/m
3
ad the Poisson’s ratio is 0.189. Figure 24(b) shows the initial con�guration of

the projectile and the sand. ¿e material models for the sand are identical to those discussed in

Section 4.

(a) UXO projectile geometry (b) Sand in centrifuge with UXO

Figure 24 – Geometry of the UXO projectile and the sand in the centrifuge bucket.

¿edepth of penetration as function of time, and the change in orientation of the projectile, has been

plotted in Figures 25(a) and (b), respectively. ¿e positions of the top and bottom of the projectile

are shown, with the top depicted with thinner lines. From the depth vs. time plots in Figure 25(a) we

see that the Table and SVRmodels predict almost identical depths of penetration. ¿e projectile de-

celerates rapidly a er ≈500 µs, and then bounces back (depth of penetration decreases). Di�erences
in depth between the top and the bottom of the projectile are due to the rotation of the projectile as

it decelerates. However, the MLPmodel predicts a slightly di�erent behavior a er 700 µs. For that
model, the projectile sinks deeper into the sand at an orientation closer to the initial orientation than

the Table and SVRmodels.

¿e change in orientation of the projectile can be observed more clearly from Figure 25(b). ¿at
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(a) Depth of penetration (b) Projectile orientation

Figure 25 – Evolution of projectile positions during the impact event.

�gure shows plots of the coordinates of the top and the bottom of the projectile in the plane of

impact (x-z). For the Table and SVRmodel, the �nal orientation is around 75
○
from the horizontal.

Small di�erences between the predictions of the Table and SVRmodels become apparent only a er

most of the momentum has been transferred from the projectile to the sand. It is also worth noting

that there is a few mm motion of the projectile in the y-direction, partly due to gravity. In the case
of the MLPmodel, the �nal orientation of the projectile is around 55

○
from the horizontal, and the

projectile appears to fall back and sink into the sand, due to the arti�cial gravity induced by the

centrifuge motion, a er its initial momentum has been exhausted.

A more direct visualization of the positions and orientations of the UXO projectile can be observed

from Figure 26. ¿e images show the velocity magnitudes in the projectile and the sand 850µs
a er impact. ¿e velocity �eld and projectile orientations are nearly identical in the Table and
SVR predictions. ¿e white color of the velocity �eld of the projectile indicates that its velocity

is close to zero in all three simulations. However, in the MLP predictions, the projectile appears to

be sinking into the sand, and that motion generates a di�erent velocity �eld on the side where the

projectile touches the crater wall.

One observation from these simulations is that the material model does not appear to a�ect the

predicted depth during the phase where the motion is dominated by the initial momentum of the

projectile. It is only a er the projectile loses most of its momentum that the di�erences between the

three material models exhibit themselves as di�erences in the predicted depth. ¿is suggests that

rate e�ects may not be important for high-speed penetration simulations of granular materials.

Plots of the mean stress in the soil particles at three snapshots in time (t = 200 µs, 400 µs, and 600
µs) for the three models are shown in Figure 27. To highlight stress di�erences, a logarithmic scale
has been used to color the sand particles. ¿ough the initial wave speed is faster in the MLPmodel

(see the snapshots at 200 µs), as the projectile moves through the soil, the mean stress distribution is
similar for the three models. ¿e shape and orientation of the crater is also very similar for the three
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(a) Tablemodel (b) SVRmodel (b) MLPmodel

Figure 26 – Orientation and depth of the UXOprojectile at t = 850 µs a er impact.
Soil particles have been colored based on velocity magnitude.

models. ¿ough the Table andSVRmodels predict almost identical mean stresses, slight di�erences

can be observed between theSVR andMLPmodels near the projectile tip (green and yellow regions)

where the pressure varies between 50 MPa and 80 MPa.

¿e evolution of the e�ective deviatoric stress, q =
√
3J2, can be observed from Figure 28. ¿e initial

e�ective stress near the tip of the projectile is around 100 MPa, and the shear wave speed is larger

in the MLPmodel. At 400 µs a er impact, all three models appear to produce the same e�ective
stress �eld with marginal di�erences observed in theMLPmodel. Di�erences between the SVR and

MLPmodel appear a er around 600 µs. Stresses appear to relax in the sand above the projectile as
it sinks into the sand due to the arti�cial gravity caused by the centrifuge motion.

It is also informative to examine the evolution of the volumetric plastic strain in the soil during the

impact event, as shown in Figure 29. At 200 µs, the volumetric plastic strain in the sand at the tip of
the projectile is around 17% for all threemodels, with theSVRmodel predicting slightly larger values

than the Tablemodel and the MLPmodel predicting the largest values. ¿ere is a region (red) with

around 7% strain and a larger region (blue) with approximately 3% strain. ¿e high-shear region

forming the surface of the crater has large tensile volumetric plastic strains. Note that these strains

are nonphysical but can be modeled with an appropriate disaggregation model.

At 400 µs, the red 7% plastic strain region is larger for the MLPmodel, and the peak plastic strain is

around 14% for that model while it is around 12% for the Table and MLPmodels. At 600 µ, the Ta-
ble andMLPmodels predict volumetric plastic strain peaks of around 13.5%while the corresponding

MLP value is 16.5%. ¿e location of the red (7% strain) region also shi s in the MLP simulation to

the side of the crater bottom. Further study is needed to determine the causes that contribute to that

di�erence between the Table (or SVR ) model and the MLPmodel.

