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Abstract

¿e Arena continuum-scale model for sand and/or clay under high-rate loading conditions is pre-
sented. Our scope is limited to adiabatic load/unload conditions in order to focus on model features
that most crucial for simulations of buried explosives and similar phenomena that involve shock com-
pression followed by free expansion (possibly with re-compression when ejecta impacts an object).
Evidence is provided that such conditions fall in a realm for which there is no substantial di�erence
between additive or multiplicative inelasticity approaches. ¿e Arenamodel is implemented in a Ma-
terial Point Method (MPM) code and details of the implementation and algorithms are discussed.
¿e model is veri�ed and validated against split-Hopkinson pressure bar (SHPB) experimental data.
Finally, the Arenamodel is used to simulate explosions in soil contained in a rotating centrifuge. Po-
tential advantages and shortcomings of the model are discussed and future research directions are
identi�ed.
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1 Introduction

Numerous phenomenological models have been proposed in the scienti�c literature for predicting
stresses and deformations in partially saturated granular and porous media.1 ¿ese models are typi-
cally expressed in terms of either total or “e�ective” stresses (the stress experienced by the solid skele-
ton in the absence of pore �uids) (Hassanizadeh and Gray, 1990; Borja, 2004). Most studies deal with
quasistatic or long-wavelength conditions for which the choice of stress measure in the momentum
equations has been explored extensively (Bishop and Skinner, 1977; Gray and Schre�er, 2001; Borja,
2006; Gray and Schre�er, 2007; Coussy, 2007; Nikooee et al., 2012). It is less clear which stress mea-
sure is most appropriate for dynamics, mainly because the de�nition of total stress is ambiguous in
the presence of relative motions of the pore �uids, although (as illustrated in Fig. 1) this issue is less
concerning in extremely high-rate applications that suppress relative motion of �uid and solid con-
stituents and therefore eliminate the need to simultaneously solve separate momentum equations for
each constituent. Investment in multiscale modeling (c.f. (Reguerio et al., 2013)) seems necessary to
identify appropriate forms for macroscale constitutive relations, regardless of whether for quasistatic
or dynamic conditions.

Figure 1 –Mesoscale models of �uid-solid composites illustrate that �uid motion
through open porosity is small at the high loading rates (and short time
scales) typical of blast applications, thus justifying an assumption of zero
permeability that eliminates the need to simultaneously solvemultiplemo-
mentum balance equations for each constituent. (Homel, Guilkey, and
Brannon, 2017)

¿e �rst few sections of this paper provide equations governing fully or partially saturated sand. ¿e
theory is necessarily simplistic (idealized) in order to accommodate practical constraints (such as de-
ployability into a massively parallel host code), so it must be understood that it includes only features
that seem to be absolutely crucial for high-rate loading of granular media containing �uids. Model
parameterization procedures are discussed, at which time it becomes clear that even feature-richmod-
els fall short of matching experimental data across broad ranges of loading rates, scales, and other

1Examples can be found in the following publications and the references cited in them: Reguerio et al., 2013; Bishop
and Skinner, 1977; Hassanizadeh and Gray, 1979; Gray and Hassanizadeh, 1989; Alonso, Gens, and Josa, 1990; Hassanizadeh
and Gray, 1990; Gray and Hassanizadeh, 1991b; Svendsen and Hutter, 1995; Berg, 1995; Meroi, Schre�er, and Zienkiewicz,
1995; Gawin, Schre�er, and Galindo, 1996; Pietruszczak and Pande, 1996; Houlsby, 1997; Gray and Schre�er, 2001; Schre�er
and Scotta, 2001; Rossi, 2002; Brown et al., 2007; Faria Santos, 2003; Georgiadis, 2003; Borja, 2004; Hamiel, Lyakhovsky,
and Agnon, 2004; C. Li, Borja, and Regueiro, 2004; Schre�er and Pesavento, 2004; Lade, 2005; Borja, 2006; Santagiuliana
and Schre�er, 2006; Coussy, 2007; Gray and Schre�er, 2007; Andrade and Ellison, 2008; Mica Grujicic et al., 2008; Kohler
and Hofstetter, 2008; Arson and Gatmiri, 2009; Coussy and Brisard, 2009; Gray, Schre�er, and Pesavento, 2009; Passarotto
et al., 2009; Vlahinić, Jennings, and J. J. ¿omas, 2009; Borja and White, 2010; Coussy, Pereira, and Vaunat, 2010; Goren et
al., 2010; Papastavrou and Steinmann, 2010; Dumont et al., 2011; Gajo, 2011; Higgins and Basu, 2011; Liu and Muraleetharan,
2011; Vlahinić, Jennings, Andrade, et al., 2011; G. Buscarnera and Einav, 2012; Grasley and Rajagopal, 2012; Mašín andKhalili,
2012; Nikooee et al., 2012; Uzuoka and Borja, 2012; Aharonov et al., 2013; Fuentes and Triantafyllidis, 2013; Madeo, Dell’Isola,
and Darve, 2013; Nedjar, 2013; Giuseppe Buscarnera, 2014; Lakeland, Rechenmacher, and Ghanem, 2014; Sanavia et al., 2014;
Song and Borja, 2014b; Wong and Mašín, 2014; Zhou and Sheng, 2015; Serpieri, Travascio, et al., 2015; Cao, Sanavia, and
Schre�er, 2016; Le Pense, Arson, and Pouya, 2016; X. Li et al., 2016; Serpieri and Travascio, 2016.
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application-speci�c conditions. High-rate loading, for example, typically suppresses many low-rate
e�ects (creep, �uid-�ow permeability, heat conduction, etc.) because the pertinent rheological phe-
nomena do not have su�cient time to develop. High-rate problems furthermore might exhibit other
phenomena (non-constant bulk modulus from concomitant larger deformations, rate-sensitivity of
strength, etc.) that are essentially absent in low-rate small-deformation data. Hence, to legitimately
use quasistatic data to help parameterize a high-rate model, these low-rate e�ects in the data must be
“stripped out” or otherwise accounted for(e.g., to convert the quasistatic isothermal bulk modulus to
the isentropic bulk modulus), and high-rate e�ects (like viscoplasticity and a nonlinear equation of
state) must be added . Further restricting the model’s usage to problems having approximately station-
ary reference stretch directions ensures little or no di�erence in the predictions of a model that uses a
multiplicative deformation decomposition in comparison with one that adopts and additive decompo-
sitions of strain rates (Itskov, 2004) or velocity gradients (Rubin and Ichihara, 2010). A multiplicative
model cannot be legitimately claimed to be to be superior to an additive one without showing their
equivalence in conditions of stationary reference stretch directions and comparative inadequacy of the
additive one otherwise. If stretch rotation is negligible in an application of interest, then there is no
need to su�er the computational overhead. of a multiplicative model (not to mention their still poorly
developed extension to problems involving additionalmechanisms of inelasticity, such as damage, irre-
versible phase transformations, and associated dissipative heating pertinent to granularmedia). Some
applicability limitations of idealized models are discussed. For example, it is argued that an additive
decomposition of elastic and inelastic strain rates (or the velocity gradient) is an acceptable alternative
tomore complicatedmultiplicative decompositions as long as the application of interest meets a simple
(typically satis�ed) criterion about the character of material rotation.

Continuum constitutive models for granular media o en su�er challenges of a solid, �uid, and gas. In
a buried-explosive simulation, for example, the Jacobian might vary non-monotonically by orders of
magnitude (from very sti� highly compressed states during the initial blast, to gas-like free expansion
during ejecta propagation, �nishing with recompression upon impacting an obstacle). Accordingly,
several— andmany still unsolved— challenges exist for implementing thesemodels intomomentum-
solver host codes. A Lagrangian �nite-element code cannot handle the large distortions, while an Eu-
lerian approach typically corrupts �delity of the constitutive model’s evolving internal state variables.
Advantages and shortcomings of some actively researched particle methods are therefore discussed.
To alleviate these problems, many simulations in this paper use the open-source computational frame-
work Uintah (Davison de St Germain et al., 2000), which was selected because of its well-supported
option to solve the momentum equations via the Material Point Method (Sulsky, Chen, and Schreyer,
1994).

Homogenized models for granular media are of dubious value unless their implementation accounts
for the fact that the aggregates (sand grains) are not su�ciently small to reach the continuum limit. As
aleatory heterogeneity can’t be neglected, any local and deterministic theory (like the one described
herein) ought to be invoked within a host code using nonlocality and/or scale-dependent property
variability to bene�t both predictiveness and convergence (Kamrin and Bazant, 2007; Strack, Leavy,
and Brannon, 2014). Aleatory uncertainty in the constitutivemodel is necessary (though not su�cient)
to stimulate realistic localization and other forms of bifurcation that might arise from statistical vari-
ability in force chains between grains. Statistical variation also contributes to non-continuum inelastic
scale e�ects. ¿e paper concludes with a section summarizing an empirical scaling law for realistic
soils, which has been recently touted as a potential means of predicting full-scale buried-explosive
phenomena from observations of less-expensive smaller explosives in the high-gravity environment of
a centrifuge (Reguerio et al., 2013).

¿is paper is organized to proceed through the following topics, some of which are covered only lightly
in order to highlight areas for future research:

1. Governing equations for an idealized (and open-source) constitutive model (Arena ) for par-
tially or fully saturated soil subjected to high-rate loading including a high-rate Duvaut-Lions

© Parresia Research Limited
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model for viscoplastic e�ects.

2. Accounting for sub-scale (non-continuum) heterogeneity via scale-dependent aleatory uncer-
tainty in the continuum constitutive model.

3. Large deformation considerations: multiplicative and additive decompositions of deformation
and the appropriateness of additive decompositions in Arena .

4. ¿e MPM and stress-update algorithms and numerical implementation challenges, both in ad-
vancing the constitutive state through time and in e�ectively using granular models in particle-
based momentum solvers.

5. Model parameterization procedures, with examples of �tted data. ¿ese are based on theoretical
and empirical scaling laws, which facilitate using inexpensive small-scale tests to predict results
of relatively expensive large-scale experiments.

6. Exploration of the theoretical behavior of the Arenamodel and identi�cation of issues that need
further research.

7. Veri�cation of the Arenamodel using single particle MPM simulations.

8. Validation of the Arenamodel using SHPB test data outside the range used in model parame-
terization.

9. MPM simulations of explosions in soils modeled with Arena .

© Parresia Research Limited
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2 The ARENA model

¿is paper describes a constitutive model called Arena .2 By limiting its scope to features that seem
to be crucial for applications involving high-rate loading of partially saturated soil/sand, Arena is rea-
sonably robust in buried-explosive simulations. ¿e Arena model solves a total stress3 form of the bal-
ance ofmomentum. ¿e constitutive relations include a nonlinear bulkmodulusmodel in conjunction
with a nonlinear Drucker-Prager limit surface with a compression cap that is �tted to crush-curve data.
Building on work of Homel et al. (Homel, Guilkey, and Brannon, 2015) (which itself was specialized
from the multipurpose Kayenta geomechanics model (Brannon, Fuller, et al., 2015)), pore pressure is
modeled as an isotropic contribution to backstress with a better-developed theory for partial satura-
tion,4 Features available in themore complicatedKayentamodel (not Arena ) include third-invariant
dependence, kinematic hardening, advancedmulti-purpose thermodynamic equations of state etc. , all
of which are well documented elsewhere and could easily be restored into the Arenamodel at a con-
siderable cost in code maintenance and robustness for relatively little gain in comparison to the model
features retained as essential for soil-blast simulations (where, for example, approximately adiabatic –
not isentropic – conditions provide simplifying constraints to a general EOS formulation). Arena is
superior to Kayenta in its support for fully and partially saturated states as well as its model for ad-
justing parameters based on initial sample preparation (e.g., compaction through shaking), so these
features are a primary focus of this paper .

2.1 Volume fraction, porosity, saturation, density

¿eArenamodel assumes a three-phase porousmediumwith constituents α = {s,w , a}where s is the
solid skeleton, w is water, and a is air. Let X and x be the reference and current positions, respectively,
of a point inside a bodyΩ. Eachmaterial point is considered to be the center ofmass of a representative
volume element (RVE) region (ω) of volume dv andmass dm.5 ¿e region (ωα ⊂ ω) occupied by phase
α at each material point has a volume dvα and mass dmα such that

dv = dvs + dvw + dva and dm = dms
+ dmw

+ dma . (1)

¿e volume fraction ( f α) of phase α at each point is de�ned as

f α =
dvα

dv
so that ∑

α
f α = 1 . (2)

2“Arena” is the Spanish word for “sand,” referring to the model’s origins in Southwestern USA states (Utah and NewMex-
ico). It has been veri�ed and regression tested against a fairly standard battery of analytical single-element tests (Kamojjala
et al., 2015) and (as will be described) validated against data for a variety of sands at di�erent moisture and initial states. It
is available under open source (Davison de St Germain et al., 2000), allowing it to serve as a starting point to be revised to
include any number of other model features (not part of Arena ) that might be needed for a given application.

3¿ephrase “total stress” refers to the continuum-scale stress that is the average ofmicroscale stresses in the heterogeneous
mixture of solid, �uid, and air.

4Not part of Kayenta , these governing equations are based on work of Uzuoka and Borja (Uzuoka and Borja, 2012) (see
also Borja, (2004), C. Li, Borja, and Regueiro, (2004), Borja, (2006), Borja and White, (2010), Uzuoka and Borja, (2012),
Song and Borja, (2014b), and Song and Borja, (2014a)) which is, in turn, a simpli�cation of the averaging theory proposed
by Hassanizadeh and Gray (Hassanizadeh and Gray, 1979; Gray and Hassanizadeh, 1989; Hassanizadeh and Gray, 1990; Gray
and Hassanizadeh, 1991b; Gray and Hassanizadeh, 1991a). ¿e original equations allow for separate tracking of constituents
in a mixture (e.g., solid, water, and air) that might move relative to each other as in a di�usive process, but our Fig. 1 shows
that this complication is avoidable for high-rate applications because of “head loss” that prevents appreciable motion of �uid
or gas relative to the solid granular constituent over the time range that is typical for shock-loading events.

5¿is classical assumption can signi�cantly increase computational overhead if a distended (i.e., highly expanded) do-
main impacts an obstacle a er a blast event. Simple simulations of a material that has expanded to a a Jacobian exceeding 10
(essentially representing a cloud of “dust”) can be readily con�rmed to give inaccurate predictions of momentum and energy
deposition rates at tractable grid discretizations. ¿is problem is rooted in the fact that the notion of an RVE does not exist
on this scale, where part of the material within the supposed RVE has recompacted upon impact while the remainder is still
distended. Accounting for this extreme degree of heterogeneity in an RVE remains an as-yet unsolved problem that might
well require host-code modi�cations such as enriched basis functions (Mo es, Dolbow, and Belytschko, 1999).
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¿e volume fraction of the solid skeleton is

f s = 1 − ϕ , ϕ =
dvw + dva

dv
(3)

where the ϕ is the porosity. ¿e volume fractions of water and air are

f w = ϕSw , f a = ϕSa = ϕ(1 − Sw) , Sw =
dvw

dvw + dva
(4)

where Sw is the saturation. ¿e Biot parameter is a measure of the in�uence of porosity on the elastic
bulk modulus:

B ∶= 1 −
K̃s(p̃s)
Ks(ps)

, (5)

where K̃s is the bulk modulus of the porous solid and p̃s is the pressure in the porous solid. Physical
arguments leading to speci�c formulas used to compute Arena ’s Biot parameter are detailed in this
paper ’s appendices, with this section listing the major �nal results.

Conditions of high-rate loading greatly simplify the �eld equations for mass, momentum, and en-
ergy. For example, phases move approximately together despite a microstructure consisting of an
open porosity network. ¿ese �eld equations are further reduced with additional simplifying assump-
tions (such as pressure equilibrium between phases) and adiabatic conditions (justifying a mechanical
model without ignoring dissipation or thermodynamic consistency). Of course, the phrase “mechan-
ical model” merely implies that there is a thermodynamic constraint su�ciently restrictive to treat
stress as determinable exclusively through knowledge of the deformation history. Even in this con-
text, irreversible processes such as plastic �ow and damage (and their associated dissipative heating)
are included in principle. ¿e Arenamodel is a bit more restrictive in that it does not account di-
rectly for temperature dependence of material properties (which can certainly be done as described
in Kayenta documentation (Brannon, Fuller, et al., 2015)), and consequently Arena is designed for
events involving one primary loading interval (e.g., initial shock compression) followed by a secondary
unloading to a signi�cantly distended state (free �ight of disaggregated particles), and only qualitatively
reasonable support for recompaction upon impact with an obstacle.

Let the mixture mass density (ρ) and the mass density of each phase (ρα) be de�ned as

ρ =
dm
dv

and ρα =
dmα

dvα
. (6)

We de�ne the partial mass density of each phase as

⟨ρα⟩ = f αρα such that ⟨ρs⟩ + ⟨ρw⟩ + ⟨ρa⟩ = ρ . (7)

2.2 Material derivatives

¿ematerial time derivative of fα with respect to phase α is de�ned as

Dαfα

Dt
=
∂fα

∂t
+∇fα ⋅ vα (8)

where vα is the velocity of phase α. ¿e relative material derivative of phase β with respect to phase α
is

Dαfβ

Dt
=
Dβfβ

Dt
+∇fβ ⋅ (vα − vβ) =

Dβfβ

Dt
+∇fβ ⋅ vαβ . (9)

© Parresia Research Limited
PAR-10021867-1516: GranularMediaModelProjectDocumentationFinalLongVersion.pdf

Page 10 of 129



Arena model
PAR-10021867-1516.v1 Wednesday 20th September, 2017

2.3 Mass balance

¿e phase mass balance equation for the RVE in the absence of mass exchange between the phases is

∂
∂t

(⟨ρα⟩) +∇ ⋅ (⟨ρα⟩vα) = 0 . (10)

Using the de�nition of the material time derivative, we can write the mass balance equations as

Dα

Dt
(⟨ρα⟩) + ⟨ρα⟩∇ ⋅ vα = 0 . (11)

¿e above equation can be expressed relative to phase β as

Dβ

Dt
(⟨ρα⟩) −∇⟨ρα⟩ ⋅ vβα + ⟨ρα⟩∇ ⋅ vα = 0 . (12)

Similarly, the assumption of no relative motion between phases ultimately implies that no revisions
are required in how a host code enforces mass conservation. At the constitutive level, the relative mass
fractions remain constant, while the volume fractions vary depending assumptions of how the overall
RVE stress is distributed to each phase.

2.3.1 Solid phase

For the solid phase,
Ds

Dt
(⟨ρs⟩) + ⟨ρs⟩∇ ⋅ vs = 0 . (13)

In terms of volume fractions, the above balance equation can be written as

Ds f s

Dt
+
f s

ρs
Dsρs

Dt
+ f s∇ ⋅ vs = 0 . (14)

Let us assume the existence of a smooth function ρs = ρs(ps), where ps is the intrinsic pressure in the
solid phase (actual force per unit area acting on the solid phase – without considering voids). We also
de�ne the the bulk modulus of the solid phase as

Ks(ps) = −
dps

dεev
= −

dps

dρs
dρs

dεev
= ρs

dps

dρs
(15)

where the elastic volumetric strain is de�ned as

εev = ln(
vs

vs0
) = − ln(

ρs

ρs0
) = ln Js . (16)

¿en
Ds f s

Dt
+
f s

ρs
dρs

dps
Dsps

Dt
+ f s∇ ⋅ vs = 0 . (17)

We can use the above de�nition to get

Ds f s

Dt
+

f s

Ks(ps)
Dsps

Dt
+ f s∇ ⋅ vs = 0 . (18)

Note that there is some ambiguity here about the conservation of intrinsic mass and the de�nition of
intrinsic volume (vs).

For our purposes, it is more convenient to work with a solid phase pressure that is de�ned over a RVE
containing voids. Borja and coworkers de�ne this pressure as

ps = p̃s(ρs , f s) (19)
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such that
Dsps

Dt
=
∂p̃s

∂ρs
Dsρs

Dt
+
∂p̃s

∂ f s
Ds f s

Dt
. (20)

Now,
Dsεev
Dt

= −
1
ρs

Dsρs

Dt
=
Ds

Dt
(ln Js) =

1
Js

Ds Js

Dt
. (21)

Recall that
Ds Js

Dt
= Js∇ ⋅ vs . (22)

¿erefore,
Dsρs

Dt
= −ρs∇ ⋅ vs (23)

Substituting into (20) gives
Dsps

Dt
= −ρs

∂p̃s

∂ρs
∇ ⋅ vs +

∂p̃s

∂ f s
Ds f s

Dt
. (24)

¿erefore,
Ds f s

Dt
=

1
∂p̃s
∂ f s

[
Dsps

Dt
+ ρs

∂p̃s

∂ρs
∇ ⋅ vs] . (25)

Substituting this into the mass balance equation (18) for the solid phase,

Dsps

Dt
+ ρs

∂p̃s

∂ρs
∇ ⋅ vs +

f s

Ks(ps)
∂p̃s

∂ f s
Dsps

Dt
+ f s

∂p̃s

∂ f s
∇ ⋅ vs = 0 (26)

or

(1 +
f s

Ks(ps)
∂p̃s

∂ f s
)
Dsps

Dt
+ (ρs

∂p̃s

∂ρs
+ f s

∂p̃s

∂ f s
)∇ ⋅ vs = 0 (27)

or,

Dsps

Dt
= −

⎛
⎜
⎜
⎜
⎜
⎜
⎝

ρs ∂p̃
s

∂ρs + f s ∂p̃
s

∂ f s

1 +
f s

Ks(ps)
∂p̃s
∂ f s

⎞
⎟
⎟
⎟
⎟
⎟
⎠

∇ ⋅ vs . (28)

Let us de�ne the bulk modulus of the solid matrix (K̃s) using

Ds p̃s

Dt
=
∂p̃s

∂εev

Dsεev
Dt

=∶ −K̃s
(p̃s)∇ ⋅ vs (29)

In terms of the intrinsic pressure in the solid, Borja’s de�nition leads to

f s
Dsps

Dt
= −K̃s

(p̃s)∇ ⋅ vs . (30)

¿e reason for this de�nition is not obvious and needs re-examination but leads to the de�nition of
the matrix bulk modulus used by Borja:

K̃s
∶= f s

⎛
⎜
⎜
⎜
⎜
⎜
⎝

ρs ∂p̃
s

∂ρs + f s ∂p̃
s

∂ f s

1 +
f s

Ks(ps)
∂p̃s
∂ f s

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (31)

If we substitute (30) into (18), we get
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Ds f s

Dt
−
K̃s(p̃s)
Ks(ps)

∇ ⋅ vs + f s∇ ⋅ vs = 0 . (32)

¿e Biot parameter is a measure of the in�uence of porosity on the elastic bulk modulus:

B ∶= 1 −
K̃s(p̃s)
Ks(ps)

, (33)

where K̃s is the bulk modulus of the porous solid and p̃s is the pressure in the porous solid. ¿en, it
can be argued that the solid mass balance equation can be written as

Ds f s

Dt
+ (B − 1 + f s)∇ ⋅ vs = 0 . (34)

2.3.2 Water phase

¿e balance of mass for the water phase, relative to the solid phase, is

Ds

Dt
(⟨ρw⟩) −∇⟨ρw⟩ ⋅ vsw + ⟨ρw⟩∇ ⋅ vw = 0 (35)

where vsw = vs − vw . Expanded,

Ds f w

Dt
+
f w

ρw
Dsρw

Dt
− [

f w

ρw
∇ρw +∇ f w] ⋅ vsw + f w∇ ⋅ vw = 0 . (36)

Once again we assume the existence of a smooth function ρw = ρw(pw)where pw is the intrinsic water
pressure and get

Ds f w

Dt
+
f w

ρw
dρw

dpw
Dspw

Dt
− [

f w

ρw
dρw

dpw
∇pw +∇ f w] ⋅ vsw + f w∇ ⋅ vw = 0 . (37)

As was done for the solid phase, the bulk modulus of water is de�ned as

Kw(pw) = ρw
dpw

dρw
(38)

which leads to

Ds f w

Dt
+

f w

Kw(pw)
Dspw

Dt
− [

f w

Kw(pw)
∇pw +∇ f w] ⋅ vsw + f w∇ ⋅ vw = 0 . (39)

Recalling from the de�nitions of porosity and saturation that

f w = ϕSw = (1 − f s)Sw (40)

and using the mass balance equation for the solid phase (18), we have

Ds f w

Dt
= −Sw

Ds f s

Dt
+ (1 − f s)

DsSw
Dt

= Sw [
f s

Ks(ps)
Dsps

Dt
+ f s∇ ⋅ vs] + (1 − f s)

DsSw
Dt

. (41)

¿erefore the mass balance of water can be expressed as

(1− f s)
DsSw
Dt

+
f w

Kw(pw)
Dspw

Dt
+

Sw f s

Ks(ps)
Dsps

Dt
+Sw f s∇ ⋅vs−[

f w

Kw(pw)
∇pw +∇ f w]⋅vsw + f w∇ ⋅vw = 0 .

(42)
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Recall from equation (30) that

f s
Dsps

Dt
= −K̃s

(p̃s)∇ ⋅ vs . (43)

Substituting this into the mass balance equation for water gives

(1− f s)
DsSw
Dt

+
f w

Kw(pw)
Dspw

Dt
−
Sw K̃s(p̃s)
Ks(ps)

∇⋅vs+Sw f s∇⋅vs−[
f w

Kw(pw)
∇pw +∇ f w]⋅vsw+ f w∇⋅vw = 0 .

(44)
Using the de�nition

B ∶= 1 −
K̃s(p̃s)
Ks(ps)

(45)

we have

(1− f s)
DsSw
Dt

+
f w

Kw(pw)
Dspw

Dt
+Sw(B−1+ f s)∇ ⋅vs−[

f w

Kw(pw)
∇pw +∇ f w]⋅vsw+ f w∇ ⋅vw = 0 . (46)

Using
∇ ⋅ vw = −∇ ⋅ vsw +∇ ⋅ vs (47)

and
Sw(B − 1 + f s) + f w = SwB − Sw + Sw(1 − ϕ) + Swϕ = SwB (48)

Using arguments similar to those used for the solid phase, equation (35) can be expressed as

(1 − f s)
DsSw
Dt

+
f w

Kw(pw)
Dspw

Dt
+ BSw∇ ⋅ vs

− [
f w

Kw(pw)
∇pw +∇ f w] ⋅ vsw − f w∇ ⋅ vsw = 0

(49)

where pw is the intrinsic pressure in the water.

2.3.3 Air phase

For the air phase, relative to the solid phase, the mass balance equation is

Ds

Dt
(⟨ρa⟩) −∇⟨ρa⟩ ⋅ vsa + ⟨ρa⟩∇ ⋅ va = 0 (50)

where vsa = vs − va.

In terms of volume fractions,

Ds f a

Dt
+
f a

ρa
Dsρa

Dt
− [

f a

ρa
∇ρa +∇ f a] ⋅ vsa + f a∇ ⋅ va = 0 . (51)

For the air phase, with

ρa = ρa(pa) and Ka(pa) = ρa
dpa

dρa
(52)

we get
Ds f a

Dt
+

f a

Ka(pa)
Dspa

Dt
− [

f a

Ka(pa)
∇pa +∇ f a] ⋅ vsa + f a∇ ⋅ va = 0 . (53)

From the de�nitions of porosity and saturation,

f a = ϕSa = (1 − f s)(1 − Sw) . (54)
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Using the procedure used for the water phase, the mass balance of air is

(1− f s)
DsSa
Dt

+
f a

Ka(pa)
Dspa

Dt
+

Sa f s

Ks(ps)
Dsps

Dt
+Sa f s∇⋅vs−[

f a

Ka(pa)
∇pa +∇ f a]⋅vsa+ f a∇⋅va = 0 . (55)

Expressed in terms of the bulk modulus, volume fraction, and intrinsic air pressure (pa), equation (50)
becomes

(1 − f s)
DsSa
Dt

+
f a

Ka(pa)
Dspa

Dt
+ BSa∇ ⋅ vs

− [
f a

Ka(pa)
∇pa +∇ f a] ⋅ vsa − f a∇ ⋅ vsa = 0 .

(56)

2.4 Linear momentum balance

¿e linear momentum balance for the three phases in the absence of mass exchange between phases
can be written as

⟨ρα⟩
Dαvα

Dt
= ∇ ⋅ σα + ⟨ρα⟩bα + pα + tα , ∑

α
(pα + tα) = 000 (57)

where σα is the average stress of phase α in the RVE, bα is the body force experienced by phase α, and
pα is the interaction force term due to the motion of the phases and tα is the interaction force vector
due to surface tractions, between phase α and the other phases. Also, the total stress is given by

σ = ∑
α
σα . (58)

Borja uses expressions for pα and tα similar (but not identical) to that derived by Haasanizadeh and
Gray (Hassanizadeh and Gray, 1990) by the application of an averaged energy balance and a reduced
entropy inequality to the RVEbalance equations discussed in the previous appendix. ¿ese expressions
are

tα = pα∇ f α , pα = − f αµα ⋅ (vα − vs) (59)

where µα is a material parameter related to the relative permeability of the phases.

2.4.1 Solid phase

¿ematerial time derivative of the velocity of the solid phase is

as =
Dsvs

Dt
=
∂vs

∂t
+∇vs ⋅ vs . (60)

¿e momentum equation for the solid phase is

⟨ρs⟩as = ∇ ⋅ σ s + ⟨ρs⟩bs + ps∇ f s . (61)

2.4.2 Water phase

¿ematerial time derivative of the velocity for the water phase is

aw =
Dwvw

Dt
=
∂vw

∂t
+∇vw ⋅ vw . (62)

If the solid phase acts as a reference, we have

aw =
Dsvw

Dt
−∇vw ⋅ (vs − vw) . (63)
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¿erefore, the momentum equation for the water phase is

⟨ρw⟩aw = ∇ ⋅ σw + ⟨ρw⟩bw + pw∇ f w − f wµw ⋅ (vw − vs) . (64)

2.4.3 Air phase

¿ematerial time derivative for the air phase is

aa =
Dwva

Dt
=
∂va

∂t
+∇va ⋅ va . (65)

If the solid phase acts as a reference, we have

aa =
Dsva

Dt
−∇va ⋅ (vs − va) (66)

and the momentum equation for the air phase is

⟨ρa⟩aa = ∇ ⋅ σ a + ⟨ρa⟩ba + ta + pa∇ f a − f aµa ⋅ (va − vs) . (67)

2.4.4 Mixture

Adding the momentum equations of the three phases, and assuming that all three phases experience
identical body forces, we have the momentum balance of the mixture

⟨ρs⟩as + ⟨ρw⟩aw + ⟨ρa⟩aa = ∇ ⋅ σ + ρbs (68)

where
ρ = ∑

α
⟨ρα⟩ . (69)

2.5 Energy balance

¿e energy balance of the mixture is

ρ
Dse
Dt

− σ s ∶ ds − σw ∶ dw − σ a ∶ da +∇ ⋅ q − ρh = 0 . (70)

We assume that the �uid stresses are isotropic, i.e.,

σw = −⟨pw⟩I = − f w pwI , σ a = −⟨pa⟩I = − f apaI . (71)

¿en, we have

ρ
Dse
Dt

− σ s ∶ ds + f w pw∇ ⋅ vw + f apa∇ ⋅ va +∇ ⋅ q − ρh = 0 . (72)

Recall that the total stress is

σ = σ s + σw + σ a = σ s − f w pwI − f apaI . (73)

¿erefore we can write the mixture balance equation as

ρ
Dse
Dt

− σ ∶ ds − f w pw∇ ⋅ vsw − f apa∇ ⋅ vsa +∇ ⋅ q − ρh = 0 . (74)
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A er multiplying by pw and pa, respectively, we can write (49) and (56) as

pw(1 − f s)
DsSw
Dt

+
pw f w

Kw(pw)
Dspw

Dt
+ BpwSw∇ ⋅ vs−

pw f w

Kw(pw)
∇pw ⋅ vsw + pw∇ f w ⋅ vsw = f w pw∇ ⋅ vsw

(75)

and

−pa(1 − f s)
DsSw
Dt

+
pa f a

Ka(pa)
Dspa

Dt
+ BpaSa∇ ⋅ vs−

pa f a

Ka(pa)
∇pa ⋅ vsa + pa∇ f a ⋅ vsa = f apa∇ ⋅ vsa .

(76)

Adding these equations and substitution into the mixture energy balance equation, and noting that

∇ ⋅ vs = I ∶ ds (77)

gives

ρ
Dse
Dt

− σ ∶ ds − B
⎡
⎢
⎢
⎢
⎢
⎣

∑
α={w ,a}

pαSα
⎤
⎥
⎥
⎥
⎥
⎦

I ∶ ds − (pw − pa)(1 − f s)
DsSw
Dt

− ∑
α={w ,a}

pα f α

Kα(pα)
Dspα

Dt

+ ∑
α={w ,a}

[
pα f α

Kα(pα)
∇pα ⋅ vsα − pα∇ f α ⋅ vsα] +∇ ⋅ q − ρh = 0 .

(78)

We can de�ne the e�ective stress to be

σe� ∶= σ + B
⎡
⎢
⎢
⎢
⎢
⎣

∑
α={w ,a}

pαSα
⎤
⎥
⎥
⎥
⎥
⎦

I (79)

to get the energy balance equation

ρ
Dse
Dt

− σe� ∶ ds − (pw − pa)(1 − f s)
DsSw
Dt

− ∑
α={w ,a}

pα f α

Kα(pα)
Dspα

Dt

+ ∑
α={w ,a}

[
pα f α

Kα(pα)
∇pα − pα∇ f α] ⋅ vsα +∇ ⋅ q − ρh = 0 .

(80)

¿us we see that the e�ective stress is energy conjugate to the rate of deformation of the solid. We also
�nd that the capillary stress is energy conjugate to the saturation.

2.6 High strain-rate balance equations

Assume that the water and the air phases do not move relative to the solid phase, i.e.,

vs = vw = va and as = aw = aa . (81)

¿en the mass balance equations of the three phases reduce to

Ds f s

Dt
+ (B − 1 + f s)∇ ⋅ vs = 0

(1 − f s)
DsSw
Dt

+
f w

Kw(pw)
Dspw

Dt
+ BSw∇ ⋅ vs = 0

− (1 − f s)
DsSw
Dt

+
f a

Ka(pa)
Dspa

Dt
+ B(1 − Sw)∇ ⋅ vs = 0 .

(82)
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¿emomentum balance equation for the mixture is

ρas = ∇ ⋅ σ + ρbs where ρ = ∑
α
⟨ρα⟩ . (83)

¿e energy balance equation is

ρ
Dse
Dt

− σe� ∶ ds − (pw − pa)(1 − f s)
DsSw
Dt

− ∑
α={w ,a}

pα f α

Kα(pα)
Dspα

Dt
+∇ ⋅ q − ρh = 0 (84)

where
σe� = σ + B[pwSw + paSa]I = σ + B[(pw − pa)Sw + pa]I (85)

and

B ∶= 1 −
K̃s(p̃s)
Ks(ps)

. (86)

If we make the further assumption that at high strain-rates the intrinsic phase pressures are equal,
ps = pw = pa, the momentum balance equation for the mixture is

ρas = ∇ ⋅ σ + ρbs where ρ = ∑
α
ρα (87)

where ρ is the mass density of the mixture, as is the acceleration of the solid skeleton, σ is the total
Cauchy stress in the mixture, bs is the body force per mixture mass, and α = {s,w , a} are the three
phases (solid, water, air). ¿e e�ective stress is

σe� = σ + BpwI = σ − α (88)

where pw = −pw is the pore pressure, and B is the Biot coe�cient which is de�ned as

B ∶= 1 −
Kd(ps)
Ks(ps)

. (89)

Here ps is the intrinsic pressure in the solid skeleton, Kd is the bulkmodulus of the drained solid skele-
ton, Ks is the bulkmodulus of the solid grains, and we assume that ps = pw . All unbarred quantities are
positive in tension. For example, σ and pw are positive in tension while pw is positive in compression.
Note, incidentally that the term α ∶= −BpwI can be regarded as an isotropic backstress, requiring an
evolution model, as with a conventional backstress.

We the assumption of phase pressure equilibrium, the mass balance equation equations can be written
as (with the substitution f s = 1 − ϕ, where ϕ is the porosity)

Dsϕ
Dt

− (B − ϕ)∇ ⋅ vs = 0

[
Swϕ

Kw(pw)
+

(1 − Sw)ϕ
Ka(pw)

]
Dspw

Dt
+ B∇ ⋅ vs = 0 .

(90)

As shown in Appendix A, the mass balance equations can be expressed as a rate equation for the pore
pressure:

dpw

dεv
=
1
B

(91)

where εv is the total volumetric strain, and

B ∶=
1

(1 − S0)exp(εv − εav) + S0exp(εv − εwv )
[−

(B − ϕ)ϕ
Bϕ0

(
Sw
Kw

+
1 − Sw
Ka

)+

1 − S0
Ka

exp(εv − εav) +
S0
Kw

exp(εv − εwv )] .
(92)

© Parresia Research Limited
PAR-10021867-1516: GranularMediaModelProjectDocumentationFinalLongVersion.pdf

Page 18 of 129



Arena model
PAR-10021867-1516.v1 Wednesday 20th September, 2017

In the above expression, B is the Biot coe�cient, ϕ is the current total porosity, ϕ0 is the initial total
porosity, Sw is the total saturation, S0 is the initial total saturation, Kw is the pressure-dependent bulk
modulus of water, Ka is the pressure-dependent bulk modulus of air, εav is the total strain in the air
phase, and εwv is the total strain in the water phase.

If we use the pressure equilibrium assumption, the energy balance equation becomes

ρ
Dse
Dt

− σe� ∶ ds + pw [
Swϕ

Kw(pw)
−

(1 − Sw)ϕ
Ka(pw)

]
Dspw

Dt
+∇ ⋅ q − ρh = 0 (93)

where
σe� = σ + BpwI (94)

and e is the internal energy density, ds is the symmetric part of the velocity gradient in the solid skele-
ton, q is the heat �ux, and h is a heat source. ¿is equation may also be written in the alternative
form (Hassanizadeh and Gray, 1990)

ρ
Dse
Dt

− σ ∶ ds +∇ ⋅ q − ρh = 0 . (95)

We do not solve the energy equation directly in theArenamodel but do consider the energy conjugacy
of σ and ds.

2.7 Constitutive model

We follow the approach used by Homel, Guilkey, and Brannon, (2015) where the total stress is used in
the constitutive model instead of the e�ective stress. In rate form, the constitutive model is6

σ̇ = σ̇e� + α̇ = σ̇e� − ḂpwI − BṗwI
= g1(σ , η, ds) − g2(σ , η, ds)pw − g3(σ , η, ds)B

(96)

where g1, g2, and g3 are assumed constitutive relations that can be expressed as

g1(σ , η, ds) = σ̇e� = Cpe
e� ∶ d

s

g2(σ , η, ds) = Ḃ = −
1
Ks

˙̃Ks +
Kd
K2
s
K̇s = −

1
KsB

[
∂Kd
∂pw

−
Kd
Ks

∂Ks
∂pw

] tr(ds)

g3(σ , η, ds) = ṗw =
1
B
tr(ds)

(97)

In the above equations,Cpe
e�(σ , η) is an e�ective elastic-plastic tangentmodulus,Kd(σ , η) andKs(σ , η)

are the bulk moduli that contribute to the Biot parameter, and B(σ , η) is de�ned in equation (92)7 .

As discussed in Section 3, we assume that

ds = de + dp = ε̇e + ε̇p (98)
6¿is model is applied in the “unrotated” con�guration to satisfy the principle of material frame indi�erence. ¿e ap-

plications of interest are assumed to have negligible rotation of reference stretch directions, thus making the symmetric part
of the velocity gradient, d, a very good approximation to the rate of Hencky strain and hence (in this approximation) con-
jugate to Cauchy stress σ . More general models based on a multiplicative decomposition of the deformation should (at least
for an initially isotropic medium) reduce to this form in the case of non-rotating reference stretch directions, and therefore
multiplicative models are worthwhile only if there exists su�cient validation data to distinguish them from this simpler and
more robust subclass.

7 Equation (96) suggests that the bulk modulus may also have to be treated as an internal variable if the backstress is
treated as an internal variable.
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where εe is an elastic strain and εp is a plastic strain.8 In addition to plastic strain, Arena tracks the
following internal variables (η)for the partially saturated soil model :

η = {pwe , pwp , B
e, Bp, ϕe, ϕp, Sew , S

p
w , Xe, Xp

} (99)

where pwe is the part of the pore pressure that goes to zero a er a load that leads to plastic deformation
is removed, pwp = pw − pwe is the unrecoverable pore pressure which remains nonzero a er removal of
the load, Be, Bp are the the Biot parameter values associated with elastic and inelastic deformation, ϕe
is the recoverable porosity when the load is removed, ϕp is the unrecoverable or “unloaded” porosity,
Sew is the recoverable saturation, Spw is the unrecoverable saturation, and Xe, Xp are the hydrostatic
compressive strengths associated with elastic and inelastic deformations, respectively.

2.7.1 Elasticity model

¿eArenamodels allows for the possibility that during elastic deformation the elastic behavior of the
soil can be coupled to the plastic behavior. ¿is seems to be an essential feature to include because,
for example, crushing out pore space must a�ect not only strength but also sti�ness. Recognizing that
stress depends not only on elastic strain but also on evolving internal variables, the rate equation for
elastic behavior can be written as (see Brannon, (2007))

σ̇ = Ce
∶ de − λ̇Z (100)

where the purely elastic sti�ness tensor, Ce(σ , pwe , Be, ϕe, Sew , Xe), is de�ned as

Ce
∶ de =

∂σ
∂εe

∶ de +
∂σ
∂pwe

ṗwe +
∂σ
∂Be

Ḃe +
∂σ
∂ϕe

ϕ̇e +
∂σ
∂Sew

Ṡew +
∂σ
∂Xe Ẋ

e

= [
∂σe�
∂εe

+
∂σ
∂pwe

⊗
∂pwe
∂εe

+
∂σ
∂Be

⊗
∂Be

∂εe
+
∂σ
∂ϕe

⊗
∂ϕe

∂εe
+
∂σ
∂Sew

⊗
∂Sew
∂εe

+
∂σ
∂Xe ⊗

∂Xe

∂εe
] ∶ de

(101)

or

Ce
=
∂σ
∂εe

+
∂σ
∂pwe

⊗
∂pwe
∂εe

+
∂σ
∂Be

⊗
∂Be

∂εe
+
∂σ
∂ϕe

⊗
∂ϕe

∂εe
+
∂σ
∂Sew

⊗
∂Sew
∂εe

+
∂σ
∂Xe ⊗

∂Xe

∂εe
. (102)

where εe is the elastic part of the strain that is energy conjugate to the unrotatedCauchy stress (see Nor-
ris, (2008) for possible strain measures). In the plastic coupling term in (100), λ̇ is the plastic �ow rate
parameter (equal to the magnitude of the plastic strain rate when using normalized yield normal and
�ow tensors as advocated in Brannon and Leelavanichkul, (2010)), and Z(σ , pwp , Bp, ϕp, S

p
w , Xp; εp) is

a rank-2 elastic-plastic coupling tensor given by

Z = hp
∂σ
∂pwp

+ hB
∂σ
∂Bp

+ hϕ
∂σ
∂ϕp

+ hSw
∂σ
∂Spw

+ hX
∂σ
∂Xp (103)

where
ṗwp = λ̇hp , Ḃp = λ̇hB , ϕ̇p = λ̇hϕ , Ṡ

p
w = λ̇hSw , Ẋp = λ̇hX . (104)

8As this theory is described in the context of an additive decomposition of strain rates, it carries with it an implicit
potential limitation that reference stretch directions remain approximately stationary or that, by the time such rotations
become large, the stress in the material is negligible due to disaggregation. ¿ese assumptions are quite reasonable in high-
rate buried-explosive applications for which the model was designed. In this context, the unrotated symmetric part of the
velocity gradient dequals the rate of reference Hencky strain ε̇ and is conjugate to the unrotated Cauchy stress σ . Because
multiplicative decompositions of the deformation gradient should (for initially isotropic media) become additive in these
conditions, any claim of their superiority must be backed with (1) demonstrated equivalence to simpler additive models if
stretch directions are stationary and (2) compellingly better agreement with validation data when stretch directions rotate.
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¿e “hardening” functions hp, hb, hϕ, hSw , and hX require additional constitutive assumptions. For
example, as explained in Brannon, (2007), a theoretical form for hϕ can be derived by approximating
the solid matrix to be plastically incompressible. As explained in Brannon, Fuller, et al., (2015), the hX
function can be determined directly from the so-called “crush curve” for pressure vs. volumetric strain
in hydrostatic loading.9 During purely elastic loading, the coupling term is zero because λ̇ is zero.

To simplify our calculations and the parameter calibration process, we assume that

∂σ
∂εe

= Ce
σ = (K̂ − 2

3 Ĝ) I ⊗ I + 2Ĝ I(s) (105)

where K̂ and Ĝ are respectively the tangent bulk and shear moduli of the mixture (both of which are
generally functions of σ , pw , B, ϕ, and Sw), I is rank-2 identity tensor, and I(s) is the minor-symmetric
part of the rank-4 identity tensor. ¿e bulk and shear moduli of the mixture are determined using the
dry moduli as described below. As detailed in Fuller and Brannon, (2012), apparent pressure depen-
dence of the shear modulus would be better justi�ed by using a hyperelastic formulation (c.f.Borja,
(2006)).

Bulk modulus - Dry soil: Data for dry sands can be �t reasonably well to the form10

pe�
Ks(pe�)

= b0 εev +
b1(εev)b4

b2(εev)b4 + b3
(106)

Here, b0 > 0, b1 > 0, b2 > 0, b3 > 0, and b4 > 1 are �tting parameters, εev is the volumetric elastic strain
in the matrix, Ks is the bulk modulus of the solid grain material, and

pe� ∶= − 1
3 tr(σe�) = −

1
3 tr(σ − α) . (107)

¿e bulk modulus of the solid grains is assumed to be given by

Ks(ps) = Ks0 + ns (ps − ps0) (108)

where Ks0 and ns are material properties, and ps0 is a reference pressure.

¿e tangent bulk modulus of the dry soil is de�ned as

Kd(pe�) ∶=
dpe�
dεev

. (109)

¿en, using (106),

Kd(pe�) =
[Ks(pe�)]2

[Ks(pe�) − nspe�]

⎡
⎢
⎢
⎢
⎢
⎣

b0 +
b1b3b4(εev)b4−1

[b2(εev)b4 + b3]
2

⎤
⎥
⎥
⎥
⎥
⎦

. (110)

To express (110) in closed-form in terms of p we have to eliminate εev . But a closed form expression for
the volumetric elastic strain cannot be derived from the pressure model. So we �nd an approximate
form of (106) by assuming b0 → 0, which is valid at moderate to large strains. ¿en, from (106) with
b0 = 0, we have

εev ≈ [
b3pe�

b1Ks(pe�) − b2pe�
]

1/b4
. (111)

9For high-rate applications, a crush curve that is measured in quasistatic conditions must be converted to a form that
removes low-rate creep (and other e�ects from heat transfer, �uid seepage, etc. ), that would not occur in dynamic load-
ing. ¿e constitutive model must be furthermore supplemented with viscoplasticity parameters needed to predict apparent
strengthening (beyond hardening) that does pertain to slow loading.

10Even if the numerical model is revised to use tabular data for this type of function, this approximate form can potentially
serve as an interpolation function that is more accurate than a piecewise-linear �t – especially for low-data situations and for
extrapolation beyond available data.
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Shear modulus - Dry soil: A non-constant shear modulus may be needed to �t experimental data
and to prevent negative values of Poisson’s ratio in some simulations. In those situations, a variable
Poisson’s ratio (ν) is de�ned as

ν(pe�) = ν1 + ν2 exp [−
Kd(pe�)
Ks(pe�)

] (112)

where ν1 and ν2 are material parameters. ¿e shear modulus is computed using the Poisson’s ratio and
the dry bulk modulus:

Gd(pe�) =
3Kd(pe�)(1 − 2ν)

2(1 + ν)
. (113)

Elastic moduli - Partially saturated soil: Saturated and dry soils are assumed to have the same
shear modulus:

Ĝ(pe�, pw , ε
p
v , ϕ, Sw) = Gd(pe�) . (114)

¿e tangent bulk modulus, K̂, of the partially saturated soil is computed using a variant of the Biot-
Gassman model for fully saturated rocks that is valid for long wavelength displacements (Berryman
andMilton, 1991; Berryman, 2006; Dvorkin et al., 1999). ¿e Biot-Gassmanmodel is based on the Biot
equations of poroelasticity and assumes small strains and long wavelength disturbances relative to the
pore size. In this model, the average stress tensor (σ) of the saturated porous medium is given by

σ = [(H − 2G)tr(ε) − Cζ] I + 2Gε (115)

and the �uid pressure (pw) is
pw = Mζ − Ctr(ε) (116)

where G is the shear modulus, ε is the strain in the mixture, C is the Biot cross coe�cient, and

C =
B

B
Ks + ϕ ( 1

Kw −
1
Ks )

, H = Kd + BC +
4
3
G , ζ = ϕ[tr(ε) − εwv ] (117)

where
M =

C
B
, B ∶= 1 −

Kd
Ks

(118)

and Kd is the bulk modulus of the drained porous frame, Ks is the bulk modulus of the solid grains, ϕ
is the porosity, and εwv is the volumetric strain in the �uid.