5.1 Timing and memory usage

Since the Table and SVRmodels produce almost identical results, we can use the time taken and

memory used in the simulations to select the preferable model. ¿e simulations in this work were

performed on a four-core Intel i7-4770 CPU with a peak clock speed of 3.4 GHz, 256K of L2 cache,

and 8192K of L3 cache. Vaango , compiled with gcc 7.5.0 and O3 optimization activated, was used
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Tablemodel SVRmodel MLPmodel

t = 200 µs

t = 400 µs

t = 600 µs

Figure 27 –Mean stress evolution predicted for the Table , SVR , andMLPmodels
during UXO penetration into a dry, poorly-graded, concrete sand.
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Tablemodel SVRmodel MLPmodel

t = 200 µs

t = 400 µs

t = 600 µs

Figure 28 – Evolution of the e�ective deviatoric stress (q =
√
3J2) predicted for the

Table , SVR , and MLPmodels during UXO penetration into a dry,
poorly-graded, concrete soil.
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Tablemodel SVRmodel MLPmodel

t = 200 µs

t = 400 µs

t = 600 µs

Figure 29 – Volumetric plastic strain evolution predicted for the Table , SVR , and
MLPmodels during UXO penetration into a dry, poorly-graded, con-
crete soil.
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to run the simulations. ¿e code was run on the four cores in parallel using mpirun .

Timing and memory usage data for the three simulations are plotted in Figure 30. From the time

taken for the simulation to run in Figure 30(a), we observe that the Tablemodel is the fastest while
the SVRmodel is the slowest (slower than Table by almost an order of magnitude). ¿ough the

MLPmodel is faster than the SVRmodel, it is still considerably slower than the Tablemodel, sug-
gesting that the Tablemodel should be used whenever possible. ¿ememory usage, in Figure 30(b),

shows an increase as the yield surface expands in particles around the projectile until it reaches an

approximately steady value of around 100 Mb. ¿e SVR and MLPmodels require a smaller amount

of memory than the Tablemodel. ¿ere is a sharp drop in the memory requirement for these mod-

els a er the particle velocity drops to its minimum value. ¿ese results indicate that the suspected

memory leak discussed in Banerjee (2020) is probably just an artifact of the prescribed deformation

path.

(a) Total simulation time. (b) Memory usage.

Figure 30 – Timing and memory usage for the three UXO simulations.

¿e timestep size and the time taken to run each timestep of the simulation are shown in Figures 31(a)

and (b), respectively. ¿e Table and SVRmodels use identical timesteps for a large fraction of the

simulation. However, theMLPmodel uses a smaller timestep starting at around 300 µs. Even though
the MLPmodel uses a smaller timestep than the SVRmodel, the use of ReLU activation leads to

a more e�cient evaluation of the model as seen in the time per timestep plot in Figure 31(b). ¿e

Tablemodel is again the most e�cient of the three.

6 Concluding remarks

In this paper, we have explained the choice of functions used in the interpolation and projection of

the Material Point Method (MPM), and provided a more accurate way of integrating the velocity

gradient than used in most implementations of the method. In conjunction with the material stress

update algorithm discussed in Banerjee, Fox, and Regueiro (2020d), this method provides a way of

simulating sand and other granular materials when the input data are provided in tabular form. ¿e
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(a) Timestep size (b) Time per timestep

Figure 31 – Timestep size and time per timestep for the UXO simulations.

single-particle tests described in Banerjee (2020) had examined the response of three types of model

for the elastic moduli: an interpolated model (Table ), a support vector regression model (SVR ),

and a multilayer perceptron (MLP ) neural network model. In this paper, we have compared MPM

predictions for the three models in the context of a two-dimensional punch impact problem and a

three-dimensional unexploded ordnance (UXO) penetration problem.

Our results show that, because the large compressive stresses observed in Banerjee (2020) are not

attained in the MPM simulations, the di�erences between the predictions of the three models are

not very large. However, di�erences do exist. ¿e MLPmodel predicts a lower depth of penetration

for the punch simulation test than the Table or SVRmodels. On the other hand, the same mate-

rial model predicts a larger depth of penetration and a di�erent �nal orientation in the UXO test

than the Table and SVRmodels. ¿e Tablemodel is the least computationally expensive while the
SVRmodel takes the most time to compute. ¿e MLPmodel uses ReLU activation units and con-

sumes less computational resource than the SVRmodel. Tabular cap plasticity models are more

expensive than closed-formmodels because standard root-�nding algorithms cannot be used in the

return mapping process.

In general, we have observed that di�erences in material models become more relevant a er the

initial momentum of the projectile has largely been transferred to the target. ¿e response up to

that stage can be predicted using simple models provided the impact velocity is large enough. How-

ever, the �nal stage of the settlement of the projectile depends strongly on the response of the target

material at low strain rates. ¿is observation is important for the e�cient recovery of unexploded

ordnance projectiles.
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