Using these, the fully saturated bulk modulus for a soil (with a single material in the solid matrix) is

K̂ = Kd + B2D (119)

where
1
D

=
B(1 − B)
Kd

+ ϕ (
1
Kw

−
1
Ks

) . (120)

At partial saturation, we compute the pore �uid bulk modulus using a harmonic mean (lower bound)
on the air and water bulk moduli (Ka ,Kw):

1
K f (pw)

=
Sw

Kw(pw)
+

1 − Sw
Ka(pw)

(121)

and get the expression for the bulk modulus that is used by the partially saturated Arenamodel:

K̂(pe�, pw , ε
p
v , ϕ, Sw) = Kd(pe�) +

B2(pe�)
B(pe�)
Ks(pe�)

+ ϕ (
1

K f (pw)
−

1
Ks(pe�)

)

(122)
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where Kd is the bulk modulus of the drained soil, K f is the bulk modulus of the pore �uid, and Ks is
the bulk modulus of the solid grains. For the situation where B ≈ 1,

K̂(pe�, pw , ε
p
v , ϕ, Sw) = Kd(pe�) +

K f (pw)
ϕ

. (123)

Bulk modulus model: Solid matrix material ¿e pressure ps in the solid matrix is expressed as

ps = Ksεsv , where εsv ∶= ln(
Vs0
Vs

) (124)

Here, Ks is the solid bulk modulus, εsv is the volumetric strain, Vs0 is the initial volume of the solid, and
Vs is the current volume of the solid. ¿e solid bulkmodulus is assumed tomodeled by theMurnaghan
equation:

Ks(ps) = Ks0 + ns (ps − ps0) (125)

where Ks0 and ns are material properties, and ps0 is a reference pressure.

Bulk modulus model: Pore water ¿e equation of state for the pore water pressure pw is

pw = Kwεwv + p0 , where εwv ∶= ln(
Vw0
Vw

) (126)

Here, Kw is the water bulk modulus, Vw0 is the initial volume of water, Vw is the current volume of
water, p0 is the initial water pressure, and εwv is the volumetric strain in thewater. We use the isothermal
Murnaghan bulk modulus model for water:

Kw(pw) = Kw0 + nw (pw − pw0) (127)

where Kw0 and nw are material properties, and pw0 is a reference pressure.

Bulk modulus model: Pore air ¿e isentropic ideal gas equation of state for the pore air is

pa = pr [exp(γ εav) − 1] , where εav ∶= ln(
Va0
Va

) (128)

Here, a subscript “a” �ags quantities for the air model analogous to those for the water model in Eq.
(126), pr is a reference pressure (101325 Pa) and γ = 1.4. ¿is model provides dependence of air’s bulk
modulus of air that is needed to ensure reasonable trends in model predictions in the limit as porosity
is crushed out:11 (Ka) on the volumetric strain:

Ka =
dpa
dεav

= γ pr exp(γ εav) = γ (pa + pr) . (129)

2.7.2 Porosity, saturation, and volumetric strain

¿e saturation is de�ned as

Sw =
vw

va + vw
= 1 − Sa Ô⇒

va

vw
=
1 − Sw
Sw

(130)

where vα is the volume occupied by phase α in the pore volume. Also, the porosity is de�ned as

ϕ =
va + vw

vs + va + vw
Ô⇒ 1 − ϕ =

vs

vs + va + vw
. (131)

11Recognizing that an ideal gas approximation is inappropriate in highly compressed states, this equation can be adopted
as phenomenological with γ reinterpreted as an adjustable parameter.
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¿e volumetric strain in each phase is de�ned as

εαv = ln(
vα

vα0
) where α = {s,w , a} (132)

where vα0 is the initial volume of phase α. ¿e total volumetric strain of the mixture is

exp(εv) = (1 − S0)ϕ0 exp(εav) + S0ϕ0 exp(ε
w
v ) + (1 − ϕ0) exp(εsv) (133)

where S0 is the initial saturation and ϕ0 is the initial porosity. With the assumption that that the total
volumetric strain can be additively decomposed into elastic and plastic parts, we have

εv = εev + ε
p
v . (134)

¿erefore,
exp(εpv) = (1 − S0)ϕ0

exp(εav)
exp(εev)

+ S0ϕ0
exp(εwv )
exp(εev)

+ (1 − ϕ0)
exp(εsv)
exp(εev)

. (135)

Saturation equation ¿e saturation equation when pw = pa is

Sw(pw) =
C

1 − S0 + C
, C ∶= S0 exp [εav(pw) − εwv (pw)] . (136)

For a soil that has undergone compressive loading leading to plastic volumetric deformation, the con-
tinuity of the phases implies that, a er unloading, the saturation is di�erent from the initial value of
saturation even when the hydraulic conductivity of the material is zero. Equation (136) then implies
that the residual saturation is a function non-zero strains in the water and air phases. Because the
air and the water are assumed to be perfectly elastic, the saturation is a function of a residual pressure
which can be thought of as a “plastic” pore-pressure which is a function of the plastic volumetric strain.

One way of de�ning the “plastic” pore pressure can be that the unrecoverable part of the saturation is

Spw(pwp ) =
Cp

1 − S0 + Cp
, Cp ∶= S0 exp [εav(pwp ) − εwv (pwp )] . (137)

Porosity equation Recall that the porosity is given by

1 − ϕ =
vs

v
Ô⇒

1 − ϕ
1 − ϕ0

=
vs

vs0

v0
v

= exp(εv − εsv) =
exp(εsv)
exp(εv)

. (138)

If we know the total volumetric strain and the volumetric strains in the �uids, we can use equation (133)
to write the above as

1 − ϕ =
exp(εv) − (1 − S0)ϕ0 exp(εav) − S0ϕ0 exp(εwv )

exp(εv)
(139)

When the pore water and air pressure are equal to each other, and also equal to the intrinsic pressure
in the solid grains), the porosity equation (139) can be expressed as

ϕ(pw) = (1 − S0)ϕ0 exp [εv(pw) − εav(pw)] + S0ϕ0 exp [εv(pw) − εwv (pw)] (140)

¿e primary cause of the residual pressure in a soil that has undergone volumetric plastic deformation
is the irreversible change in porosity. Let the unrecoverable part of the porosity (called the “unloaded”
porosity by Brannon, (2007)) be ϕp. We could de�ne the “unloaded” or “plastic” porosity as

ϕp(pwp ) = (1 − S0)ϕ0 exp [εv(pwp ) − εav(pwp )] + S0ϕ0 exp [εv(pwp ) − εwv (pwp )] (141)
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2.7.3 Rate-independent plasticity

For rate-independent plastic deformations we use the canonical phenomenologicalmodel that consists
of a yield function (in our case, a limit surface), a �ow rule and the associated consistency condition,
and models of internal variable evolution.

Arena yield function/limit surface If the volumetric and deviatoric components of the total stress
are

p ∶= − 1
3 tr(σ) and s ∶= σ + pI (142)

we can de�ne
pe� ∶= − 1

3 tr(σe�) = p − Bpw (143)

and
Je�2 ∶= 1

2 se� ∶ se� where se� ∶= σe� + pe�I = σ + pI = s . (144)

¿en the Arena yield function can be expressed as

f (σ , B, pw , X) = β
√
Je�2 − F f (pe�) Fc(pe�, X) (145)

where
F f (pe�) = a1 − a3 exp[−3a2pe�] + 3a4pe� (146)

and

Fc(pe�, X) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 for 3pe� ≤ κ
¿
Á
ÁÀ1 − (

3pe� − κ
Xe� − κ

)

2

for 3pe� > κ .
(147)

Here ai are material parameters, Xe�(εp, B, pw) = X − 3Bpw is the shi ed form of the apparent hydro-
static compressive strength (X/3) of the partially saturated material, and κ is the branch point at which
the cap function Fc starts decreasing until it reaches the hydrostatic strength point (X):

κ = 3ppeake� − (3ppeake� − Xe�)Rc (148)

where ppeake� is the maximum hydrostatic tensile stress that the material can support and Rc is a cap
ratio. Non-associativity is modeled using the parameter β that modi�es

√
Je�2 .

Yield condition, flow rule, and consistency For continued plastic loading on the yield surface,
the yield condition is

f (σ , pwe , pwp , B
e, Bp, ϕe, ϕp, Sew , S

p
w , Xe, Xp; εp) = 0 (149)

where f (. . .) is the yield function. ¿e plastic �ow rule is

ε̇p = dp = λ̇M (150)

whereM is the unit tensor in the direction of the plastic rate of deformation. ¿e consistency condition
implies that for continued plastic loading

ḟ (. . . ) = 0 . (151)

Assuming appropriate smoothness of f (. . . ), we have

∂ f
∂σ

∶ σ̇ +
∂ f
∂pwe

ṗwe +
∂ f
∂Be

Ḃe +
∂ f
∂ϕe

ϕ̇e +
∂ f
∂Sew

Ṡew +
∂ f
∂Xe Ẋ

e+

λ̇
⎡
⎢
⎢
⎢
⎣
hp

∂ f
∂pwp

+ hB
∂ f
∂Bp

+ hϕ
∂ f
∂ϕp

+ hSw
∂ f
∂Spw

+ hX
∂ f
∂Xp

⎤
⎥
⎥
⎥
⎦
= 0 .

(152)
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¿e normal to the yield surface is

N =
∂ f
∂σ

+
∂ f
∂pwe

∂pwe
∂σ

+
∂ f
∂Be

∂Be

∂σ
+
∂ f
∂ϕe

∂ϕe

∂σ
+
∂ f
∂Sew

∂Sew
∂σ

+
∂ f
∂Xe

∂Xe

∂σ
(153)

and the ensemble hardening modulus is

H = −
⎡
⎢
⎢
⎢
⎣
hp

∂ f
∂pwp

+ hB
∂ f
∂Bp

+ hϕ
∂ f
∂ϕp

+ hSw
∂ f
∂Spw

+ hX
∂ f
∂Xp

⎤
⎥
⎥
⎥
⎦
/∥N∥ . (154)

¿e �nd the plastic �ow rate parameter, we write the equation for coupled elasticity as

σ̇ = Ce
∶ (ds − dp) − λ̇Z . (155)

A er substituting the �ow rule into the above relation and de�ning

σ̇trial ∶= Ce
∶ ds and P ∶= Ce

∶ M + Z . (156)

we get

λ̇ =
N̂ ∶ σ̇trial
N̂ ∶ P +H

. (157)

¿erefore,

σ̇ = [I(s) −
P ⊗ N̂

N̂ ∶ P +H
] ∶ σ̇trial =∶ (Cp

∶ Ce
) ∶ ds = Cpe

∶ ds . (158)

¿e consistency condition equation (152) can be simpli�ed to

N̂ ∶ σ̇ = λ̇H where N̂ = N/∥N∥ . (159)

Internal variable evolution functions If we assume that

pwp ≡ pwp (ε
p
) , Bp ≡ Bp(εp) , ϕp ≡ ϕp(εp) , Spw ≡ Spw(εp) , Xp

≡ Xp
(εp)

we can write

ṗwp =
dpwp
dεp

∶ d p , Ḃp =
dBp

dεp
∶ d p , ϕ̇p =

dϕp

dεp
∶ d p

Ṡpw =
dSpw
dεp

∶ d p , Ẋp =
dXp

dεp
∶ d p .

(160)

Using the �ow rule (150), we have

ṗwp = λ̇
dpwp
dεp

∶ M , Ḃp = λ̇
dBp

dεp
∶ M , ϕ̇p = λ̇

dϕp

dεp
∶ M

Ṡpw = λ̇
dSpw
dεp

∶ M , Ẋp = λ̇
dXp

dεp
∶ M .

(161)

Comparing the above with equations (104), we have

hp =
dpwp
dεp

∶ M , hB =
dBp

dεp
∶ M , hϕ =

dϕp

dεp
∶ M

hSw =
dSpw
dεp

∶ M , hX =
dXp

dεp
∶ M .

(162)

Noting that the derivative of the trace of a rank-2 tensor with respect to the tensor is equal to the rank-2
identity tensor, we have

hp =
dpwp
dεpv

tr(M) , hB =
dBp

dεpv
tr(M) , hϕ =

dϕp

dεpv
tr(M)

hSw =
dSpw
dεpv

tr(M) , hX =
dXp

dεpv
tr(M) .

(163)
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2.7.4 Evolution of internal variables

¿e internal variables that evolve include the hydrostatic compressive strength, the pore pressure, the
saturation, the porosity, and potentially the Biot ratio.

Hydrostatic compressive strength evolution ¿edrainedhydrostatic compressive strength (Xd/3)
is found from the empirical drained material crush curve using

Xd(ε
p
v , ϕ0) − p0 = p1

⎡
⎢
⎢
⎢
⎢
⎣

1 − exp(−p3)

1 − exp(−p3 + ε
p
v )

− 1
⎤
⎥
⎥
⎥
⎥
⎦

1/p2

, p3 ∶= − ln(1 − ϕ0) (164)

where εpv = −tr(εp) is the volumetric plastic strain, Xd/3 is the drainedhydrostatic compressive strength,
p0, p1, p2, p3 are model parameters, and ϕ0 is the initial porosity. ¿e derivative of Xd is

dXd

dεpv
=
p1[1 − exp(−p3)] exp(−p3 + ε

p
v )

p2[1 − exp(−p3 + ε
p
v )]2

⎡
⎢
⎢
⎢
⎢
⎣

1 − exp(−p3)

1 − exp(−p3 + ε
p
v )

− 1
⎤
⎥
⎥
⎥
⎥
⎦

1/p2−1

. (165)

¿e e�ective hydrostatic compressive strength for a partially saturated material is expected to be dif-
ferent from the drained value (we do not have any direct experimental data which supports that con-
jecture). We follow the approach used by Grujicic (M. Grujicic et al., 2009) and assume a model of the
form

Xe�(ε
p
v , ϕ0, Sw) − p0 = [(1 − Sw) + psat1 Sw] (Xd − p0) (166)

where X = Xe� + 3Bpw and p1 × psat1 is the value of p1 in a fully saturated material.

¿e rate form of the hydrostatic compressive strength equation (166) is

Ẋ = Ẋe� + 3(Ḃpw + Bṗw) = Ẋe + Ẋe (167)

Details of the expressions are shown below

Ẋ = Ẋe� + 3(Ḃpw + Bṗw)

= [(1 − Sw) + psat1 Sw] Ẋd + (psat1 − 1)ṠwXd + 3(Ḃpw + Bṗw)

= [(1 − Sw) + psat1 Sw]
dXd

dεpv
tr(dp) + (psat1 − 1) (Ṡew + Ṡ

p
w)Xd + 3[Ḃpw + B(ṗwp + ṗwe )]

= [(1 − Sw) + psat1 Sw]
dXd

dεpv
[λ̇tr(M)] + [

Xd(psat1 − 1)(1 − S0)
B(1 − S0 + C)2

dC
dpw

] [tr(de) + λ̇tr(M)]+

3 [
pw

BKs
(
Kd
Ks

dKd
dpw

−
dKs
dpw

) [tr(de) + λ̇tr(M)] +
B
B
tr(de) +

λ̇B
B
tr(M)]

= [
Xd(psat1 − 1)(1 − S0)
B(1 − S0 + C)2

dC
dpw

+
3pw

BKs
(
Kd
Ks

dKd
dpw

−
dKs
dpw

) +
3B
B

] tr(de)+

λ̇
⎡
⎢
⎢
⎢
⎣
[(1 − Sw) + psat1 Sw]

dXd

dεpv
+
Xd(psat1 − 1)(1 − S0)
B(1 − S0 + C)2

dC
dpw

+
3pw

BKs
(
Kd
Ks

dKd
dpw

−
dKs
dpw

) +
3B
B

⎤
⎥
⎥
⎥
⎦
tr(M) .

(168)
We could de�ne “elastic” and “plastic” parts such that Ẋ = Ẋe+ Ẋp where, we could de�ne “elastic” and
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“plastic” parts such that

Ẋe ∶= [
Xd(psat1 − 1)(1 − S0)
B(1 − S0 + C)2

dC
dpw

+
3pw

BKs
(
Kd
Ks

dKd
dpw

−
dKs
dpw

) +
3B
B

] tr(de)

Ẋp ∶= λ̇
⎡
⎢
⎢
⎢
⎣
[(1 − Sw) + psat1 Sw]

dXd

dεpv
+

Xd(psat1 − 1)(1 − S0)
B(1 − S0 + C)2

dC
dpw

+
3pw

BKs
(
Kd
Ks

dKd
dpw

−
dKs
dpw

) +
3B
B

] tr(M) .

(169)

Pore pressure evolution As discussed earlier, an expression for the evolution of the pore pressure
can be found from the mass balance equations:

ṗw =
1
B
tr(ds) (170)

whereB ≡ B(pw , B, ϕ, Sw) is given in equation (92). If we express the above equation in terms of elastic
and plastic components, we have

ṗwe + ṗwp =
1
B

[tr(de) + tr(dp)] . (171)

We de�ne the “elastic” and “plastic” pore pressure evolution as

ṗwe ∶=
1
B
tr(de) and ṗwp ∶=

1
B
tr(dp) =

λ̇
B
tr(M) . (172)

Saturation evolution From equation (136) we have

Ṡw =
(1 − S0)Ċ

(1 − S0 + C)2
=

1 − S0
(1 − S0 + C)2

dC
dpw

ṗw

=
1 − S0

(1 − S0 + C)2
dC
dpw

(ṗwe +
λ̇
B
tr(M)) .

(173)

We can express the above as Ṡw = Ṡew + Ṡ
p
w , where the evolution equations for the “elastic” and “plastic”

parts of the saturation are

Ṡew ∶= [
1 − S0

B(1 − S0 + C)2
dC
dpw

] tr(de)

Ṡpw ∶= λ̇ [
1 − S0

B(1 − S0 + C)2
dC
dpw

] tr(M) .
(174)

Porosity evolution If we take the material time derivative of equation (140), we get

ϕ̇ = (1 − S0)ϕ0 exp (εv − εav)
⎛

⎝
ε̇v −

dεav
dpw

ṗw
⎞

⎠
+ S0ϕ0 exp (εv − εwv )

⎛

⎝
ε̇v −

dεwv
dpw

ṗw
⎞

⎠

or
ϕ̇ = −[(1 − S0)ϕ0 exp (εv − εav)(1 +

1
KaB

)+

S0ϕ0 exp (εv − εwv )(1 +
1

KwB
)] tr(ds) .

(175)
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We can express the above as ϕ̇ = ϕ̇e + ϕ̇p, where

ϕ̇e = −[(1 − S0)ϕ0 exp (εv − εav)(1 +
1

KaB
)+

S0ϕ0 exp (εv − εwv )(1 +
1

KwB
)] tr(de)

ϕ̇p = −λ̇ [(1 − S0)ϕ0 exp (εv − εav)(1 +
1

KaB
)+

S0ϕ0 exp (εv − εwv )(1 +
1

KwB
)] tr(M) .

(176)

Biot ratio evolution If we assume that ps = pw = pa, the material time derivative of the Biot
ratio (89) is

Ḃ ∶= −
1
Ks

(
˙̃Ks −

Kd
Ks

K̇s) = −
1
Ks

(
dKd
dpw

−
Kd
Ks

dKs
dpw

) ṗw . (177)

We can de�ne “elastic” and “plastic” parts of the rate of the Biot ratio as Ḃ = Ḃe + Ḃp where

Ḃe ∶=
1
BKs

(
Kd
Ks

dKd
dpw

−
dKs
dpw

) tr(de)

Ḃp ∶= λ̇ [
1
BKs

(
Kd
Ks

dKd
dpw

−
dKs
dpw

)] tr(M) .
(178)

2.7.5 Density-dependence model

Unlike its predecessor models, Arena accounts for the e�ect of sample preparation. Mechanical prop-
erties of sands and soils depend strongly on the initial density. Two otherwise identical sands of the
same composition and grain morphology will, for example, exhibit signi�cantly di�erent behavior if
one of them is shaken to compact the grains prior to subjecting it to a load.

Suppose that a sample’s initial porosity ϕ0 di�ers from the initial porosity ϕref of the reference material
that was used to calibrate the bulk modulus parameters and the crush curve. Following Pabst and
Gregorova (Pabst and Gregorová, 2015), the need to re-calibrate elastic properties for each di�erent
initial porosity is avoided by using a modulus scaling factor Kfac

Kfac = exp [−
ϕ0

1 − ϕ0
+

ϕref
1 − ϕref

] (179)

such that the bulk and shear moduli of the test material is

Kd ← KfacKd , and G ← KfacG . (180)

¿ese scaled moduli are used in the partially saturated model.

¿e e�ect of sample compaction on in hydrostatic strength is modeled phenomenologically and cal-
ibrated using high density dry Mason sand SHPB tests. Speci�cally, examination of data for high-
density dry Mason sand used in SHPB tests shows that the crush curve for the high-density sand
is of the same shape as the low density sand except scaled in the pressure axis. For the crush for-
mula adopted from Brannon, Fuller, et al., (2015), this scaling can be achieved by simply replacing the
reference-density �tting parameter p1 as follows:

p1 ← p1 exp [ρfacKfac(Kfac − 1)] (181)

where ρfac is calibrated using high density uniaxial strain compression data and has a value between 1
and 10.
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2.7.6 Damage model

Arena uses the Kayenta damage model (Brannon, Fuller, et al., 2015) to model the collapse of the
limit surface with increasing damage. A scalar parameter D ∈ [0, 1] is used to modify the parameters
that de�ne the limit surface. ¿ese parameters are Ipeak1 , f slope,

√
Jcoh2 , and yslope where

Ipeak1 ← α1
f slope ← α2
a4 ← α3 = yslope

a1 ← α4 =
√
Jcoh2

a2 ←
α2 − α3
α4 − α1α3

a3 ← (α4 − α1α3) exp(−a2α1) .

(182)

Let the input undamaged values of these parameters be

Ipeak,intact1 , f slope,intact ,
√

Jcoh,intact2 , yslope,intact . (183)

Also, let the input fully damaged values of the four parameters be

Ipeak,failed1 , f slope,failed ,
√

Jcoh,failed2 , yslope,failed . (184)

¿en the current values of the four parameters are computed using linear interpolation between the
intact and failed values:

Ipeak1 = (1 − D)Ipeak,intact1 + DIpeak,failed1

f slope = (1 − D) f slope,intact + D f slope,failed
√
Jcoh2 = (1 − D)

√

Jcoh,intact2 + D
√

Jcoh,failed2

yslope = (1 − D)yslope,intact + Dyslope,intact .

(185)

Also, to incorporate variability and size e�ects during the failure process, the parameters are scaled by
the material point volume using a relation of the form

Ipeak1 = Ipeak,intact1 [
vexpt lnR

velem ln(1/2)
]

1/m

, f slope = f slope,intact [
vexpt lnR

velem ln(1/2)
]

1/m

√
Jcoh2 =

√

Jcoh,intact2 [
vexpt lnR

velem ln(1/2)
]

1/m

, yslope = yslope,intact [
vexpt lnR

velem ln(1/2)
]

1/m (186)

where {Ipeak1 , f slope,
√
Jcoh2 , yslope}intact are mean values from experiments performed on samples that

have volume vexpt, velem is the volume of the material point, R ∼ U[0, 1] is a uniformly distributed
random number, and m is a Weibull modulus.

At this stage we need a model for the evolution of D. Kayenta uses a time-to-failure model that de-
pends on two new input parameters: the time to failure (tfail) and the failure speed ( f speed), and de�nes
a “coherence” parameter (C) as

C ∶= 1 − D =
exp [− f speed (1 − tgrow

tfail )]

1 + exp [− f speed (1 − tgrow
tfail )]

(187)

where tgrow is state variable that increases only when the stress state is on the limit surface. ¿e value
of C is never allowed to increase.
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2.7.7 Implementing parameter variability

A Weibull distribution is used for each parameter that is varied in the model. One can either use a
mean based or a median based approach. In the Arenamodel we use the median-based approach as
discussed in Appendix C. Note that the form used in our model is

y = [
vexpt
velem

]
1/a

y [
ln x

ln(1/2)
]

1/a

. (188)

For our purposes, if we use the C++11 Weibull distribution generator, we can incorporate the volume
scaling by just multiplying the scaling factor to the number generated, i.e.,

y = [
vexpt
velem

]
1/m

We(y, a, b, R) (189)

where R is the uniformly distributed pseudo-random number in [0, 1] generated by the Mersenne
twister algorithm.

2.7.8 Simplification of rate-independent model

Our implementation of the Arena partially saturated soil model uses Homel’s “consistency bisection”
algorithm (Homel, Guilkey, and Brannon, 2015) to �nd the plastic strain direction and to update the
internal state variables. A closest-point return algorithm in transformed stress space is used to project
the trial stress state on to the yield surface. Because of the nonlinearities in the material models, it is
easier to solve the problem by dividing the strain increment into substeps.

Recall from equation (156) and (102) that

σ̇trial ∶= Ce
∶ ds (190)

where

Ce
=
∂σ
∂εe

+
∂σ
∂pwe

⊗
∂pwe
∂εe

+
∂σ
∂Be

⊗
∂Be

∂εe
+
∂σ
∂ϕe

⊗
∂ϕe

∂εe
+
∂σ
∂Sew

⊗
∂Sew
∂εe

+
∂σ
∂Xe ⊗

∂Xe

∂εe
. (191)

In the Arenamodel we assume an isotropic elastic tangent modulus

∂σ
∂εe

= Ce
σ = (K̂ − 2

3 Ĝ) I ⊗ I + 2Ĝ I(s) (192)

and also neglect all other quantities in the expression for Ce, i.e., Ce = Ce
σ .

¿e update algorithm uses the standard predictor-corrector approach of hypoelastic-plasticity where
a trial predictor stress is computed �rst and then a corrector return algorithm is used to locate the
position of the correct stress on the yield surface. ¿is approach requires that the trial stress (σtrial) is
computed using the relation

σtrial = σn +Ce
∶ (ds ∆t) . (193)

A er the trial stress is computed, the timestep is subdivided into substeps based on the characteristic
dimension of the yield surface relative to the magnitude of the trial stress increment (σtrial − σn). ¿e
substep size is then recomputed by comparing the elastic bulk modulus K̂(σtrial, . . . ) with that at σn
to make sure that the nonlinear elastic solution is accurate.

Recall that the parameters of the yield function, not all of which are independent, are a1, a2, a3, a4, Rc ,
β, Ipeak1 = 3ppeake� . ¿e code uses the parameters α1 ∶= PEAKI1, α2 ∶= FSLOPE, α3 ∶= YSLOPE, and α4 ∶=
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STREN in some places. ¿e relationship between these sets of parameters is:

Ipeak1 ← α1 = PEAKI1

a1 ← α4 = STREN

a2 ←
α2 − α3
α4 − α1α3

a3 ← (α4 − α1α3) exp(−a2α1)
a4 ← α3 = YSLOPE .

(194)

¿e trial stress is computed on the basis of the total stress rather than the e�ective stress. Recall that
the trial stress (σtrial) is computed using the relation

σtrial = σn +Ce
∶ (ds ∆t) =∶ σn +Ce

∶ ∆ε (195)

where
Ce

= (K̂ − 2
3 Ĝ) I ⊗ I + 2Ĝ I(s) . (196)

¿erefore
σtrial = σn + Ktr(∆ε)I + 2G[∆ε − 1

3 tr(∆ε)I] . (197)

To allow for nonlinear parameter variations, the algorithm breaks a trial loading step into subcycles.
¿e algorithm below, determines the number of substeps based on the magnitude of the trial stress
increment relative to the characteristic dimensions of the yield surface. Another comparison uses the
value of the pressure dependent elastic properties at σnqs and σtrial and adjusts the number of substeps if
there is a large change in elastic moduli. ¿is ensures an accurate solution for nonlinear elasticity even
with fully elastic loading.

¿e number of substeps based on the bulk modulus is given by

nbulk = ⌈
∥Kn − Ktrial∥

Kn ⌉ . (198)

¿e number of substeps based on the size of the yield surface is computed as

nyield = ⌈
є∥σtrial − σnqs∥

ℓyield
⌉ (199)

where є is a constant, and the characteristic length of the yield surface is

ℓyield = min
⎛

⎝
a1,

Ipeak1 − Xn

2
⎞

⎠
. (200)

¿e number of substeps used in the actual calculation is

nsub = max(nbulk, nyield) . (201)

¿e nonhardening return algorithm uses a transformed space (see Homel, Guilkey, and Brannon,
(2015)) where the computation is carried out in special Lode coordinates (ze�, r′) where

ze� ∶=
tr(σ − α)

√3
and r′ = βr

¿
Á
ÁÀ 3K

2G
, r ∶=

√
2J2 . (202)

If the �ow rule is non-associative, the yield surface parameter β ≠ 1.
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¿e closest point from the trial stress state to the yield surface in this transformed space, (zclosee� , r′close),
is computed using a geometric algorithm. A er the closest point has been found, the coordinates of
the closest point are transformed back to the (z, r) coordinates and the stress state is reconstructed
using

σ�xed = zclose
I

∥I∥
+ rclose

strial

∥strial∥
. (203)

Let the stress at the beginning of the load step be σ k and let the trial stress be σtrial. Assume the yield
surface is �xed and let the correct projection of the trial stress on to the �xed yield surface be σ k+1�xed.

¿e increment of stress for the load step (∆σ�xed) is related to the elastic strain increment (∆εe�xed) by

∆σ�xed = σ k+1�xed − σ
k
= Ce

�xed ∶ ∆ε
e
�xed (204)

where Ce
�xed is a constant elastic modulus tensor. ¿e elastic modulus tensor can be assumed to be an

average value of the nonlinear tangent modulus for the load step. If we know Ce
�xed, we can compute

the elastic strain increment using

∆εe�xed = (Ce
�xed)

−1
∶ ∆σ�xed . (205)

For the situation where Ce is given by equation (196), we have

(Ce
)
−1
= (

1
9Kk −

1
6Gk ) I ⊗ I +

1
2Gk I

(s) . (206)

¿erefore,
∆εe�xed = (

1
9Kk −

1
6Gk ) tr(∆σ�xed)I +

1
2Gk ∆σ�xed

=
1

3Kk [
1
3
tr(∆σ�xed)I] +

1
2Gk [∆σ�xed −

1
3
tr(∆σ�xed)I]

(207)

or
∆εe�xed =

1
3Kk ∆σ

iso
�xed +

1
2Gk ∆σ

dev
�xed . (208)

For a strain driven update algorithm, the total strain increment ∆ε is known. Assuming that the total
strain increment can be additively decomposed into an elastic and a plastic part, we can �nd the plastic
strain increment (∆εp�xed) using

∆εp�xed = ∆ε − ∆ε
e
�xed . (209)

Now, if we allow the yield surface to harden, the distance between the trial stress point and its projection
on to the yield surface decreases compared to that for a �xed yield surface. If ∆εp is the plastic strain
increment for a hardening yield surface, we have

∆εp < ∆εp�xed (210)

where the inequality can be evaluated using an appropriate Euclidean norm. Note that this distance is
proportional to the consistency parameter λ̇.

In Homel’s fully saturated version of the Arenisca model (Homel, Guilkey, and Brannon, 2015), the
internal variables are the hydrostatic compressive strength (X) and the scalar isotropic backstress (α).
¿ese depend only on the volumetric plastic strain increment

∆εpv = tr(∆εp) . (211)

Because ∆εpv < ∆ε
p
v ,�xed we can de�ne a parameter, η ∈ (0, 1), such that

η ∶=
∆εpv

∆εpv ,�xed
. (212)
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Since the solution is bounded by the �xed yield surface, a bisection algorithm can be used to �nd the
parameter η.

To use the same approach for the Arena partially saturated model, the internal variables have to be
of the form

pwp ≡ pwp (ε
p
v) , Bp ≡ Bp(ε

p
v) , ϕp ≡ ϕp(ε

p
v) , S

p
w ≡ Spw(ε

p
v) , Xp ≡ Xp

(εpv)

so that

ṗwp = λ̇
dpwp
dεpv

tr(M) , Ḃp = λ̇
dBp

dεpv
tr(M) , ϕ̇p = λ̇

dϕp

dεpv
tr(M)

Ṡpw = λ̇
dSpw
dεpv

tr(M) , Ẋp = λ̇
dXp

dεpv
tr(M) .

(213)

Recall that

ṗwp =
1
B
tr(dp) =

λ̇
B
tr(M) (214)

Ḃp = λ̇ [
1
BKs

(
Kd
Ks

dKd
dpw

−
dKs
dpw

)] tr(M) (215)

Ṡpw = λ̇ [
1 − S0

B(1 − S0 + C)2
dC
dpw

] tr(M) (216)

ϕ̇p = −λ̇ [(1 − S0)ϕ0 exp (εv − εav)(1 +
1

KaB
) + S0ϕ0 exp (εv − εwv )(1 +

1
KwB

)] tr(M) (217)

Ẋp ∶= λ̇
⎡
⎢
⎢
⎢
⎣
[(1 − Sw) + psat1 Sw]

dXd

dεpv
+
Xd(psat1 − 1)(1 − S0)
B(1 − S0 + C)2

dC
dpw

+
3pw

BKs
(
Kd
Ks

dKd
dpw

−
dKs
dpw

) +
3B
B

⎤
⎥
⎥
⎥
⎦
tr(M)

(218)

where

B ∶=
1

(1 − S0)exp[εv − εav(pw)] + S0exp[εv − εwv (pw)]
[−

(B − ϕ)ϕ
Bϕ0

(
Sw
Kw

+
1 − Sw
Ka

)+

1 − S0
Ka

exp[εv − εav(pw)] +
S0
Kw

exp[εv − εwv (pw)]]

C ∶= S0 exp [εav(pw) − εwv (pw)] .

(219)

¿e evolution equations for the internal variables are consistent with Homel’s assumptions (allowing
for the use of a bisection algorithm) only if

pw = pwp , B = Bp , ϕ = ϕp , Sw = Spw , X = Xp . (220)

¿is is a strong assumption and may violate the balance of mass. However, to keep the algorithm
e�cient, we make the assumptions in (220) and hence can use the bisection algorithm discussed later.

Now we can compare equations (213) and (214), and use the assumption that B ≈ 1, to get the following
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set of coupled ordinary di�erential equations for the internal variables.

dpwp
dεpv

=
1
Bp

dϕp

dεpv
= (S0 − 1)ϕ0 exp[ε

p
v − εav(pwp )]

⎛

⎝
1 +

1
Ka(pwp )Bp

⎞

⎠
− S0ϕ0 exp[ε

p
v − εwv (pwp )]

⎛

⎝
1 +

1
Kw(pwp )Bp

⎞

⎠

dSpw
dεpv

=
1 − S0

Bp(1 − S0 + Cp)2
dCp

dpwp
dXp

dεpv
= [(1 − Spw) + psat1 Spw]

dXd

dεpv
+
Xd(psat1 − 1)(1 − S0)
Bp(1 − S0 + Cp)2

dCp

dpwp
+

3
Bp

(221)
where

B
p
∶=

1

(1 − S0)exp[ε
p
v − εav(pwp )] + S0exp[ε

p
v − εwv (pwp )]

⎡
⎢
⎢
⎢
⎢
⎣

−
(1 − ϕp)ϕp

ϕ0
⎛

⎝

Spw
Kw(pwp )

+
1 − Spw
Ka(pwp )

⎞

⎠
+

1 − S0
Ka(pwp )

exp[εpv − εav(pwp )] +
S0

Kw(pwp )
exp[εpv − εwv (pwp )]

⎤
⎥
⎥
⎥
⎦

C
p
∶= S0 exp [εav(pwp ) − εwv (pwp )] ,

dCp

dpwp
= C

p
⎡
⎢
⎢
⎢
⎣

1
Ka(pwp )

−
1

Kw(pwp )

⎤
⎥
⎥
⎥
⎦
.

(222)
Ifwe assume that theBiot coe�cient is equal to 1, the vector of internal variables is η ∶= {pwp , ϕp, S

p
w , Xp},

we can express the evolution of the internal variables as

dη
dεpv

= F(η, εpv) . (223)

We can use a forward Euler integration approach to update the internal variables:

ηn+1 = ηn + F[ηn , (εpv)n]∆ε
p
v . (224)

However, since the hydrostatic compressive strength, porosity, and saturation can be computed in
closed form, we use the following in our implementation

ϕp(pwp ) = (1 − S0)ϕ0 exp [ε
p
v − εav(pwp )] + S0ϕ0 exp [ε

p
v − εwv (pwp )]

Spw(pwp ) =
Cp

1 − S0 + Cp
, Cp ∶= S0 exp [εav(pwp ) − εwv (pwp )] .

(225)

However, since the hydrostatic compressive strength, porosity, and saturation can be computed in
closed form, we integrate only the expression for pore pressure evolution in our implementation.
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2.8 Rate-dependent plasticity

Rate-dependent plastic e�ects are determined a er the rate-independent solution has been found. An
additive decomposition of the (unrotated) rate of deformation into elastic and viscoplastic parts is
assumed, i.e.,

ds = de + dvp . (226)

¿e Perzyna formulation for the viscoplastic rate of deformation is used (Brannon, 2007):

dvp = ⟨
f (σ , η)
τ

⟩ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

f (σ , η)
τ

M if f (σ , η) > 0

0 otherwise
(227)

where f (. . . ) is the yield function and τ is a relaxation time. Note that the above relation can be
expressed in Duvaut-Lion form as

dvp =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(Ce)−1 ∶ (
σ − Pσ

τ
) if f (σ , η) > 0

0 otherwise
(228)

whereCe is the elastic sti�ness tensor andPσ is the closest point projection of the stress state on to the
boundary of the region that bounds all possible elastic stress states. Clearly, Pσ = σqs, and for stress
states outside the yield surface we have

dvp =
1
τ
(Ce

)
−1
∶ (σ − σqs) . (229)

Recall from equation (100) that
σ̇ = Ce

∶ de − λ̇Z . (230)

If we ignore the Z term and use equations (156) and (229), we have

σ̇ = Ce
∶ (ds − dvp) = Ce

∶ ds −
1
τ
(σ − σqs) = σ̇ trial −

1
τ
(σ − σqs) . (231)

We can subtract the rate of the quasistatic stress from both sides to get an equation for the viscoplastic
overstress contribution (σover ∶= σ − σqs):

σ̇ − σ̇qs = σ̇ trial − σ̇qs −
1
τ
(σ − σqs) (232)

or
σ̇over = (σ̇ trial − σ̇qs) −

1
τ
σover . (233)

From equation (158) we have

σ̇qs = σ̇trial −
P ⊗ N̂

N̂ ∶ P +H
∶ σ̇trial . (234)

¿erefore, (233) can be written as

σ̇over =
P ⊗ N̂

N̂ ∶ P +H
∶ σ̇trial −

1
τ
σover =∶ σ̇proj −

1
τ
σover (235)

where

σ̇proj ∶= σ̇ trial − σ̇qs =
P ⊗ N̂

N̂ ∶ P +H
∶ σ̇trial . (236)

¿e above ordinary di�erential equation has the solution

σover(t) =
∫ exp [∫

t 1
τ(t′)dt

′] σ̇proj(t)dt + C

exp [∫
t 1
τ(t′)dt′]

(237)
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where C is a constant. If we assume that τ is constant over a timestep, we have

σover(t) =
∫ exp [ tτ ] σ̇proj(t)dt + C

exp [ tτ ]
(238)

In addition, if we assume that σ̇proj is also constant over a timestep, we have

σover(t) =
τ exp [ tτ ] σ̇proj + C

exp [ tτ ]
. (239)

If the initial overstress at t = t0 is σover(t0), we have

C = exp [
t0
τ
] σover(t0) − τ exp [

t0
τ
] σ̇proj . (240)

¿erefore
σover(t) = τ [1 − exp(

t0 − t
τ

)] σ̇proj + exp(
t0 − t
τ

) σover(t0) . (241)

¿e model used for the material relaxation time in Arensica is

τ = T1 ε̇−T2 where ε̇ = ∥ds∥ (242)

and T1, T2 are material parameters.

Recall from (233) and (236) that

σ̇over = σ̇proj −
1
τ
σover where σ̇over ∶= σ̇ − σ̇qs and σ̇proj ∶= σ̇ trial − σ̇qs . (243)

and the exact solution (241) when τ and σ̇proj are constant:

σover(t) = τ [1 − exp(
t0 − t
τ

)] σ̇proj + exp(
t0 − t
τ

) σover(t0) . (244)

For a timestep ∆t = tn+1 − tn, we can write the above as

σover(tn+1) = τ(tn) [1 − exp(
tn − tn+1
τ(tn)

)] σ̇proj(tn) + exp(
tn − tn+1
τ(tn)

) σover(tn) (245)

or

σn+1over = [
1 − exp (−∆t/τn)

∆t/τn
] (∆t σ̇nproj) + exp (−∆t/τ

n
) σnover . (246)

If we approximate the rate of σproj via approximations of the rates of the trial and quasistatic stresses
using

σ̇proj ≈
σ trialn+1 − σ trialn

∆t
−
σn+1qs − σnqs

∆t
(247)

noting that
σ trialn = σn , σ trialn+1 = σ

n
+ (Ce

∶ ds)∆t , (248)

and using the de�nition of σover, we have

σn+1 − σn+1qs = [
1 − exp (−∆t/τn)

∆t/τn
] [(σ trialn+1 − σ

n
) − (σn+1qs − σnqs)] + exp (−∆t/τ

n
) (σn − σnqs) . (249)

If we de�ne

RH ∶=
1 − exp (−∆t/τn)

∆t/τn
and rh ∶= exp (−∆t/τn) (250)
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we have the dynamic stress state

σn+1 = σn+1qs + [(σ trialn+1 − σ
n
) − (σn+1qs − σnqs)]RH + (σn − σnqs)rh . (251)

Our implementation does not consider rate-dependent updates of the internal variables. Equation 251
requires that we compute the trial stress for the step, but this is not known since the bulk modulus is
evolving through the substeps. It would be necessary to to loop through the substeps to compute the
trial stress assuming nonlinear elasticity, but instead we approximate the trial stress using the average
of the elastic moduli at the start and end of the step.
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3 Decompositions of deformation rates

A decomposition of the deformation gradient F into the composition of elastic and plastic parts,

F = F e
⋅ F p , (252)

is o en hypothesized in �nite-deformation plasticity, giving the rate form

Ḟ = Ḟ e
⋅ F p

+ F e
⋅ Ḟ p . (253)

¿erefore, the velocity gradient, L ∶= Ḟ ⋅ F −1, decomposes additively as

L = L e
+ L p , (254)

where
L e

∶= Ḟ e
⋅ F e−1 (255)

and
L p

∶= F e
⋅ (Ḟ p

⋅ F p−1
) ⋅ F e−1 . (256)

¿e approximation L p ≈ Ḟ p
⋅ F p−1 might apply if it can be argued that elastic strains are small (so that

F e ≈ I ). Another line of reasoning (Itskov, 2004) pertains to the degree to which reference stretch
directions rotate through the course of a simulation. If reference stretch directions of F are stationary,
then (at least for initially isotropic media) it is reasonable to expect the same of the reference stretches
of F e and F p so that the �nite deformation decomposition becomes

F = R ⋅U e
⋅U p . (257)

Furthermore, under these conditions, the reference stretch, U , and its parts, U e and U p, should be
expected to share a common set of eigenvectors and hence commute, thus leading to no di�erence
between the multiplicative and additive decompositions for this class of problem. An inexpensive run-
time check of the degree to which this approximation applies requires monitoring the value of

∥Z∥ ∶= ∥D ⋅U −U ⋅D ∥ , (258)

whereD is the so-called “unrotated rate of deformation,” given by a polar-rotation pull-back operation
on the symmetric part of the velocity gradient, D ∶= R T ⋅ symL ⋅ R . We assert that rate of rotation of
the reference stretch directions is zero if and only if the “Z-norm” is zero. Hence, choosing to adopt
an additive strain rate (as well as using D as an approximation of the rate of the Hencky strain) can
be rigorously justi�ed if it can be shown, as in Fig. 2, that a simulation of interest has a small Z-norm
during important phases of material deformation. Otherwise, if this is not the case, then designers
of a multiplicative model must demonstrate its undeniable superiority in comparison to additive de-
compositions in problems having rotation of the reference stretch directions. ¿e models must, of
course, be tuned to agree exactly with each other for model calibration scenarios (such as dynamic
plate compaction) having stationary reference stretch directions.
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Figure 2 – Up until a stretch ratio of ≈5 in a buried explosive simulation (well be-
yond the state for which anything but crude accuracy could be expected of
any granular constitutive model), the small values of a run-time indicator,
∥Z∥ = ∥DV −VD∥ demonstrate that there is very little rotation of refer-
ence stretch directions. Values in simple shear are shown for comparison.
¿e stretch ellipsoids in shear further indicate qualitative di�erences be-
tween the e�ective deformed states in a model that approximates Hencky
strain to be the time integral of the symmetric part of the velocity gradient.
¿e close proximity of these ellipsoids visually hint that model prediction
errors are most likely rooted in simpli�ed model physics, not errors asso-
ciated with convenient approximations in the strain de�nitions.
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4 The MPM implementation used by ARENA

¿espatialmomentumequation is solved using theMPMalgorithmwhile forwardEuler time-stepping
is use to integrate time derivatives. ¿e pseudocode of the overall algorithm is given below. ¿e main
quantities of interest are:

• tmax : ¿e maximum time until which the simulation is to run.
• t, ∆t : ¿e current time (t = tn) and the time step.
• hg : ¿e grid spacing vector.
• mp : ¿e particle mass.
• V n

p ,V n+1
p : ¿e particle volume at t = tn and t = tn+1.

• xnp , xn+1p : ¿e particle position at t = tn and t = tn+1.
• unp , un+1p : ¿e particle displacement at t = tn and t = tn+1.
• vnp , vn+1p : ¿e particle velocity at t = tn and t = tn+1.
• σnp , σn+1p : ¿e particle Cauchy stress at time t = tn and t = tn+1.
• Fnp , Fn+1p : ¿e particle deformation gradient at time t = tn and t = tn+1.

Algorithm 1¿e algorithm
1: procedure run(inputUPSFile)
2: tmax, hg , xmlProblemSpec, grid, globalState← readInputUPSFile(inputUPSFile)▷Parse

↪ the input XML �le (<�lename>.ups), create the background grid, and
↪ set up a SimulationState.

3: mpmFlags, prescribedDefGrad, particleBC, contactModel, constitutiveModel,
↪ defGradComputer, damageModel← problemSetup(xmlProblemSpec, grid,
↪ globalState)▷Set up �ags, the constitutive model, and the deformation gradient
↪ algorithm based on data in input �le.

4: t ← 0, n ← 0

5: xnp , unp, mp, V n
p , vnp , σnp , Fnp ← initialize(xmlProblemSpec)▷Find the grid size and initialize

↪ particle variables based on geometry and other information in the input �le.
6: isSuccess← FALSE
7: repeat
8: ∆t ← computeStableTimeStep(hg , vp)▷Find a stable time increment based on

↪ grid size and velocity
9: t ← t + ∆t, n ← n + 1▷Update the time
10: isSuccess, xn+1p , un+1p , vn+1p , vn+1p , σn+1p , Fn+1p ← timeAdvance(hg , xnp , unp, mp, V n

p ,
↪ vnp , σnp , Fnp )▷Compute updated quantities

11: outputData(xn+1p , un+1p , V n+1
p , vn+1p , σn+1p , Fn+1p )▷Save the solution

12: n ← n + 1
13: until t ≥ tmax
14: return isSuccess
15: end procedure

4.1 Reading the input file

¿e process used to read the input �le is identical to that given in the Uintah Developer Manual and
will not be discussed here.

4.2 Problem setup

¿e overall structure of the problem setup code is given below. Details can be found in the code.
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Algorithm 2 Problem setup
Require: xmlProblemSpec, grid, globalState
1: procedure problemSetup(xmlProblemSpec, grid, globalState)
2: flags← readMPMFlags(xmlProblemSpec)▷Read the option �ags that determine

↪ the details of the MPM algorithm to be used in the simulation.
3: if flags.prescribeDeformation = TRUE then
4: prescribedDefGrad← readPrescribedDeformations(flags.prescribedFileName)
5: end if
6: particleBC← createMPMPhysicalBC(xmlProblemSpec, grid, flags)▷Create the model

↪ used to apply pressures and forces directly to particles.
7: contactModel←createContactModel(xmlProblemSpec, grid, flags, globalState)▷Create

↪ the contact algorithm model used to compute interactions between objects.
8: constitutiveModel← createConstitutiveModels(xmlProblemSpec, grid, flags,

↪ globalState)▷Create the constitutive models that are needed
↪ for the simulation.

9: defGradComputer←createDeformationGradientComputer(flags, globalState)▷Create
↪ the model that will be used to compute velocity and
↪ deformation gradients.

10: if flags.doBasicDamage = TRUE then
11: damageModel← createBasicDamageModel(flags, globalState)
12: end if
13: return flags, prescribedDefGrad, particleBC, contactModel, constitutiveModel,

↪ damageModel, defGradComputer
14: end procedure

4.3 Initialization

Anoutline of the initialization process is described below. Speci�c details have been discussed in earlier
reports. ¿e new quantities introduced in this section are

• np : ¿e number of particles used to discretize a body.
• bnp , bn+1p : ¿e particle body force acceleration at t = tn and t = tn+1.
• Dn

p ,Dn+1
p : ¿e particle damage parameter at t = tn and t = tn+1.

• fext,np , fext,n+1p : ¿e particle external force at t = tn and t = tn+1.

Algorithm 3 Initialization
Require: xmlProblemSpec, defGradComputer, constitutiveModel, damageModel, particleBC,

↪ mpmFlags materialList,
1: procedure initialize
2: for matl in materialList do
3: np[matl], x0p [matl], u0p[matl], mp[matl], V0

p [matl], v0p [matl], b0p[matl],
↪ fext,0p [matl]← matl.createParticles()

4: F0
p [matl]← defGradComputer.initialize(matl)

5: σ0p [matl]← constitutiveModel.initialize(matl)
6: D0

p [matl]← damageModel.initialize(matl)
7: end for
8: if mpmFlags.initializeStressWithBodyForce = TRUE then
9: b0p ← initializeBodyForce()
10: σ0p , F0

p ← initializeStressAndDefGradFromBodyForce()
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11: end if
12: if mpmFlags.applyParticleBCs = TRUE then
13: fext,0p ← particleBC.initializePressureBCs()
14: end if
15: return np, x0p , u0p , mp, V0

p , v0p , b0p , f
ext,0
p , F0

p , σ0p , D0
p

16: end procedure

4.4 Time advance

¿e operations performed during a timestep are shown in the pseudocode below.

Algorithm 4¿eMPM time advance algorithm

1: procedure timeAdvance(hg , xnp , unp , mp, V n
p , vnp , f

ext,n
p , dnp)

2: bnp ← computeParticleBodyForce()▷Compute the body force term
3: fext,n+1p ← applyExternalLoads()▷Apply external loads to the particles
4: mg , Vg , vg , bg , fextg ← interpolateParticlesToGrid()▷Interpolate particle data to the grid
5: exchangeMomentumInterpolated()▷Exchange momentum between bodies on grid.

↪ Not discussed in this report.
6: f intg , σg , vg ← computeInternalForce()▷Compute the internal force at the grid nodes
7: v⋆g , ag ← computeAndIntegrateAcceleration()▷Compute the grid velocity

↪ and grid acceleration
8: exchangeMomentumIntegrated()▷Exchange momentum between bodies on grid

↪ using integrated values. Not discussed in this report.
9: v⋆g , ag ← setGridBoundaryConditions()▷Update the grid velocity and grid

↪ acceleration using the BCs
10: lnp , Fn+1p , V n+1

p ← computeDeformationGradient()▷Compute the velocity gradient
↪ and the deformation gradient

11: σn+1p , ηn+1p ← computeStressTensor()▷Compute the updated stress and
↪ internal variables (if any)

12: σn+1p , ηn+1p , χn+1p , Dn+1
p ← computeBasicDamage()▷Compute the damage parameter

↪ and update the stress and internal variables
13: χn+1p , Dn+1

p ← updateErosionParameter()▷Update the indicator variable that is used
↪ to delete particles at the end of a time step

14: V n+1
p , un+1p , vn+1p , xn+1p , mp, hn+1p ← interpolateToParticlesAndUpdate()▷Update the

↪ particle variables a er interpolating grid quantities to particles
15: end procedure

¿e algorithms used for the above operations are discussed next.

4.4.1 Computing the body force

¿e body force consists of a gravitational term and, optionally, centrifugal and coriolis terms that are
needed for simulations inside a rotating frame such as a centrifuge.

Algorithm 5 Computing the body force on particles
Require: xnp , vnp , materialList, particleList, mpmFlags
1: procedure computeParticleBodyForce
2: for matl in materialList do
3: if mpmFlags.rotatingCoordSystem = TRUE then
4: g ← mpmFlags.gravityAcceleration
5: bnp[matl]← g
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6: else
7: for part in particleList do
8: g ← mpmFlags.gravityAcceleration
9: xrc ← mpmFlags.coordRotationCenter
10: zr ← mpmFlags.coordRotationAxis
11: w ← mpmFlags.coordRotationSpeed
12: ω ← wzr ▷Compute angular velocity vector
13: acorolis ← 2ω × vnp[matl, part] ▷Compute Coriolis acceleration
14: r← xnp[matl, part] − xrc
15: acentrifugal ← ω × ω × r▷Compute the centrifugal body force acceleration
16: bnp[matl,part]← g − acentrifugal − acoriolis ▷Compute the body force acceleration
17: end for
18: end if
19: end for
20: return bnp
21: end procedure

4.4.2 Applying external loads

Note that the updated deformation gradient has not been computed yet at this stage and the particle
force is applied based on the deformation gradient at the beginning of the timestep. ¿e new quantities
introduced in this section are:

• hnp : ¿e particle size matrix at time t = tn.

Algorithm 6 Applying external loads to particles

Require: tn+1, xnp , hnp, unp, f
ext,n
p , Fnp , materialList, particleList, mpmFlags, particleBC

1: procedure applyExternalLoads
2: fp ← 0

3: if mpmFlags.useLoadCurves = TRUE then
4: fp ← particleBC.computeForcePerParticle(tn+1)▷Compute the force per particle

↪ due to the applied pressure
5: end if
6: for matl in materialList do
7: if mpmFlags.useLoadCurves = TRUE then
8: for part in particleList do
9: fext,n+1p [matl,part]← particleBC.getForceVector(tn+1, xnp , hnp, unp,

↪ fp, Fnp )▷Compute the applied force vector at each particle
10: end for
11: else
12: fext,n+1p [matl]← fext,np [matl]
13: end if
14: end for
15: return fext,n+1p
16: end procedure

4.4.3 Interpolating particles to grid

¿e grid quantities computed during this procedure and not stored for the next timestep except for the
purpose of visualization. ¿e new quantities introduced in this section are

• mg : ¿e mass at a grid node.
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• Vg : ¿e volume at a grid node.
• vg : ¿e velocity at a grid node.
• fextg : ¿e external force at a grid node.
• bg : ¿e body force at a grid node.

Algorithm 7 Interpolating particle data to background grid

Require: mp, V n
p , xnp , hnp, bnp, f

ext,n+1
p , Fnp , materialList, particleList, gridNodeList mpmFlags,

particleBC

1: procedure interpolateParticlesToGrid
2: interpolator← createInterpolator(mpmFlags)▷Create the interpolator

↪ and �nd number of grid nodes that can a�ect a particle
3: for matl in materialList do
4: for part in particleList do
5: ng p, Sg p ← interpolator.findCellsAndWeights(xnp , hnp, Fnp )▷Find the node

↪ indices of the cells a�ecting the particle and the interpolation weights
6: pp ← mp[matl][part] vnp[matl][part]▷Compute particle momentum
7: for node in ng p do
8: mg[matl][node]← mg[matl][node] + mp[matl][part] Sg p[node]
9: Vg[matl][node]← Vg[matl][node] + V n

p [matl][part] Sg p[node]
10: vg[matl][node]← vg[matl][node] + pp Sg p[node]
11: fextg [matl][node]← fextg [matl][node] + fext,n+1p [matl][part] Sg p[node]
12: bg[node]← bg[node] + mp[matl][part] bnp[matl][part] Sg p[node]
13: end for
14: end for
15: for node in gridNodeList do
16: vg[matl][node]← vg[matl][node]/mg[matl][node]
17: end for
18: vg[matl]← applySymmetryVelocityBC(vg[matl])▷Apply any symmetry

↪ velocity BCs that may be applicable
19: end for
20: return mg , Vg , vg , bg , fextg
21: end procedure

4.4.4 Exchanging momentum using interpolated grid values

¿e exchange of momentum is carried out using a contact model. Details can be found in the Uintah
Developers Manual.

4.4.5 Computing the internal force

¿is procedure computes the internal force at the grid nodes. ¿e new quantities introduced in this
section are

• ng p : ¿e number of grid nodes that are used to interpolate from particle to grid.
• Sg p : ¿e nodal interpolation function evaluated at a particle
• Gg p : ¿e gradient of the nodal interpolation function evaluated at a particle
• σv : A volume weighted grid node stress.
• f intg : ¿e internal force at a grid node.

Algorithm 8 Computing the internal force
Require: hg , Vg , V n

p , xnp , hnp, σnp , Fnp , materialList, particleList, gridNodeList mpmFlags
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1: procedure computeInternalForce
2: interpolator← createInterpolator(mpmFlags)▷Create the interpolator and

↪ �nd number of grid nodes that can a�ect a particle
3: for matl in materialList do
4: for part in particleList do
5: ng p, Sg p, Gg p ←

↪ interpolator.findCellsAndWeightsAndShapeDervatives(xnp , hnp, Fnp )
↪ ▷Find the node indices of the cells a�ecting the particle and
↪ the interpolation weights and gradients

6: σv ← Vp[matl][part] σnp [matl][part]
7: for node in ng p do
8: f intg [matl][node]← f intg [matl][node] - (Gg p[node]/hg) ⋅σnp [matl][part] V n

p [part]
9: σg[matl][node]← σg[matl][node] + σv Sg p[node]
10: end for
11: end for
12: for node in gridNodeList do
13: σg[matl][node]← σg[matl][node]/Vg[matl][node]
14: end for
15: vg[matl]← applySymmetryTractionBC()▷Apply any symmetry tractions BCs

↪ that may be applicable
16: end for
17: return f intg , σg , vg
18: end procedure

4.4.6 Computing and integrating the acceleration

¿is procedure computes the accelerations at the grid nodes and integrates the grid accelerations using
forward Euler to compute grid velocities. ¿e new quantities introduced in this section are

• ag : ¿e grid accelerations.
• v⋆g : ¿e integrated grid velocities.

Algorithm 9 Computing and integrating the acceleration

Require: ∆t, mg , f intg , fextg , bg , vg , materialList, gridNodeList, mpmFlags
1: procedure computeAndIntegrateAcceleration
2: for matl in materialList do
3: for node in gridNodeList do
4: ag[matl][node]← (f intg [matl][node] + fextg [matl][node] +bg[matl][node])/mg[matl][node]
5: v⋆g ← vg[matl][node] + ag[matl][node] ∗∆t
6: end for
7: end for
8: return v⋆g , ag
9: end procedure

4.4.7 Exchanging momentum using integrated grid values

¿e exchange of momentum is carried out using a contact model. Details can be found in the Uintah
Developers Manual.

4.4.8 Setting grid boundary conditions
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Algorithm 10 Setting grid boundary conditions
Require: ∆t, ag , v⋆g , vg , materialList, gridNodeList, mpmFlags
1: procedure setGridBoundaryConditions
2: for matl in materialList do
3: v⋆g [matl]← applySymmetryVelocityBC(v⋆g [matl])
4: for node in gridNodeList do
5: ag[matl][node]← (v⋆g [matl][node] - vg[matl][node]) /∆t
6: end for
7: end for
8: return v⋆g , ag
9: end procedure

4.4.9 Computing the deformation gradient

¿e velocity gradient is computed using the integrated grid velocities and then used to compute the
deformation gradient. ¿e new quantities introduced in this section are

• ∆Fnp : ¿e increment of the particle deformation gradient.
• ln+1p : ¿e particle velocity gradient.
• ρ0 : ¿e initial mass density of the material.

Algorithm 11 Computing the velocity gradient and deformation gradient
Require: ∆t, xnp , mp, V n

p , hnp, vnp , lnp , Fnp , hg , vg , v⋆g , ρ0 materialList, gridNodeList, mpmFlags,
velGradComputer

1: procedure computeDeformationGradient
2: interpolator← createInterpolator(mpmFlags)
3: for matl in materialList do
4: for part in particleList do
5: ln+1p [matl,part]← velGradComputer.computeVelGrad(interpolator, hg , xnp[matl,part],

↪ hnp[matl,part], Fnp [matl,part], v⋆g [matl])▷Compute the velocity gradient
6: Fn+1p [matl,part], ∆Fn+1p ←computeDeformationGradientFromVelocity(lnp [matl,part],

↪ ln+1p [matl,part], Fnp [matl,part])▷Compute the deformation gradient
7: V n+1

p [matl,part]← mp[matl,part]/ρ0 ∗det(Fn+1p [matl,part])
8: end for
9: end for
10: return ln+1p , Fn+1p , V n+1

p
11: end procedure

Algorithm 12 Computing the deformation gradient using the velocity gradient
Require: ∆t, ln+1p , Fnp , mpmFlags
1: procedure computeDeformationGradientFromVelocity
2: if mpmFlags.defGradAlgorithm = "first_order" then
3: Fn+1p , ∆Fn+1p ← seriesUpdateConstantVelGrad(numTerms = 1, ∆t, ln+1p , Fnp )
4: else if mpmFlags.defGradAlgorithm = "subcycle" then
5: Fn+1p , ∆Fn+1p ← subcycleUpdateConstantVelGrad(∆t, ln+1p , Fnp )
6: else if mpmFlags.defGradAlgorithm = "taylor_series" then
7: Fn+1p , ∆Fn+1p ← seriesUpdateConstantVelGrad(numTerms= mpmFlags.numTaylorSeriesTerms,
∆t, ln+1p , Fnp )

8: else
9: Fn+1p , ∆Fn+1p ← cayleyUpdateConstantVelGrad(∆t, ln+1p , Fnp )
10: end if
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11: return Fn+1p , ∆Fn+1p
12: end procedure

4.4.10 Computing the stress tensor

¿e stress tensor is compute by individual constitutive models. Details of the Arena partially saturated
model are given later. ¿e new quantities introduced in this section are

• ηnp , ηn+1p : ¿e internal variables needed by the constitutive model.

Algorithm 13 Computing the stress tensor
Require: ∆t, xnp , mp, V n+1

p , hnp, ln+1p , Fn+1p , σnp , ηnp, ρ0, materialList, mpmFlags, constitutiveModel
1: procedure computeStressTensor
2: for matl in materialList do
3: σn+1, ηn+1p ← constitutiveModel[matl].computeStressTensor(∆t, xnp , mp, V n+1

p , hnp,
↪ ln+1p , Fn+1p , σnp , ηnp, ρ0, mpmFlags)▷Update the stress and any
↪ internal variables needed by the constitutive model

4: end for
5: return σn+1p , ηn+1p
6: end procedure

4.4.11 Computing the basic damage parameter

¿e damage parameter is updated and the particle stress is modi�ed in this procedure. ¿e new quan-
tities introduced in this section are

• ε f ,np , ε f ,n+1p : ¿e particle strain to failure at t = Tn and t = Tn+1.
• χnp , χn+1p : An indicator function that identi�es whether a particle has failed completely.
• t χ,np , t χ,n+1p : ¿e time to failure of a particle.
• Dn

p ,Dn+1
p : A particle damage parameter that can be used to modify the stress.

Algorithm 14 Computing the damage parameter

Require: tn+1, V n+1
p , Fn+1p , σn+1p , Dn

p , ε
f ,n
p , χnp, t

χ,n
p , materialList, mpmFlags

1: procedure computeDamage
2: for matl in materialList do
3: for part in particleList do
4: if brittleDamage = TRUE then
5: σn+1p , ε f ,n+1p , χn+1p , t χ,n+1p , Dn+1

p ← updateDamageAndModifyStress(V n+1
p , Fn+1p ,

↪ σn+1p , Dn
p , ε

f ,n
p , χnp, t

χ,n
p )▷Update the damage parameters and stress

6: else
7: σn+1p , ε f ,n+1p , χn+1p , t χ,n+1p ←updateFailedParticlesAndModifyStress(V n+1

p , Fn+1p ,
↪ σn+1p , ε f ,np , χnp, t

χ,n
p , tn+1)▷Update the failed particles and stress

8: end if
9: end for
10: end for
11: return σn+1p , ε f ,n+1p , χn+1p , t χ,n+1p , Dn+1

p
12: end procedure
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4.4.12 Updating the particle erosion parameter

¿e particle failure indicator function is updated in this procedure and used later for particle deletion
if needed.

Algorithm 15 Updating the particle erosion parameter
Require: Dn

p , χnp materialList, mpmFlags, constitutiveModel
1: procedure updateErosionParameter
2: for matl in materialList do
3: for part in particleList do
4: if matl.doBasicDamage = TRUE then
5: χn+1p ← damageModel.getLocalizationParameter()▷Just get the indicator

↪ parameter for particles that will be eroded.
6: else
7: χn+1p , Dn+1

p ← constitutiveModel[matl].getDamageParameter(χnp, Dn
p)

↪ ▷Update the damage parameter in the constitutive model.
8: end if
9: end for
10: end for
11: return χn+1p , Dn+1

p
12: end procedure

4.4.13 Interpolating back to the particles and update

¿is is the �nal step at which the particle velocities and positions are updated and the grid is reset.
Particle that are to be removed are dealt with in a subsequent relocation step.

Algorithm 16 Interpolating back to the particles and position update
Require: ∆t, ag , v⋆g , xnp , vnp , unp, hnp, χn+1p , Fn+1p , V n+1

p , materialList, particleList, gridNodeList,
mpmFlags

1: procedure interpolateToParticlesAndUpdate
2: interpolator← createInterpolator(mpmFlags)
3: for matl in materialList do
4: hn+1p ← hnp
5: for part in particleList do
6: ng p, Sg p ← interpolator.findCellsAndWeights(xnp , hn+1p , Fn+1p )
7: v← 000, a← 000,
8: for node in gridNodeList do
9: v← v + v⋆g [node] ∗ Sg p[node]▷Update particle velocity
10: a← a + ag[node] ∗ Sg p[node]▷Update particle acceleration
11: end for
12: xn+1p ← xnp + v ∗ ∆t ▷Update position
13: un+1p ← unp + v ∗ ∆t ▷Update displacement
14: vn+1p ← vnp + a ∗ ∆t ▷Update velocity
15: end for
16: end for
17: deleteRogueParticles()▷Delete particles that are to be eroded.
18: return V n+1

p , un+1p , vn+1p , xn+1p , mp, hn+1p
19: end procedure
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5 Implementation of stress update in ARENA

Recall the stress tensor computation procedure calls the computeStressTensor routine that is spe-
ci�c to each constitutive model as can be seen in the pseudocode below.

Algorithm 17 Computing the stress tensor
Require: ∆t, xnp , mp, V n+1

p , hnp, ln+1p , Fn+1p , σnp , ηnp, ρ0, materialList, mpmFlags, constitutiveModel
1: procedure computeStressTensor
2: for matl in materialList do
3: σn+1p , ηn+1p ← constitutiveModel[matl].computeStressTensor(∆t, xnp , mp, V n+1

p , hnp,
↪ ln+1p , Fn+1p , σnp , ηnp, ρ0, mpmFlags)▷Update the stress and any internal variables
↪ needed by the constitutive model

4: end for
5: return σn+1p , ηn+1p
6: end procedure

5.1 Initialization of the model

¿emodel is initialized in two steps. In the �rst step, the constitutive model object is created followed
by initialization of the stress (and the deformation gradient if needed). Here

• ϕ0 : ¿e initial porosity.
• S0 : ¿e initial porosity.
• nmax : ¿e maximum number of subcycles in the plastic return algorithm.
• εe ,nv ,p : ¿e elastic volumetric strain at a particle at t = tn.
• σnp : ¿e dynamic Cauchy stress at a particle at t = tn.
• σnqs,p : ¿e quasistatic Cauchy stress at a particle at t = tn.
• σ0 : ¿e initial Cauchy stress at a particle.

Algorithm 18 Creating the Arena3PartiallySaturated constitutive model object
Require: mpmFlags, xmlProblemSpec
1: procedure createConstitutiveModel
2: elasticityModel← ElasticModuliModelFactory.create(xmlProblemSpec)
3: yieldCondition← YieldConditionFactory.create(xmlProblemSpec)
4: p0, p1, psat1 , p2 ← readCrushCurveParameters(xmlProblemSpec)
5: ϕ0, S0, pw0 ← readInitialPorosityAndSaturation(xmlProblemSpec)
6: nmax ← readSubcyclingCharacteristicNumber(xmlProblemSpec)
7: return elasticityModel, yieldCondition, ϕ0, S0, pw0 , nmax, p0, p1, p

sat
1 , p2

8: end procedure

Algorithm 19 Initializing the Arena3PartiallySaturated particle variables

Require: ϕ0, S0, pw0 , particleList, V
0
p , m0

p , v0p , fluidParams, elasticityModel, yieldCondition
1: procedure initialize
2: yieldCondition.initialize(particleList, V0

p )
3: yieldParams← yieldCondition.getParameters()
4: for part in particleList do
5: ϕ0p[part]← ϕ0
6: S0w ,p[part]← S0
7: χ0p[part]← 0
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8: εe,0v ,p[part]← 0

9: σ0p [part]← (fluidParams.pw0) I
10: σ0qs,p[part]← σ0
11: end for
12: ∆t ← computeStableTimestep(V0

p , mp, v0p , elasticityModel)
13: return ϕ0p , S0w ,p, χ0p , ε

e,0
v ,p, σ0qs,p, σ0p , ∆t

14: end procedure

5.2 Computing the stress and internal variables

¿e computeStressTensor routine in the partially saturated Arenamodel assumes that the Biot
coe�cient is B = 1, and has the following form. Here we introduce the new variables

• ϕnp , ϕn+1p : ¿e porosity at t = tn and t = tn+1.
• Snw ,p , Sn+1w ,p : ¿e saturation at t = tn and t = tn+1.
• a1,p , a2,p , a3,p , a4,p : Yield condition parameters at each particle.
• pn3,p : ¿e particle crush curve parameter p3 at t = tn.
• Xn

p : ¿e particle hydrostatic compressive strength at t = tn.
• κnp : ¿e yield function branch point at t = tn.
• εp,np : ¿e particle plastic strain tensor at t = tn.
• αnp : ¿e particle backstress tensor at t = tn.
• dn : ¿e particle rate of deformation tensor at t = tn.
• Rn ,Un : ¿e particle rotation and stretch tensors at t = tn.
• Kn ,Gn : ¿e particle bulk and shear modulus at t = tn.

Algorithm 20 Computing the Arena partially saturated stress tensor

Require: ∆t, xnp , mp, V n+1
p , hnp, ln+1p , Fnp , Fn+1p , Xn

p , κnp , εnv ,p, pn3,p, ε
p,n
p , αnp ϕnp, Snw ,p, χnp, ε

e,n
v ,p, σnqs,p, σnp ,

ρ0, particleList, mpmFlags, elasticityModel, yieldCondition
1: procedure computeStressTensor
2: yieldParams← yieldCondition.getParameters()
3: a1,p, a2,p, a3,p, a4,p, I

peak
1,p , Rc,p ← yieldCondition.getLocalVariables()

↪ ▷Yield condition parameters vary at each particle.
↪ Get the per-particle values of these parameters.

4: for part in particleList do
5: χn+1p [part]← χnp[part]▷Copy over failure indicator variable
6: dn+1 ← [ln+1p [part] +(ln+1p [part])T]/2▷Compute rate of deformation
7: Rn, Un ← polarDecomposition(Fnp [part])▷Compute rotation and stretch tensors
8: dn+1unrot ← (Rn)T ⋅ dn+1 ⋅ Rn ▷Unrotate the rate of deformation tensor
9: σnqs,unrot ← (Rn)T ⋅ σnqs,p[part]⋅Rn ▷Unrotate the quasistatic stress
10: σnunrot ← (Rn)T ⋅ σnp [part]⋅Rn ▷Unrotate the total stress
11: Kn, Gn, sn, (pw)n, Ie�,n1 ,

√
Jn2 , rn, zne�, ε

p,n
v ←

↪ computeElasticProperties(σnqs,unrot[part],
↪ ϕnp[part], Snw ,p[part], ε

p,n
p [part], αnp[part], pn3,p[part])

↪ ▷Compute elastic properties and stress invariants
12: isSuccess, σn+1qs,unrot, ϕn+1qs , Sn+1w ,qs, Xn+1

p [part], αn+1p [part], εp,n+1p [part]←
↪ rateIndependentPlasticUpdate(∆t, dn+1unrot, Kn,Gn, sn, (pw)n, Ie�,n1 ,

√
Jn2 , rn, zne�,

↪ εp,nv , σnqs,unrot, ϕnp[part], Snw ,p[part], Xn
p[part], αnp[part], ε

p,n
p [part], pn3,p[part],

↪ a1,p[part], a2,p[part], a3,p[part], a4,p[part])
↪ ▷Compute updated quasistatic state using the consistency bisection algorithm
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13: if isSuccess = FALSE then
14: flagParticleForDeletion(part)
15: end if
16: σn+1unrot ← rateDependentPlasticUpdate(∆t, dn+1unrot, σnqs,unrot, σn+1qs,unrot, ϕnp[part], ϕn+1qs ,

↪ Snw ,p[part], Sn+1w ,qs, Xn
p[part], Xn+1

p [part], αnp[part], αn+1p [part],
↪ εp,np [part], εp,n+1p [part], pn3,p[part],
↪ a1,p[part], a2,p[part], a3,p[part], a4,p[part])

17: Rn+1, Un+1 ← polarDecomposition(Fn+1p [part])▷Compute rotation and stretch tensors
18: σn+1p,qs[part]← Rn+1 ⋅ σn+1qs,unrot⋅(Rn+1)T ▷Rotate the quasistatic stress
19: σn+1p [part]← Rn+1 ⋅ σn+1unrot⋅(Rn+1)T ▷Rotate the dynamic stress
20: end for
21: ∆tn+1 ← computeStableTimestep(V n+1

p , mp, σn+1p , σnp , ln+1p , elasticityModel)
22: return σn+1p , σn+1p,qs, ϕn+1p , Sn+1w ,p , αn+1p , Xn+1

p , εp,n+1p , ∆tn+1.
23: end procedure

5.2.1 Compute elastic properties

¿e pseudocode for the generic computeElasticProperties is listed below. ¿e function has side
e�ects beyond computing the elastic properties and should be used carefully. Note that the subscript
p has been dropped for simplicity because all quantities are particle-based.

Algorithm 21 Computing the elastic properties
Require: σ , ϕ, Sw , εp, α, p3, elasticityModel
1: procedure computeElasticProperties
2: s, pw , Ie�1 ,

√
J2, r, ze� ← updateStressInvariants(σ , α) ▷Compute the deviatoric stress and

the invariants of the input stress tensor.
3: εpv ← updateVolumetricPlasticStrain(εp)▷Compute the volumetric plastic strain from the
input plastic strain tensor.

4: K, G ← elasticityModel.getCurrentElasticModuli(Ie�1 , pw , ε
p
v , ϕ, Sw) ▷Compute the

elastic moduli corresponding to the input state.
5: if useDisaggregationAlgorithm = TRUE then
6: scale = MAX(exp[−(p3 + ε

p
v)], 10−5)

7: K ← K*scale , G ← G*scale
8: end if
9: return K, G, s, pw , Ie�1 ,

√
J2, r, ze�, ε

p
v

10: end procedure

Algorithm 22 Updating the stress invariants
1: procedure updateStressInvariants(σ , α)
2: I1 ← tr(σ)
3: s ← σ − (I1/3)I ▷Compute deviatoric stress
4: pw ← −tr(α)/3▷Compute pore pressure
5: Ie�1 ← I1 + 3pw ,

√
J2 ←

√
(1/2)s ∶ s ▷Compute invariants of the e�ective stress

6: r ←
√
2J2 , ze� ← Ie�1 /

√3▷Compute Lode coordinates of the e�ective stress
7: return s, pw , Ie�1 ,

√
J2, r, ze�

8: end procedure

The elastic modulus computation procedures: ¿e functions used to compute the moduli are
listed in the pseudocode below.
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Algorithm 23 Computing the current elastic moduli

Require: Ie�1 , pw , ε
p
v , ϕ, Sw

1: procedure getCurrentElasticModuli
2: I1e� ← −Ie�1 , ε

p
v ← −εpv ,

3: K ← 0, G ← 0

4: if Sw > 0 then
5: K ,G ← computePartialSaturatedModuli(I1e�, pw , ε

p
v , ϕ, Sw)

6: else
7: K ,G ← computeDrainedModuli(I1e�, ε

p
v )

8: end if
9: return K, G
10: end procedure

Algorithm 24 Computing the partially saturated elastic moduli
Require: Ks0, ns, ps0, Kw0, nw , pw0, γ, pr
1: procedure computePartialSaturatedModuli(I1e�, pw , ε

p
v , ϕ, Sw)

2: if I1e� > 0 then
3: pe� ← I1e�/3
4: Ks ← Ks0 + ns(pe� − ps0)
5: Kw ← Kw0 + nw(pw − pw0)
6: Ka ← γ(pw + pr)
7: Kd ,G ← computeDrainedModuli(I1e�, ε

p
v )

8: K f ← 1/ [Sw/Kw + (1 − Sw)/Ka] ▷Bulk modulus of air + water mixture
9: numer← (1 − Kd/Ks)2
10: denom← (1/Ks) (1 − Kd/Ks) + ϕ (1/K f − 1/Ks)
11: K ← Kd + numer/denom▷Bulk modulus of partially saturated material

↪ (Biot-Gassman model)
12: else
13: K ,G ← computeDrainedModuli(I1, ε

p
v )

14: end if
15: return K ,G
16: end procedure

Algorithm 25 Computing the drained elastic moduli
Require: Ks0, ns, ps0, b0, b1, b2, b3, b4, G0, ν1, ν2
1: procedure computeDrainedModuli(I1e�, ε

p
v )

2: if I1e� > 0 then
3: pe� ← I1e�/3
4: Ks ← Ks0 + ns(pe� − ps0)
5: Kratio

s ← Ks/(1 − nspe�/Ks)
6: εev ← pow((b3pe�)/(b1Ks − b2pe�), (1/b4));
7: y ← pow(εev , b4)
8: z ← b2y + b3
9: K ← Kratio

s [b0 + (1/εev)b1b3b4y/z2];▷ Compute compressive bulk modulus
10: ν = ν1 + ν2 exp(−K/Ks)
11: G ← G0

12: if ν > 0 then
13: G ← 1.5K (1 − 2ν)/(1 + ν) ▷Update the shear modulus (if ν1, ν2 > 0)
14: end if
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15: else
16: K ← b0Ks0 ▷Tensile bulk modulus = Bulk modulus at p = 0

17: G ← G0 ▷Tensile shear modulus
18: end if
19: return K ,G
20: end procedure

5.2.2 Rate-independent stress update

¿e pseudocode for the algorithm is given below. All quantities are particle-based and the subscript p
has been dropped for convenience.

Algorithm 26¿e rate-independent stress and internal variable update algorithm

Require: ∆t, dn+1, Kn, Gn, sn, (pw)n, Ie�,n1 ,
√
Jn2 , rn, zne�, ε

p,n
v , a1, a2, a3, a4, pn3 , σnqs, ϕn, Snw , Xn, αn,

εp,n, nmax, єsub, χmax
1: procedure rateIndependentPlasticUpdate
2: σtrial ← computeTrialStress(σnqs, Kn, Gn, dn+1, ∆t)▷Compute trial stress
3: αtrial ← αn, ptrial3 ← pn3 , ϕtrial ← ϕn, Strialw ← Snw ,

↪ Xtrial ← Xn, εp,trial ← εp,n ▷Set all other trial quantities to the values
↪ at the beginning of the timestep

4: Ktrial, Gtrial, strial, (pw)trial, Ie�,trial1 ,
√
Jtrial2 , rtrial, ztriale� , εp,trialv ←

↪ computeElasticProperties(σtrial, ϕtrial, Strialw , εp,trial, αtrial, ptrial3 )▷Update the trial
↪ values of the moduli and compute the invariants of the trial stress

5: nsub ← computeStepDivisions(nmax, єsub, Kn, Ktrial, Ipeak1 , a1, Xn, σnqs, σtrial)
↪ ▷Compute number of substeps used by the return algorithm

6: if nsub < 0 then
7: return isSuccess = FALSE
8: end if

9: δt ←
∆t
nsub

▷Substep timestep

10: χ ← 1, tlocal ← 0▷Initialize substep multiplier and accumulated time increment
11: σ k ← σnqs, εp,k ← εp,n, ϕk ← ϕn, Skw ← Snw , Xk ← Xn, αk ← αn, Kk ← Kn, Gk ← Gn, pk3 ← pn3 ,

↪ sk ← sn, (pw)k ← (pw)n, Ie�,k1 ← Ie�,n1 ,
√
Jk2 ←

√
Jn2 , rk ← rn, zke� ← zne�, ε

p,k
v ← εp,nv

12: repeat
13: isSuccess, σ k+1, εp,k+1, ϕk+1, Sk+1w , Xk+1, αk+1, Kk+1, Gk+1, pk+13 ←

↪ computeSubstep(σ k , εp,k , ϕk , Skw , Xk , αk , Kk , Gk , sk , (pw)k , Ie�,k1 ,
√
Jk2 , rk , zke�,

↪ εp,kv , pk3 , dn+1, δt)
↪ ▷Compute updated stress and internal variables for the current substep

14: if isSuccess = TRUE then
15: tlocal ← tlocal + δt
16: σ k ← σ k+1, εp,k ← εp,k+1, ϕk ← ϕk+1, Skw ← Sk+1w , Xk ← Xk+1, αk ← αk+1
17: Kk ← Kk+1, Gk ← Gk+1, pk3 ← pk+13
18: else
19: δt ← δt/2▷Halve the timestep
20: χ ← 2χ ▷Keep a count of how many times the timestep has been halved.
21: if χ > χmax then
22: return isSuccess = FALSE, σ k , ϕk , Skw , Xk , αk , εp,k , Kk , Gk , pk3

↪ ▷Algorithm has failed to converge
23: end if
24: end if
25: until tlocal ≥ ∆t
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26: σn+1qs ← σ k+1, αn+1 ← αk+1, εp,n+1 ← εp,k+1, ϕn+1 ← ϕk+1, Sn+1w ← Sk+1w , Xn+1 ← Xk+1

27: Kn+1 ← Kk+1, Gn+1 ← Gk+1, pn+13 ← pk+13
28: return isSuccess = TRUE, σn+1qs , ϕn+1, Sn+1w , Xn+1, αn+1, εp,n+1, Kn+1, Gn+1, pn+13

↪ ▷Algorithm has converged
29: end procedure

5.2.3 Computing the trial stress

¿e pseudocode of the trial stress algorithm is given below.

Algorithm 27 Computing the trial stress
1: procedure computeTrialStress(σnqs, Kn, Gn, dn+1, ∆t)
2: ∆ε ← dn+1 ∆t ▷Total strain increment
3: ∆εiso ← 1

3 tr(∆ε)I
4: ∆εdev ← ∆ε − ∆εiso
5: σtrial ← σnqs + 3Kn∆εiso + 2Gn∆εdev
6: return σtrial
7: end procedure

5.2.4 Computing the number of subcycles in the return algorithm

Algorithm 28 Computing the number of subcycles

Require: nmax, єsub ← 10−4, Kn, Ktrial, Ipeak1 , a1, Xn, σnqs, σtrial
1: procedure computeStepDivisions
2: nbulk ← ⌈∣Kn − Ktrial∣ /Kn⌉ ▷Compute change in bulk modulus
3: ∆σ ← σtrial − σnqs
4: L ← 1

2(I
peak
1 − Xn)

5: if a1 > 0 then
6: L ← min(L, a1)
7: end if
8: nyield ← ⌈єsub × ∥∆σ∥/L⌉ ▷Compute trial stress increment relative to yield surface size
9: nsub ← max(nbulk, nyield)▷nsub is the maximum of the two values
10: if nsub > nmax then
11: nsub ← −1
12: end if
13: return nsub
14: end procedure

5.2.5 Updating the stress for a substep: consistency bisection

¿is procedure computes the updated stress state for a substep that may be either elastic, plastic, or
partially elastic. It uses Homel’s consistency bisection and non-hardening return concepts (Homel,
Guilkey, and Brannon, 2015).

Algorithm 29 Computing the stress and internal variable update for a substep

Require: dn+1, δt, σ k , εp,k , ϕk , Skw , Xk , αk , Kk , Gk , sk , (pw)k , Ie�,k1 ,
√
Jk2 , rk , zke�, ε

p,k
v , pk3 , a1, a2, a3, a4,

Ipeak1 , Rc , β, yieldCondition
1: procedure computeSubstep
2: δε ← dn+1δt ▷Compute strain increment

© Parresia Research Limited
PAR-10021867-1516: GranularMediaModelProjectDocumentationFinalLongVersion.pdf

Page 55 of 129



Arena model
PAR-10021867-1516.v1 Wednesday 20th September, 2017

3: σtrial ← computeTrialStress(σ k , Kk , Gk , dn+1, ∆t)▷Compute substep trial stress
4: αtrial ← αk , Ktrial ← Kk , Gtrial ← Gk , ptrial3 ← pk3 , ϕtrial ← ϕk , Strialw ← Skw ,

↪ Xtrial ← Xk , εp,trial ← εp,k ▷Set all other trial quantities to the values
↪ at the beginning of the substep

5: Ktrial, Gtrial, strial, (pw)trial, Ie�,trial1 ,
√
Jtrial2 , rtrial, ztriale� , εp,trialv ←

↪ computeElasticProperties(σtrial, ϕtrial, Strialw , εp,trial, αtrial, ptrial3 )
↪ ▷Compute elastic moduli and stress invariants for the trial state

6: isElastic← yieldCondition.evalYieldCondition(Ie�,trial1 ,
√
Jtrial2 , Xtrial, (pw)trial, ϕtrial, Strialw ,

↪ a1, a2, a3, a4, I
peak
1 , Rc , β)

↪ ▷Determine whether the trial stress is elastic or not
7: if isElastic = TRUE then
8: σ k+1 ← σtrial, εp,k+1 ← εp,trial, ϕk+1 ← ϕtrial, Sk+1w ← Strialw , Xk+1 ← Xtrial, αk+1 ← αtrial
9: Kk+1 ← Ktrial, Gk+1 ← Gtrial, pk+13 ← ptrial3

↪ ▷¿is is an elastic substep. Update the state to the trial value.
10: isSuccess = TRUE
11: return isSuccess, σ k+1, εp,k+1 ϕk+1, Sk+1w , Xk+1, αk+1, Kk+1, Gk+1, pk+13
12: end if
13: σ�xed, δε

p
�xed ← nonHardeningReturn(σ k , δε, Xk , Kk , Gk , (pw)k ,

↪ strial,
√
Jtrial2 , rtrial, ztriale� , a1, a2, a3, a4, I

peak
1 , Rc , β)

↪ ▷Compute return to updated yield surface (no hardening)
14: isSuccess, σ k+1, εp,k+1, αk+1, (pw)k+1, ϕk+1, Sk+1w , Xk+1, Kk+1,Gk+1, sk+1, (pw)k+1, Ie�,k+11 ,

√
Jk+12 ,

↪ rk+1, zk+1e� , εp,k+1v ← consistencyBisection(δε, εp,k , σ k , Kk , Gk , (pw)k , ϕk , Skw , Xk ,
↪ strial, Ie�,trial1 ,

√
Jtrial2 , rtrial, ztriale� , εp,trialv , ptrial3 , a1, a2, a3, a4, I

peak
1 , Rc , β, imax, jmax,

↪ σ�xed, δε
p
�xed)▷¿e bisection return algorithm to take care of yield surface hardening.

15: if iSuccess = FALSE then
16: return isSuccess, σ k , εp,k , ϕk , Skw , Xk , αk , Kk , Gk , pk3
17: end if
18: return isSuccess, σ k+1, εp,k+1, ϕk+1, Sk+1w , Xk+1, αk+1, Kk+1, Gk+1, pk+13
19: end procedure

5.2.6 The nonhardening return algorithm

¿e nonhardening return algorithm pseudocode is listed below:

Algorithm 30 Non-hardening return algorithm

Require: σ k , δε, Xk ,Kk ,Gk , (pw)k , strial,
√
Jtrial2 , rtrial, ztriale� , a1, a2, a3, a4, I

peak
1 , Rc , β, yieldCondition

1: procedure nonHardeningReturn

2: r′trial ← β rtrial
√

3Kk

2Gk ▷Transform the trial r coordinate

3: Xk
e� ← Xk + 3(pw)k

4: zclosee� , r′close ← yieldCondition.getClosestPoint(Kk , Gk , Xk
e�, a1, a2, a3, a4, I

peak
1 , Rc , β,

↪ ztriale� , r′trial)
5: Iclose1 ←

√3zclosee� − 3(pw)k ,
√
Jclose2 ← 1

β

√
Gk

3Kk r′close
6: if

√
Jtrial2 > 0 then

7: σ�xed = 1
3 I
close
1 I +

√
Jclose2√
Jtrial2

strial ▷Compute updated total stress
8: else
9: σ�xed = 1

3 I
close
1 I + strial ▷Compute updated total stress when the trial stress is hydrostatic

10: end if
11: δσ�xed ← σ�xed − σ k ▷Compute stress increment
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12: δσ iso�xed ←
1
3 tr(δσ�xed)I, δσdev�xed ← δσ�xed − δσ iso�xed

13: δεp,�xed = δε − 1
3Kk δσ iso�xed −

1
2Gk δσdev�xed ▷Compute plastic strain increment

14: return σ�xed, δεp,�xed
15: end procedure

Finding the closest point in transformed space

Algorithm 31 Compute the closest point from the trial state to transformed non-hardening yield
surface
Require: Kk , Gk , Xk

e�, a1, a2, a3, a4, I
peak
1 , Rc , β, ztriale� , r′trial

1: procedure getClosestPoint
2: npoly ← 1000
3: xpoly ← getYieldSurfacePointsAll_RprimeZ(npoly, Kk , Gk , Xk

e�,
↪ a1, a2, a3, a4, I

peak
1 , Rc , β )

↪ ▷Get the polygon that represents the yield surface in ze�-r′ space.
4: xseg ← getClosestSegments(ztriale� , r′trial, xpoly)

↪ ▷Find two yield surface segments that are closest to the trial stress state.
5: xsegpoly ← getYieldSurfacePointsSegment_RprimeZ(npoly, Kk , Gk , Xk

e�,
↪ a1, a2, a3, a4, I

peak
1 , Rc , β, xseg[1], xseg[3])▷Discretize the two closest segments.

6: xclose ← findClosestPoint(ztriale� , r′trial, xsegpoly)
↪ ▷Find the closest point in the discretized segments to the trial stress state.

7: return isSuccess = TRUE, xclose.ze� , xclose.r′
8: end procedure

Finding the yield surface polygon in zeff-r′ space

Algorithm 32 Find points in a closed polygon that describes the yield surface in ze�-r′ space

Require: npoly, Kk , Gk , Xk
e�, a1, a2, a3, a4, I

peak
1 , Rc , β

1: procedure getYieldSurfacePointsAll_RprimeZ
2: κ ← Ipeak1 − Rc(I

peak
1 − Xk

e�) ▷Compute κ.
3: Ie�1 ← linspace(from = Xk

e�, to = I
peak
1 , points = npoly)

↪ ▷Create an equally spaced set of Ie�1 values.
4: for I1 in Ie�1 do
5: F f = a1 − a3 exp(a2I1) − a4I1;▷Compute F f .
6: F2c ← 1
7: if I1 < κ and Xk

e� < I1 then

8: F2c = 1 − [ κ−I1
κ−Xk

eff
]
2
;▷Compute Fc .

9: end if
10: J2 = F2f F

2
c ▷Compute J2 and push into a vector

11: end for
12: ze� ← Ie�1 /

√3 , r′ ← β
√

3Kk

2Gk

√
2J2

13: xpoly.ze� ← ze� ∪ reverse(ze�) , xpoly.r′ ← r′ ∪ reverse(−r′)
↪ ▷Add the points on the negative r′ side of the polygon

14: xpoly[2npoly + 1] ← xpoly[1] ▷Add the �rst point to close the polygon
15: return xpoly
16: end procedure

Locating the closest segments of the yield surface polygon in zeff-r′ space
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Algorithm 33 Locate two closest segments of the yield surface polygon to the trial stress state

Require: ztriale� , r′trial, xpoly
1: procedure getClosestSegments
2: npoly ← length(xpoly)▷Get the number of points in the closed polygon
3: xprev ← xpoly[npoly − 1] ▷Get the second to last point in the closed polygon
4: inext ← 2, xnext ← xpoly[inext] ▷Get the second point in the closed polygon
5: d2min ← DOUBLE_MAX
6: xmin ← 000, xminprev ← 000, xminnext ← 000

7: for xcur in xpoly do
8: d2 ← distanceSq(ztriale� , r′trial, xcur.ze�, xcur.r

′)
9: if d2 < d2min then
10: d2min ← d2
11: xmin ← xcur, xminprev ← xprev, xminnext ← xnext
12: end if
13: inext ← inext + 1
14: if inext = npoly then
15: break▷Since the polygon is closed, ignore the last point
16: end if
17: xprev ← xcur, xnext ← xpoly[inext]
18: end for
19: xseg ← {xminprev, xmin, xminnext}

20: return xseg
21: end procedure

Finding the segments of the surface polygon in zeff-r′ space

Algorithm 34 Find points in an open segment that describes the yield surface in ze�-r′ space

Require: npoly, Kk , Gk , Xk
e�, a1, a2, a3, a4, I

peak
1 , Rc , β, xstart, xend

1: procedure getYieldSurfacePointsSegment_RprimeZ
2: κ ← Ipeak1 − Rc(I

peak
1 − Xk

e�) ▷Compute κ.
3: Istart1 ←

√3xstart.ze�, Iend1 ←
√3xend.ze�

4: Ie�1 ← linspace(from = Istart1 , to = Iend1 , points = npoly)
↪ ▷Create an equally spaced set of Ie�1 values.

5: for I1 in Ie�1 do
6: F f = a1 − a3 exp(a2I1) − a4I1;▷Compute F f .
7: F2c ← 1
8: if I1 < κ and Xk

e� < I1 then

9: F2c = 1 − [ κ−I1
κ−Xk

eff
]
2
;▷Compute Fc .

10: end if
11: J2 = F2f F

2
c ▷Compute J2 and push into a vector

12: end for
13: ze� ← Ie�1 /

√3 , r′ ← β
√

3Kk

2Gk

√
2J2

14: xsegpoly.ze� ← ze� ∪ reverse(ze�) , xsegpoly.r′ ← r′ ∪ reverse(−r′)
↪ ▷Add the points on the negative r′ side of the polygon

15: return xsegpoly
16: end procedure

Finding the closest point on yield surface segments in zeff-r′ space
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Algorithm 35 Find the closest point from the trial stress state on the polyline describing the yield
surface
Require: xtrial.ze�, xtrial.r′, xsegpoly
1: procedure findClosestPoint
2: i ← 0

3: for {xsegstart, xsegend} in xsegpoly do
4: xseg ← xsegend − xsegstart
5: xproj ← xtrial − xsegstart
6: t ← xproj ⋅xseg

∥xseg∥
7: i ← i + 1
8: if t < 0 then
9: x[i] ← xsegstart
10: else if t > 1 then
11: x[i] ← xsegend
12: else
13: x[i] ← xsegstart + t xseg
14: end if
15: end for
16: d2min ← DOUBLE_MAX
17: xclose ← 000

18: for xi in x do
19: d2 ← distanceSq(xi , xtrial)
20: if d2 < d2min then
21: d2min ← d2
22: xclose ← xi
23: end if
24: end for
25: return xclose
26: end procedure

5.2.7 Consistency bisection algorithm

Algorithm 36¿e consistency bisection algorithm for partially saturated materials

Require: δε, εp,k , σ k , Kk , Gk , (pw)k , ϕk , Skw , Xk , strial, Ie�,trial1 ,
√
Jtrial2 , rtrial, ztriale� , εp,trialv , ptrial3 , a1, a2,

a3, a4, I
peak
1 , Rc , β, imax, jmax, σ�xed, δε

p
�xed , yieldCondition

1: procedure consistencyBisection
2: δεp,�xedv ← tr(δεp�xed)
3: i ← 1
4: ηin ← 0, ηout ← 1
5: while abs(ηout − ηin) > TOLERANCE do
6: j ← 1
7: isElastic← TRUE
8: while isElastic = TRUE do
9: ηmid ← 1

2(η
in + ηout)

10: δεp,midv ← ηmidδεp,�xedv
11: (pw)mid, ϕmid, Smidw , Xmid ← computeInternalVariables(Kk , Gk , (pw)k , ϕk , Skw ,

↪ Xk , δεp,midv )▷Update the internal variables using the bisected increment
↪ of the volumetric plastic strain

12: isElastic← yieldCondition.evalYieldCondition(Ie�,trial1 ,
√
Jtrial2 , Xmid, (pw)mid,

↪ ϕmid, Smidw , a1, a2, a3, a4, I
peak
1 , Rc , β)
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↪ ▷Determine whether the trial stress is elastic or not
13: if isElastic = TRUE then
14: ηout ← ηmid ▷If the local trial state is inside the updated yield surface, the yield

↪ condition evaluates to “elastic”. We need to reduce the size of the
↪ yield surface by decreasing the plastic strain increment.

15: j ← j + 1
16: if j ≥ jmax then
17: return isSuccess← FALSE▷¿e bisection algorithm failed because of

↪ too many iterations.
18: end if
19: end if
20: end while
21: σnew�xed, δε

p,new
�xed ← nonHardeningReturn(σ k , δε, Xmid, Kk , Gk , (pw)mid,

↪ strial,
√
Jtrial2 , rtrial, ztriale� , a1, a2, a3, a4, I

peak
1 , Rc , β)

↪ ▷Compute return to updated yield surface (no hardening)
22: if sign(tr(σtrial − σnew�xed)) ≠ sign(tr(σtrial − σ�xed)) then
23: ηout ← ηmid ▷Too much plastic strain
24: continue
25: end if
26: if ∥δεp,new�xed ∥ > ηmid∥δεp�xed∥ then
27: ηin ← ηmid ▷Too little plastic strain
28: else
29: ηout ← ηmid ▷Too much plastic strain
30: end if
31: i ← i + 1
32: if i ≥ imax then
33: return isSuccess← FALSE▷Too many iterations
34: end if
35: end while
36: δεp,k+1v ,�xed ← tr(δεp,k+1�xed )

37: (pw)k+1, ϕk+1, Sk+1w , Xk+1 ← computeInternalVariables(Kk , Gk , (pw)k , ϕk , Skw ,
↪ Xk , δεp,k+1v ,�xed)▷Update the internal variables using the bisected increment
↪ of the volumetric plastic strain

38: σ k+1 ← σnew�xed , αk+1 ← −(pw)k+1I , pk+13 ← ptrial3
39: εp,k+1 = εp,k + δεp,k+1 ▷Update the plastic strain
40: Kk+1, Gk+1, sk+1, (pw)k+1, Ie�,k+11 ,

√
Jk+12 , rk+1, zk+1e� , εp,k+1v ←

↪ computeElasticProperties(σ k+1, ϕk+1, Sk+1w , εp,k+1, αk+1, pk+13 )
↪ ▷Compute elastic moduli and stress invariants for the new state

41: return isSuccess← TRUE, σ k+1, εp,k+1, αk+1, (pw)k+1, ϕk+1, Sk+1w , Xk+1, Kk+1, Gk+1,
↪ sk+1, (pw)k+1, Ie�,k+11 ,

√
Jk+12 , rk+1, zk+1e� , εp,k+1v , pk+13

42: end procedure

Updating the internal variables

Algorithm 37 Updating the internal variables for partially saturated materials

Require: σ k , εp,kv , Kk ,Gk , (pw)k , ϕk , Skw , Xk , δεpv , fluidParams, crushParams, airModel, waterModel
1: procedure computeInternalVariables
2: εp,kv ← −εp,kv , δεpv ← −δεpv
3: pw0 ← fluidParams.pw0 , S0 ← fluidParams.S0, ϕ0 ← fluidParams.ϕ0, psat1 ← crushParams.psat1
4: Ka ← airModel.computeBulkModulus((pw)k)
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5: Kw ← waterModel.computeBulkModulus((pw)k)
6: εa,0v ← airModel.computeElasticVolumetricStrain(pw0)
7: εav ← airModel.computeElasticVolumetricStrain((pw)k)
8: εwv ← waterModel.computeElasticVolumetricStrain((pw)k , pw0)
9: εav ← −(εav − εa,0v ), εwv ← −εwv
10: Cp ← S0 exp(εav − εwv )
11: Dp ←

1−S0
(1−S0+Cp)2

12:
dCp
dpw

← Cp [
1
Ka
− 1

Kw ]

13: Ga ← exp(εp,kv − εav), Gw ← exp(εp,kv − εwv )

14: Bp ←
1

(1−S0)Ga+S0 Gw [−
(1−ϕk)ϕk

ϕ0
(
Skw
Kw +

1−Skw
Ka

) +
1−S0
Ka
Ga +

S0
Kw Gw]

15: (pw)k+1 ← max [(pw)k + 1
Bp δε

p
v , 0] ▷Update the pore pressure making sure that pressure does

↪ not become negative during dilatative plastic deformations.

16: Xd ,
dXd

dεpv
← computeDrainedHydrostaticStrengthAndDeriv(εp,kv )

↪ ▷Compute the drained hydrostatic compressive strength and its derivative

17: Xk+1 = −Xk +
⎡
⎢
⎢
⎢
⎣
(1 − Skw + psat1 Skw)

dXd

dεpv
+ Xd (psat1 − 1) Dp

Bp
dCp
dpw

+
3
Bp

⎤
⎥
⎥
⎥
⎦
δεpv

↪ ▷Update the hydrostatic compressive strength
18: Xk+1 ← −Xk+1

19: εp,k+1v ← εp,kv + δεpv ▷Compute the updated volumetric plastic strain.
20: εa,k+1v ← airModel.computeElasticVolumetricStrain((pw)k+1)
21: εw ,k+1v ← waterModel.computeElasticVolumetricStrain((pw)k+1, pw0)
22: εa,k+1v ← −(εa,k+1v − εa,0v ), εw ,k+1v ← −εw ,k+1v ▷¿e updated strains in the �uid phases.
23: Ck+1p ← S0 exp(εa,k+1v − εw ,k+1v )

24: Sk+1w ←
Ck+1p

1−S0+Ck+1p
▷Update the saturation

25: Gk+1a ← exp(εp,k+1v − εa,k+1v ), Gk+1w ← exp(εp,k+1v − εw ,k+1v )

26: ϕk+1 ← (1 − S0)ϕ0Gk+1a + S0ϕ0Gk+1w ▷Update the porosity
27: return (pw)k+1, ϕk+1, Sk+1w , Xk+1

28: end procedure

Algorithm 38 Computing the drained hydrostatic strength and its derivative

Require: εp,kv , fluidParams, crushParams
1: procedure computeDrainedHydrostaticStrengthAndDeriv
2: ϕ0 ← fluidParams.ϕ0
3: p0 ← crushParams.p0, p1 ← crushParams.p1, psat1 ← crushParams.psat1 , p2 ← crushParams.p2
4: p3 ← − log(1 − ϕ0)
5: Xd ← max(p0, 1000);▷Xd has a minimum value of 1000 pressure units

6:
dXd

dεpv
← 0

7: if εp,kv > 0 then
8: ϕtemp ← exp(−p3 + ε

p,k
v )

9: ϕ ← 1 − ϕtemp
10: ξ ← p1 pow(

ϕ0
ϕ − 1, 1

p2 )

11: Xd ← Xd + ξ
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12:
dXd

dεpv
← 1

p2
ϕ0
ϕ ϕtemp ξ

ϕ ( ϕ0ϕ −1)
13: end if

14: return Xd ,
dXd

dεpv
15: end procedure

5.2.8 Rate-dependent plastic update

Algorithm 39 Computing the correction to the stress due to rate-dependent plasticity
Require: ∆t, dn+1, σn, Kn, Gn, ϕn, Snw , Xn, αn, εp,n, pn3 , σnqs, σn+1qs , Kn+1, Gn+1, ϕn+1, Sn+1w , Xn+1, αn+1,

εp,n+1, pn+13 , a1, a2, a3, a4, I
peak
1 , Rc , yieldParams

1: procedure rateDependentPlasticUpdate
2: T1 ← yieldParams.T1, T2 ← yieldParams.T2
3: if T1 = 0 or T2 = 0 then▷Check if rate-dependent plasticity has been turned on
4: return isRateDependent← FALSE, σn+1qs
5: end if
6: Kdyn ← 1

2(K
n + Kn+1), Gdyn ←

1
2(G

n +Gn+1) ▷Compute mid-step bulk and shear modulus
7: ∆ε ← ∆t dn+1
8: σtrial,dyn ← computeTrialStress(σn, Kdyn, Gdyn, dn+1, ∆t)▷Compute substep trial stress
9: ε̇ ← max(∥dn+1∥, ABS_DOUBLE_MIN)
10: τ ← T1 pow(ε̇, T2)▷¿e characteristic time is de�ned from the rate-dependence

↪ input parameters and the magnitude of the strain rate
11: rh ← exp (−∆t

τ )

12: RH ← 1−rh
∆t
τ

13: σn+1 ← σn+1qs + [(σtrial,dyn − σn) − (σn+1qs − σnqs)] RH + (σn − σnqs) rh ▷Stress update
14: return σn+1, isRateDependent← TRUE
15: end procedure
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6 Parameter fitting

¿e Arenamodel parameters are �t in eight stages:

1. Stage 1: Fit the bulkmodulusmodel for the dry soil using low strain-rate hydrostatic compression
data. Fit a shear modulus model assuming a constant Poisson’s ratio.

2. Stage 2: Fit the hydrostatic compressive strength model (crush curve) for the dry soil using low
strain-rate hydrostatic compression data

3. Stage 3: Fit the limit surface model for the dry soil using low strain-rate traixial compression
data

4. Stage 4: Fit the rate dependence parameters for the dry soil using high rate split Hopkison pres-
sure bar (SHPB) data

5. Stage 5: Fit the damage model for the dry soil using high rate SHPB data

6. Stage 6: Fit the density-dependence model for the dry soil using high rate SHPB data

7. Stage 7: Fit the fully saturated hydrostatic strength parameter for the saturated soil using SPHB
data for partially saturated soil.

8. Stage 8: Fit the parameter variability model using low strain-rate triaxial compression data.

¿ese steps presume the idealized case that all required data are available, spanning ranges expected in
applications. As is common for complex constitutive models, some hand �tting of parameters might
be needed along with and engineering judgment for data extrapolation.

6.1 Data cleaning and processing

Experimental data are typically made available in spreadsheets that o en contain metadata and test
results (including computations) in a single sheet. ¿ese data should ideally be read, cleaned, and
processed in a repeatable and systematic manner. We used the R programming language to process
the data for parameter �tting.

¿e raw data also typically have several thousand data points per test. An optimization algorithm is
typically used to �t the models to the data. To improve the e�ciency of the optimization process, we
resampled the data at 1000 equal intervals. ¿e resampled data are essentially indistinguishable from
the raw data at that resolution.

For the bulk modulus and crush curve models, loading and unloading segments must be extracted
from hydrostatic stress-strain curves. To automate this process, central-di�erences based derivatives
of the pressure-time curves were computed, and the points where the derivative of pressure changed
sign were extracted and used to identify the segments corresponding to loading and unloading. ¿ese
curves for dry Mason sand and Boulder clay are shown in Fig. 3. As mentioned in the introduction,
creep and/or �uid seepage (especially pronounced in the clay data) must be removed (e.g., by using a
viscoelastic model) to obtain crush curve data appropriate for high-rate loading in which these e�ects
are negligible. Ideally, quasistatic crush data should be taken at a variety of temperatures in order to
convert these e�ectively isothermal crush curves to the adiabatic curves needed for high-rate loading
– bringing rigor to this process is an excellent avenue for future research.

In general, the Levenberg-Marquardt algorithm does not produce adequate �ts to the data. For ex-
ample, parameters may be produced that lead to negative bulk moduli or yield functions that are not
convex. To rectify this problem, a constrained optimization (minimization) algorithm is typically used
to �t the data. ¿e BFGS algorithm is a robustmethod that can be used to solve theminimization prob-
lem.
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Figure 3 – Load-unload curves for sand and clay under hydrostatic compression.

For example, when �tting the yield surface parameters, the minimization problem is posed as:

argmin
θ

J(θ) = 1
2∥f(θ; x) − y∥

2

such that M ⋅ θ ≥ 000
(259)

where θ = [a1 a2 a3 a4]T , x = [I(1)1 I(2)1 . . . I(m)1 ]T , y = [
√
J2
(1) √J2

(2) . . .
√
J2
(m)

]T , and

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
1 0 −1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

¿e function f(θ; x) is the vector-valued yield function and J(θ) is the scalar-valued objective function.
¿e gradients of the objective function with respect to the parameters are:

∇J =
∂J
∂θ

= [f(θ; x) − y] ⋅
∂f
∂θ

. (260)

For �tting some of the parameters, such as those used tomodel rate-dependence, it is more convenient
to use a package such as Dakota (Adams et al., 2009).

6.2 Stage 1: Bulk and shear modulus model parameters

A er the unloading segments of the hydrostatic compression stress-strain curves have been identi�ed
as shown in Fig. 3, the elastic strain in the unloading segments has to be determined. ¿emost straight-
forwardway of doing this is to assume an additive decomposition of strain into elastic and plastic parts.
¿e unrecoverable strain at zero stress is subtracted from the total strain to get the elastic volumetric
strain. Plots of mean stress as a function of elastic volumetric strain are shown in Fig. 4.

¿e behavior observed in the �gure can be modeled with a log-logistic curve that saturates at a value
of p = Ks(p), where p is the pressure (mean stress) and Ks is the bulk modulus of the matrix solid
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Figure 4 –¿e pressure as a function of the volumetric elastic strain for sand and
clay. Note the creep that is apparent in the �rst unloading stage of the
Boulder clay sample. Also note that the initial bulk moduli suggested by
these data are very small.

material (assumed to be granite in our case). ¿e log-logistic function has the form

p
Ks(p)

=
b1

b2 + (
εev
b3
)

−b4
where Ks(p) = Ks0 + ns(p − ps0) (261)

where εev is the elastic volumetric strain and b1 > 0, b2 > 0, b3 > 0, b4 > 1 are parameters that depend
on the material. Note that the model (261) requires that εev > 0 and is compressive. Equation (261) can
be expressed as

p
Ks(p)

=
b1

b2 + (
b3
εev
)

b4
=

b1(εev)b4

b2(εev)b4 + b
b4
3

(262)

¿erefore, at εev = 0we have p = 0. ¿is form of the equation is more convenient for the computation of
pressure because the singularity at zero strain can be avoided. For zero stress and tensile stress states,
we can use the “near-zero” value of the bulk modulus given by this model. However, the bulk modulus
predicted by this model is zero when p = 0. We can rectify that problem by adding a linear term to the
pressure model such that

p
Ks(p)

= b0 εev +
b1(εev)b4

b2(εev)b4 + b3
(263)

where b0 > 0. Dependence on plastic strain can be added to the model if needed. ¿e disadvantage
of this model is that there is no closed form expression for the volumetric elastic strain in terms of the
mean stress (pressure).

Fig. 5 shows �ts of the pressuremodel to the experimental data. ¿e rapid increase in the bulkmodulus
at higher strains is deliberately not �tted closely because creep e�ects are dominant in this region. Also
note that much larger volumetric strains are expected in numerical simulations than are reached in the
experiments.

© Parresia Research Limited
PAR-10021867-1516: GranularMediaModelProjectDocumentationFinalLongVersion.pdf

Page 65 of 129



Arena model
PAR-10021867-1516.v1 Wednesday 20th September, 2017

0

50

100

150

0.00 0.05 0.10 0.15
Elastic logarithmic volumetric strain

E
ffe

ct
iv

e 
m

ea
n 

st
re

ss
 (

M
P

a)

Unloading stage 1: Plastic strain =  0.119
Unloading stage 2: Plastic strain =  0.253
NASA data: Unloading stage 1
NASA data: Unloading stage 2
Curve fit

(a)
Dry Mason sand.

0

50

100

150

0.00 0.02 0.04 0.06
Elastic logarithmic volumetric strain

E
ffe

ct
iv

e 
m

ea
n 

st
re

ss
 (

M
P

a)

Unloading stage 2: Plastic strain =  0.179
Curve fit

b0 = 0.0010, b1 = 1.1336, b2 = 1.4994, b3 = 2.2909, b4 = 1.7340

(b) Dry Boulder clay.

Figure 5 – Experimental data of pressure vs. elastic volumetric strain for sand and
clay showing �ts to the model in equation (263).

¿e tangent bulk modulus is de�ned as

K(p) ∶=
dp
dεev

. (264)

¿en, from (263), we have

[
1
Ks

−
nsp
K2
s
]
dp
dεev

= b0 +
b1b3b4(εev)b4−1

[b2(εev)b4 + b3]
2 . (265)

Using de�nition (264), we have an expression for the bulk modulus of the soil:

K(p) =
K2
s

(Ks − nsp)

⎡
⎢
⎢
⎢
⎢
⎣

b0 +
b1b3b4(εev)b4−1

[b2(εev)b4 + b3]
2

⎤
⎥
⎥
⎥
⎥
⎦

. (266)

To express (266) in closed-form in terms of p we have to eliminate εev . But a closed form expression for
the volumetric elastic strain cannot be derived from the pressure model. So we �nd an approximate
form of (263) by assuming b0 → 0. ¿is approximation is valid at moderate to large strains. ¿en,
from (263) with b0 = 0, we have

εev ≈ [
b3p

b1Ks(p) − b2p
]

1/b4
(267)

and (266) can be expressed as

K(p) =
K2
s

(Ks − nsp)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0 +
b1b3b4 (

b3p
b1Ks(p)−b2p)

1−1/b4

[b2 (
b3p

b1Ks(p)−b2p) + b3]
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (268)

¿e plots in Fig. 6 shows the tangent bulk moduli predicted by the model for Mason sand and Boulder
clay. To con�rm that the approximations introduced in equation (268) do not cause the predicted
stress-strain behavior to deviate signi�cantly from the experimental data, we can integrate the bulk
modulus with respect to the volumetric strain to produce pressure vs. volumetric strain curves. ¿e
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Figure 6 – Predicted bulk modulus vs. pressure for dryMason sand and Boulder clay
using the model in (268).

Table 1 – Bulk modulus model parameters for Mason sand and Boulder clay

Dry Mason sand

b0 b1 b2 b3 b4 ps0 Ks0 ns

(Pa) (GPa)

Dry Mason sand 0.0029 0.4731 1.5057 2.5728 2.0799 101325 40 4

Dry Boulder clay 0.0010 1.1336 1.4994 2.2909 1.7340 101325 40 4
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model reproduces the experimental stress-strain data for bothMason sand andBoulder clay reasonably
well.

¿e bulk modulus model parameters for Mason sand and Boulder clay are shown in Table 1. For the
shear modulus model, we assume a constant Poisson’s ratio of 0.35 (ν1 = 0.35, ν2 = 0) for clay while for
sand we use a Poisson’s ratio that decreases from 0.35 to 0 (ν1 = 0.35, ν2 = −0.35) over the course of
deformation.

6.3 Stage 2: Crush curve parameters

¿e experimental data typically contain a void ratio that can be converted into porosity. Plots of the
porosity as a function of mean strain for the two loading steps in the hydrostatic compression test data
for Mason sand and Boulder clay are shown in Fig. 7.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 50 100 150
Effective mean stress (MPa)

P
or

os
ity

Loading stage 1
Unoading stage 1
Loading stage 2
Unoading stage 2

(a) Dry Mason sand.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 50 100 150
Effective mean stress (MPa)

P
or

os
ity

Loading stage 1
Unoading stage 1
Loading stage 2
Unoading stage 2

(b) Dry Boulder clay.

Figure 7 – Porosity as a function of pressure for dry Mason sand and Boulder clay.

From the �gures we observe that:

1. ¿e porosity is not constant at any point in the loading process in the �rst loading leg. ¿is
indicates that the critical elastic limit pressure beyond which there are changes in porosity in the
sample is close to zero.

2. ¿e porosity decreases during the �rst unloading leg, indicating that part of the change in poros-
ity is elastic.

3. During the elastic stage of the second loading leg, the inelastic part of the change in porosity is
again less than the total change in porosity.

For consistency with the simpli�cations we have made in the Arenamodel, i.e. that the porosity de-
pends only on the plastic volumetric strain, we have to remove the elastic part of the porosity from the
total porosity before �tting the hydrostatic strength model. We use an approach similar to that used to
determine volumetric plastic strains to compute the elastic and inelastic parts of the porosity during a
loading step. Plots of the plastic part of the porosity as a function of pressure are shown in Fig. 8. ¿ese
�gures are called crush curves.

We assume (Brannon, Fuller, et al., 2015) the following relation between the rate of change of plastic
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Figure 8 – Inelastic part of the porosity as a function of mean stress.

porosity (Π) and the plastic volume strain (εpv ):

dΠ
dt

= (1 −Π)
dεpv
dt

. (269)

In integral form, the above equation can be written as

∫

Π

Π0

1
1 −Π

dΠ = ∫

εpv

0
dεpv . (270)

Integration gives

εpv = ln(
1 −Π
1 −Π0

) . (271)

Alternatively, Let Π0 be the initial porosity. ¿en the above equation has the solution

Π = 1 − (1 −Π0) exp(ε
p
v ) . (272)

If we de�ne p3 such that
exp(−p3) ∶= 1 −Π0 (273)

we have
Π = 1 − exp(−p3 + ε

p
v ) . (274)

Examination of the experimental data for dry Mason sand shows that the change in porosity is pre-
dicted very well by equation (272). ¿e �t for Boulder clay is not as accurate, but the errors are typically
less than 5%.

Next we relate the plastic porosity to the hydrostatic compressive strength (X) to complete the crush
curve. We assume the rational sigmoid form:

Π =
Π0

1 + p1 X p2
. (275)

where Π0 = 1 − exp(−p3). Equating (274) and (275) gives us a relation between the plastic volumetric
strain and the pressure along the hydrostat:

1 − exp(−p3 + ε
p
v )

1 − exp(−p3)
=

1
1 + p1 X p2

(276)
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or
p3 − ε

p
v = − ln [1 −

1 − exp(−p3)
1 + p1 X p2

] . (277)

¿e inverse relationship is

X = [
1
p1

(
1 − exp(−p3)

1 − exp(−p3 + ε
p
v )

− 1)]
1/p2

. (278)

For curve �tting purposes, we can use the right hand side of (276) to �nd the Jacobian needed by the
minimization algorithm. ¿e relevant derivatives are

dJ
dp1

= −
X p2

[1 + p1 X p2]
2 and

dJ
dp2

= −
p1 X p2 lnX

[1 + p1 X
p2
]
2 . (279)

Fits to the experimental data using this model are quite accurate for the range of available data as can
be seen in Fig. 9.
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Figure 9 – Crush curve �ts in mean stress vs. volumetric plastic strain space.

¿e parameters �t to the dry Mason sand Boulder clay are listed below. in Table 2.

Table 2 – Crush curve model parameters for dry Mason sand.

p0 p1 p2 p3

(Pa) (MPa)

Dry Mason sand 0 482.7 0.719 0.448

Dry Boulder clay 0 2224 0.354 0.423

6.3.1 Stage 3: Yield function parameters

To determine the parameters for the quasistatic limit surface, we need triaxial stress data for a set of
con�ning pressures. If such data are not available for a particular soil, we can use data for a comparable

© Parresia Research Limited
PAR-10021867-1516: GranularMediaModelProjectDocumentationFinalLongVersion.pdf

Page 70 of 129



Arena model
PAR-10021867-1516.v1 Wednesday 20th September, 2017

soil (which can be compared on the basis of density and grain size distribution). Typical plots of the
stress di�erence as a function of the axial strain for consolidated sands are shown in Fig. 10(a). For
Boulder clay, the equivalent plots are given in Fig. 10(b).
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Figure 10 – Di�erence between axial and radial stress as a function of axial stress
from triaxial compression experiments.

¿e data in Fig. 10 plotted in q-p space (stress di�erence vs. mean stress) is shown in Fig. 11. Note
that the experimental data for dry Mason sand was collected only for a single con�ning pressure (207
kPa). ¿ese data have been augmented with data on a comparable sand fromM.A.¿omas and Chitty,
2011. Also, note that some of the data for Boulder clay suggest that the limit surface may not have been
reached.
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Figure 11 – Combined triaxial loading data for dryMason sand (207 kPa) and a com-
parable sand from a di�erent source (M. A. ¿omas and Chitty, 2011)
(le ) and dry Boulder clay (right). Both sets of data are from consoli-
dated undrained tests on nominally dry soils.
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Recall that the Arena yield function is de�ned as:
√
J2 = [a1 − a3 exp(−a2I1)] + a4I1 (280)

where J2 is the second invariant of the deviatoric stress and I1 is the trace of the stress. We want to
�nd the parameters a1, a2, a3, and a4. ¿ese parameters are related to Ipeak1 (PEAKI1), f slope (FSLOPE),
√
Jcoh2 (STREN), and yslope (YSLOPE) by

α1 ∶= I
peak
1 , α2 ∶= f slope , α3 ∶= yslope , α4 ∶=

√
Jcoh2

a1 = α4 , a2 =
α2 − α3
α4 − α1α3

a3 = (α4 − α1α3) exp(−a2α1) , a4 = α3 .

(281)

We solve a constrained optimization problem to �nd the best �t to the experimental data in a least-
squares sense. ¿e limit surface is determined by the maximum values of the stress-di�erence that is
achieved in the experiments. ¿e�ts to the resulting data points are shown in Fig. 12. Neither of the data
sets in these plots is adequate for �tting a nonlinear limit surface. However, this lack of data is typical
and the modeler has to take into consideration other experiments to make sure that the �t parameters
are appropriate. For example, our attempts to simulate SHPB experiments with the �t parameters for
the Boulder clay showed that the initial slope of the limit surface curve was too small, and a recursive
�t to the SHPB provided a di�erent set of parameters (shown in blue in the �gure). Also, for numerical
robustness, the value of Ipeak1 is typically assumed to be greater than 1 kPa.
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Figure 12 – Yield functions �tted to the combined triaxial loading data for sand and
clay.

We also need the cap ratio (Rc) and the non-associativity parameter (β) to de�ne the limit surface.
¿e cap ratio can be estimated using hydrostatic and uniaxial strain data. We use a value of 0.5 based
on observations of uniaxial strain SHPB data. ¿e non-associativity parameter can be determined
a er the rate-dependence parameters have been found by �tting experimental uniaxial strain loading
curves. ¿e parameters computed from the limit surface �tting process are listed in Table 3.

6.3.2 Stage 4: Rate-dependence parameters
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Table 3 – Yield condition parameters for dry Mason sand and Boulder clay

a1 a2 a3 a4 PEAKI1 FSLOPE YSLOPE STREN Rc β
(kPa) (kPa−1) (kPa) (kPa) (kPa)

Dry Mason sand 556 5.49e-4 556 0.143 -1.23e-4 0.448 0.143 556
(hand �t) 1 0.453 0.31 10000 0.5 2
Dry Boulder clay 23.5 2.77e-08 1600 0.239 91.6 0.239 0.239 23.5
(hand �t) 1 0.356 0.355 17700 0.5 1

If the �tted rate-independent limit surface is used to simulate the response during a high-rate process
such as a split Hopkinson bar test, the predicted stresses are much lower than their observed values.
¿is common observation is the primary evidence motivating a high-rate component in the model.

To calibrate the Arenamodel for high-rate processes we have to estimate the rate-dependence param-
eters T1 and T2.

We can use the loading-stage curves of axial and radial stress from SHPB tests to �t these parame-
ters. ¿e optimization problem is slight more complex in this case because the convex minimization
problem now has the form

argmin
θ

J(θ) = 1
2 (∥f1(θ; x) − y1∥

2
+ ∥f2(θ; x) − y2∥2)

such that M ⋅ θ ≥ 000
(282)

where θ = [T1 T2]T , x = [t(1) t(2) . . . t(m)]T , y1 = [σ(1)11 σ(2)11 . . . σ(m)11 ]T , y2 = [σ(1)22 σ(2)22 . . . σ(m)22 ]T ,
andM is the matrix de�ning the constraints on T1 and T2. Here, t is the time, σ11 is the axial stress, σ22
is the radial stress, and m is the number of samples. An alternative formulation of the problem is to
remove the time-dependence and formulate the minimization problem in p-q space. However, some
of the resolution of the objective function is lost if the time variable is removed from the objective
function. Also note that the functions f1 and f2 are generated from simulations of a single particle
with the material point method (MPM). ¿e deformation of the particle is driven using deformation
gradients computed from the experimental data. A two-level factorial design of experiments is used to
narrow down the values of the parameters that are input as initial values to the optimization algorithm.

A er the �t parameters have been found, we can used these for a single particle simulation. ¿e pre-
dicted stress-time curves for the dry Mason sand calibration sample are shown in Fig. 13. ¿e solid
lines show the predicted stresses while the blue line show the experimental values. Fig. 14(a) and
(b) show the �ts to the data for dry Colorado Mason sand and dry Boulder clay. ¿e rate-dependence
parameters for the two materials are, for dry Colorado Mason sand, T1 = 5.0e-5, T2 = 0.5 and for dry
Boulder clay, T1 = 1.0e-6, T2 = 0.5.

¿e Arenamodel is essentially a specialized cap plasticity model (with enhancements for �uid e�ects
and soil preparation), so its meridional yield pro�le is in the shape of an evolving teardrop. As depicted
in Fig. 14, the movement of the stress state (blue dashed line) for experimental SHPB data is well cap-
tured with the Arenamodel (red line); the sequence of evolving teardrop yield surfaces is controlled
primarily by the cap hardening evolution equations.

6.3.3 Stage 5: Damage model parameters

Damage model parameters can also be �t using the uniaxial-strain compression data from SHPB tests.
However, there are two issues that have to be considered in this case. ¿e �rst is that even though the
region of interest is only the unloading part of the axial and radial stress-time curves, the damagemodel
starts to a�ect the stress before the peak stress is attained. ¿e second issue is that the Arenamodel
does not consider the possibility of a decrease in hydrostatic compressive strength a er the peak stress
has been reached. ¿ese factors preclude rigorously �tting of a curve byminimizing a convex objective
function. In particular, Arenawill not predict the observed decrease in mean stress with increasing
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Figure 13 – Predicted and experimental stress-time curves for split-Hopkinson pres-
sure bar uniaxial compression tests on dry sand and clay.
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(b) Dry Boulder clay.

Figure 14 – Dynamic stress in z-r-space – comparisons between predictions (solid)
and experimental data (dashed) from split-Hopkinson pressure bar uni-
axial compression tests.
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volumetric strain. ¿erefore, it is more convenient to use a design-of-experiments approach to �nd an
estimate of the damage model parameters.

Fig. 15(a) compares the predicted stress-time curves (solid lines) and the experimental data (dashed
lines) for dry Mason sand with an initial density of 1520 kg/m3. Plots of the axial stress-strain curves
and the same data are given in Fig. 15(b). ¿e parameters used in the simulations were f speed = 15 and
tfail = 0.80×10−3 s. ¿e “failed” parameters of the yield surface were Ipeak,fail1 = 1.0e-5 Pa, f failslope = 0.5

fslope, yfailslope = 1.0e-5,
√
Jcoh,fail2 = 0.5

√
Jcoh2 .
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Figure 15 – Dry Mason sand (a) stress-time curves predicted by the Arenamodel
(with damage) and the experimental split-Hopkinson pressure bar data,
and (b) axial stress vs. axial strain.

Comparisons of the stress-time and stress-strain curves for a Boulder clay sample are shown in Fig. 16.
¿e crush curve parameter p1 had to be recalibrated to �t the experimental SHPB data. ¿e new pa-
rameters are listed in Table 4. ¿ough the initial slope of the stress-strain curves is underestimated by
the model, the rapid increase in stress with time is predicted quite accuractely by Arena . ¿e initial
decrease in axial stress a er the stress peak at 750 microseconds is also predicted by our model. How-
ever, the decrease in radial stress seen in the experiment is not seen in our simulation and the rapid
drop in the axial stress is also not observed.

Table 4 – Crush curve model parameters for Boulder clay.

p0 p1 psat1 p2 p3

(kPa) (MPa)

Dry Boulder clay 0 2224 0 0.354 0.423

Wet Boulder clay 1 330 -1 0.454 0.423

If we examine the yield surface evolution and the predicted stress paths in Fig. 17, we see that the slope
of the load path is larger in the Arena simulation and, a er failure, the stress path does not retrace the
loading path. Instead, Arena predicts a load path that re�ects the fact that the yield surface continues
to grow along the hydrostatic axis. We are unsure whether the yield surface actually shrinks a er failure
in reality or whether the experimental data are re�ecting an artifact of the SHPB test procedure. It is
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Figure 16 – Dry Boulder clay (a) stress-time curves predicted by the Arenamodel
(with damage) and the experimental split-Hopkinson pressure bar data,
and (b) axial stress vs. axial strain.

unclear why the hydrostatic strength of the clay, even when fractured into a �ne powder, should decrease
as much as the experiments suggest since the material continues to be compressed.
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Figure 17 – Comparison of Arenamodel (with damage) and the experimental split-
Hopkinson pressure bar data showing yield surface evolution and stress
paths in z-r-space.

6.3.4 Stage 6: Density-dependence parameters

SHPB tests on dry Colorado Mason sand revealed a very strong dependence of the mechanical be-
havior of sands on initial density. To �t the Arena density-dependence model, we choose uniaxial
compressive strain SHPB data for Mason sand with initial densities of 1520 kg/m3 and 1700 kg/m3 and
use the optimization procedure discussed earlier to �nd estimates of the model parameter ρfac. ¿e
reference porosity (ϕref) is 0.42. We �nd that a �t parameter ρfac = 5 produces a reasonable �t to the
experimental data as shown in Fig. 18. Predicted stress-strain curves and the stress path in z-r-space
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Figure 18 – (a) Axial and (b) radial stress vs. time for sands of various initial den-
sities: model vs. split-Hopkinson pressure bar experimental data on dry
Mason sand, (c) axial stress vs. axial strain, (d) plot of stress path and
yield surface in z-r space for a validation sample.
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for a validation sample are shown in Fig. 18(c) and (d).

6.3.5 Stage 7: Fully saturated hydrostatic strength

For some soils, an additional parameter for the hydrostatic strength at full saturation (psat1 ) has to be
estimated. For instance, in the case of Colorado Mason sand, psat1 = p1. However, we have found that a
value of psat1 > p1 is needed to �t the experimental SHPB data for saturated Boulder clay.

¿e Boulder clay sample used for the estimation of the parameter psat1 had a 40.8% water content by
weight. ¿e equations discussed in Appendix B were used to convert the weight of water into a sat-
uration value. ¿e resulting saturation was found to be greater than 1, indicating swelling of the clay.
We assume in this section that the soil sample used for parameter estimation has a saturation of 90%
(Sw = 0.9) a er swelling, but that the porosity does not change signi�cantly during this process. We
also assume that tests on this sample can be used to estimate the fully saturated hydrostatic strength.

A design-of-experiments approach can be used to estimate a value of psat1 . In our case, psat1 = 5 produces
the stress vs. time plots shown in Fig. 19. ¿e predicted peak stresses are lower than those observed in
the experiments. However, the shapes of the stress-time curves match experimental data remarkably
well. We have also plotted the stresses in z-r-space in the �gure. ¿e z-r plots show that the z stress
dominates the stress data and the deviatoric part is small enough to be negligible.
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Figure 19 – Comparisons of predicted axial, radial, mean, and deviatoric stress with
experimental data from split-Hopkinson pressure bar uniaxial compres-
sion tests on 90% saturated Boulder clay.

Plots of axial stress vs. axial strain and the stress path in z-r-space are given in Fig. 20. If we examine
the stress-strain plot, we notice that the slope of the loading part of the curve is predicted reason-
ably well by Arena . However, the unloading curve appears to return along the loading path in the
Arena simulation because of our choice of damage model. Clearly, the simple damage model used in
Arenamay not be performing adequately in this case even though it captures the unloading curves
in Figure 19 reasonably well. If we look at the stress path in z-r stress space, the experiment appears
to produce results that are not close to the Arena predictions. However, this is an artifact of the small
values of the deviatoric stress in this experiment and probably indicates that the r-stresses are too small
to be resolved by the instrumentation used in the SHPB experiments.

6.3.6 Stage 8: Yield parameter variability
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(b) Dynamic stress in z − r-space

Figure 20 – Split-Hopkinson pressure bar: uniaxial: 90% saturated Boulder clay:
yield surface.

Statistical variation (as well as specimen scale e�ects) in yield parameter values from point-to-point
in a soil should ideally be extracted from the parameter �tting process. ¿is process has been applied
successfully to modeling ceramics (Strack, Leavy, and Brannon, 2014), but experimental data is typi-
cally incomplete, implying that unique values of the �t parameters cannot be found(see Appendix E) .
Lack of data, however, does not imply no need for data. Accordingly, any truly systematic experimental
program should report not only median observations, but also repeatability of the data as quanti�ed
by statistically signi�cant measurement of variance and scale e�ects.

During the parameter �tting process, we use on optimization algorithm that computes the Hessian on
the objective function with respective to the �t parameters. ¿e eigenvalues of these Hessian matri-
ces can provide an indication of the con�dence intervals that are appropriate for each parameter and
whether a parameter is constrained at all.

Fig. 21 shows parallel coordinate plots of the eigen decomposition of the Hessians of the objective
function at the �t points for the bulk modulus model. We can see from the plot that the eigenvalues of
theHessians for bothmaterials are separated into two distinct sets (one high value and three low values)
indicating that the parameters can be varied almost arbitrarily if we attempt to use the Hessian to
compute con�dence intervals. Alternate approaches are needed to determine the Weibull distribution
parameters for the yield condition model parameters.
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(a) Mason sand.

Eigenvalues Eigenvector 1 EigenVector 2 Eigenvector 3 Eigenvector 4

 0.00357

14.35228

−0.645

 0.710

−0.99995

 0.00764

−0.322

 0.704

−0.90340

 0.00566

(b) Boulder clay.

Figure 21 – Parallel coordinate plots of the eigen decompositions of the Hessian of the
objective function used to determine the parameters of the bulk modulus
model.
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7 ARENA model behavior

¿is section illutrates how the internal variables in themodel vary with changes in porosity and satura-
tion. Analytical expressions for the hydrostatic strength, porosity, and saturation are used to compute
the values predicted by the model. Since an analytical expression does not exist for the pore pressure,
a forward Euler integration process (with a plastic strain increment of 0.001) is used to compute the
pore pressure in the partially saturated soil model.

7.1 Pore pressure

Figure 22 shows the computed pore pressure as a function of the volumetric plastic strain. For a given
initial porosity, the pore pressure increases with increasing volumetric plastic strain. ¿e rate of in-
crease of pore pressure is slow in the initial stages of compression but increases rapidly a er an in�ec-
tion point. A monotonic rate of increase is observed for small initial porosity values but the rate of
increase is generally not monotonic. If we change the saturation but keep the initial porosity �xed, we
observe that the pore pressure decreases as the degree of initial saturation is reduced. Note that even
when the saturation is zero, a small pore pressure develops due to the compression of the air in the
pores.
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Figure 22 – Arena predictions of the pore pressure as a function of plastic volumetric
strain.

7.2 Hydrostatic compressive strength

¿e e�ect of varying porosity and saturation on the hydrostatic compressive strength is shown in Fig-
ure 23. ¿e plots have been presented in the form commonly used for consolidation curves for soils
(the volumetric plastic strain is a proxy for the void ratio). We observe that Arena predicts that the hy-
drostatic compressive strength decreases with increasing porosity and the curves contain an in�ection
point where the slope of the plastic strain - compressive strength curve changes rapidly. Arena also
predicts that when the volumetric plastic strain exceeds a threshold (whose value depends on the ini-
tial porosity) the hydrostatic strength increases without any change in the plastic strain. If we keep
the initial porosity constant and increase the saturation, we observe that the strain-stress curves shi 
to the right indicating an increase in strength. Both sets of plots in the �gure are largely according to
intuition. ¿e in�ection points in the curves are cause by the compression of the air in the voids and
are absent if the material is either fully saturated or dry.
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Figure 23 – Arena soil hydrostatic compressive strength as a function of plastic vol-
umetric strain.

7.3 Porosity

Figure 24 shows the porosity predicted by Arena as a function of the volumetric plastic strain for
various initial values of porosity and saturation. Notice that the porosity decreases as the material
is compressed. However, beyond a compression threshold, the porosity starts increasing due to the
presence of the pore �uids. ¿is e�ect becomes clearer when we vary the saturation while keeping the
initial porosity �xed. In that case we notice that if the initial saturation is zero, the material continues
to be compressed without any increase in porosity. However, if the material is initially fully saturated,
the porosity decreases momentarily and then starts increasing. It is unclear whether this is a physically
observed e�ect or just an artifact of the assumptions we have made in the Arenamodel.
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Figure 24 – Porosity predicted by Arena as a function of plastic volumetric strain.

To explore the above behavior further and the determine the e�ect of pore pressure, we can plot the
porosity as a function of pore pressure as shown in Figure 25. ¿e pore pressure increases monotoni-
cally with the plastic volumetric strain, which is the expected behavior of the model.
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Figure 25 – Porosity predicted by Arena as a function of pore pressure.

7.4 Saturation

Plots of the saturation as a function of volumetric plastic strain are shown in Figure 26. ¿e saturation
increases rapidly until it reaches the limiting value of 1. When the initial saturation is 0 or 1, we do not
observe any change in saturation with increasing compression.
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Figure 26 – Saturation as a function of plastic volumetric strain (varying initial
porosity).

Alternatively, if we plot the saturation as a function of pore pressure, we get the behavior shown in
Figure 27. If we start with the same initial saturation, the pore pressure vs. saturation curves do not
change depending on the initial porosity. Also, the saturation rapidly reaches the limiting value of 1 as
the pore pressure increases.
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Figure 27 – Saturation as a function of pore pressure (varying initial porosity).
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8 ARENA model verification with MPM

Typical veri�cation tests for pressure-dependent nonlinear plasticity models for granular material in-
clude hydrostatic compression, uniaxial compression, uniaxial tension, and multiaxial strain loading
paths, all of which are a�ne (single element) deformations. A momentum balance solver (in this case
the material point method - MPM) and a complete constitutive model implementation for the mo-
mentum solver are used to compute predicted values of stresses, plastic and elastic strains, and internal
variables in non-a�ne deformations. As summarized in Brannon, Fuller, et al., 2015, predicted values
may then either be comparedwithmodel predictions from, for example, the bulkmodulus/crush curve
model, trend tests, or manufactured solutions (c.f.Kamojjala et al., 2015).

In the case of anArena implementation, preliminary veri�cation tests can be performed using the some
of the tests suggested by Brannon and co-workers (Kamojjala et al., 2015). However, exact veri�cation
of the complete Arenamodel is nontrivial andmanufactured solutions have not yet been developed for
the model. In this section we discuss a few veri�cation tests that, while not exact comparisons, provide
con�dence that the model has been implemented without major errors.

¿is section provides evidence of passing the following veri�cation tests:

1. Hydrostatic compressive loading-unloading of a dry sand

2. Hydrostatic loading of a fully saturated sand

3. Uniaxial compressive loading of a dry sand

4. Uniaxial compressive loading of a fully saturated sand

5. Uniaxial tensile loading of a dry sand

6. Multiaxial loading-unloading of a dry sand

8.1 Hydrostatic compression loading and unloading: Dry sand

¿e hydrostatic loading-unloading simulations shown in this section show that our code is able to
reproduce the bulk modulus and crush curve models in Arena . Figure 28 shows the loading path in
z-r stress space for hydrostatic loading followed by unloading.
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Figure 28 – Veri�cation of loading path during a hydrostatic load-unload cycle on a
single particle of dry sand.

¿e implementation of the bulkmodulusmodel can be seen to be correct in Figure 29(a). Similarly, the
crush curve and porosity models are also reproduced accurately by this veri�cation test. ¿e porosity
does not recover completely during the unloading process because the plastic volumetric strain, by
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design, reaches a dilatative state at the end of the cycle. ¿ese tests indicate that the implementation of
the plasticity algorithm and model is reasonably accurate for dry soils.
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Figure 29 – Veri�cation of implementation of bulk modulus, crush curve, poros-
ity and pore-pressure models in Arena using single-particle hydrostatic
loading-unloading of dry sand.
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8.2 Hydrostatic compression loading: Fully saturated sand

Results from the hydrostatic compression of a fully saturated single particle of Arena sand are shown
in this section. Figure 30 shows the evolution of the yield surface as compression proceeds. ¿e yield
surface translates and grows with increasing pore pressure.
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Figure 30 – Evolution of the yield surface and the stress path in p-q space during
hydrostatic compressive strain loading of a fully saturated particle of
Arena sand.

¿e bulk modulus and crush curve models can be veri�ed by comparison with the plots in Figure 31(a)
and (b). ¿e porosity evolves according to the designed behavior in Figure 31(c) as does the pore
pressure.
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Figure 31 – Veri�cation of the bulk modulus, crush curve, porosity and pore pressure
models in Arena using a hydrostatic compression on saturated sand.
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8.3 Uniaxial compression loading: Dry sand

Because the change in direction of the load path upon �rst encountering the yield surface is not ob-
vious in our previous simulations, we ran the simulation with a larger value of the initial hydrostatic
compressive strength. Figure 32 shows the e�ect of this change on the stress path in z − r space.
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Figure 32 – Yield surface evolution under uniaxial strain compression of a dry sand
with a large p0.

Figure 33 shows the evolution of the mean and axial stresses, and porosity, as loading progresses. ¿ere
is initially a dilation phase accompanied by a small decrease in porosity. It is not clear whether this
behavior is accurate and comparison with an exact solution is needed to verify the accuracy of the
Arena implementation. ¿e sand particle is then compressed and the porosity continues to decrease.
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Figure 33 – Uniaxial strain compression of a dry Arena sand particle.
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8.4 Uniaxial compression loading: Partially saturated sand

Figure 34 shows the stress path and the evolution of the yield surface when a single Arena partially
saturated ColoradoMason sand particle is compressed in uniaxial strain. ¿e initial porosity is 0.4 and
the initial saturation is 0.8. We observe that the yield surface translates with increasing pore pressure
as the particle is compressed. ¿is is the designed behavior of our model. Also note the characteristic
kink shown by uniaxial strain compression in the load path in the �gure.
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(a) Dynamic stress in z-r space

Figure 34 – Uniaxial strain: fully saturated: pore pressure and strength

¿e consolidation curves and stress-strain curves in Figure 35(a) and (b) indicate that, as expected,
there an initial dilatation period a er which the material follows the crush curve. ¿e porosity, satu-
ration, and pore pressure curves in Figure 35(c) and (d) also exhibit the behavior expected of Arena ,
indicating that the implementation is reasonably correct. Exact solutions can probably be computed
for this test for more rigorous veri�cation of the model.
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Figure 35 – Uniaxial strain compression of a fully saturated Arena particle.
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8.5 Uniaxial tensile strain loading: Dry sand

An uniaxial tensile stress produces the expected p-q ratio (see Appendix D and Figures 36(a), (b), (c),
and (d) if the stress state is elastic. However, if the rate of deformation is large enough for the trial stress
to be outside the yield surface, the plastic return point can be such that the value of p is compressive.
¿erefore, compressive stress states are possible even if the applied strain is purely uniaxial tension.
¿is is a problem that can be resolved with a non-associative �ow rule. Note that in our case small
changes in the parameter β were not su�cient to make the stress state tensile in some of our uniaxial
tensile strain simulations.
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(d) Dynamic stress in p-q space

Figure 36 – Uniaxial strain tension of a dry Arena sand particle.
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8.6 Multiaxial strain loading-unloading: Dry sand

A multiaxial strain loading path was chosen next to explore the behavior of the algorithm during
loading-unloading and during the traversal of the tension vertex. Shear strains were kept close to zero
during the deformation. ¿e results of a single particle simulation with this loading path are shown in
Figure 37. ¿e initial loading is along the hydrostatic axis and includes an elastic component followed
by the extension of the yield surface along the crush curve. ¿e stress is then reversed util it reaches
the yield surface and moves along the surface back to an elastic state. ¿e axial stress reaches a tensile
state and then is reversed until it is compressive again. ¿is simulation shows that the results produced
by our Arena implementation are reasonable.
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(d) Dynamic stress in p-q space

Figure 37 –Multiaxial strain loading-unloading of a single particle of dry
Arena sand.
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9 ARENA model validation: SHPB simulation vs. experiment

We summarize results from two validation cases here:

1. uniaxial strain SHPB on aMason sand (dry density 1700 kg/m3) containing 18%water by weight,
and

2. uniaxial strain SHPB on a Boulder clay (dry density 1300 kg/m3) containing 12.8% water by
weight .

¿e Arenamodel requires the initial density, porosity, and saturation as inputs. ¿e dry density and
water content are used to compute these quantities with the approach described in Appendix B.

9.1 SHPB - Wet Mason sand - 18% water by weight

We ran a single particle MPM simulation with dry Mason sand parameters a er changing the satura-
tion and mass density. ¿e purpose of this test is to determine whether the Arenamodel can predict
the behaviour of partially saturated soils that were not used to calibrate the model.

¿e deformation gradient applied to the particle is shown in Figure 38(a). ¿ese data have been ex-
tracted from experimental SHPB data (sample 003, on 16 Aug 2012 at UT Dallas), on a partially sat-
urated Mason sand containing 10% water by weight (initial density = 1800 kg/m3, initial porosity =
0.4264, initial saturation = 0.6559). simulation, we can predict the behavior of partially saturated Ma-
son sand remarkably well. ¿e plots in this section show the predictions of our partially saturated soil
model compared with experimental data for a sand containing 18% water by weight.
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Figure 38 – Split-Hopkinson pressure bar: uniaxial: wet Mason sand: 18.4% water
by wt.: Time evolution.

9.2 SHPB - 12.8% w/w Boulder clay - Sample 014

¿e Arenamodel was calibrated using dry and almost fully saturated Boulder clay. In this section
we observe how well the model performs for a clay containing 12.8% water by weight. ¿e applied
deformation gradient is shown in Figure 40(a) and the axial and radial stresses predicted by the model
are given in Figure 40(b).

We observe that the predicted stresses are higher than those measured in the experiment. ¿e peak
stress does not change signi�cantly with saturation if psat1 = 1. However, if the value of psat1 is increased,
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(b) Dynamic stress in z − r-space

Figure 39 – Split-Hopkinson pressure bar: uniaxial: wet Mason sand: 18.4% water
by wt.: z, r vs. time.

the peak stress increases making the �t to experiment worse. ¿e �t improves when psat1 < 0. We
conjecture that the compressive strength decreases with saturation in this case because the clay grains
can move relative to each other more easily when a small amount of water is added. ¿is decreases the
hydrostatic strength relative to that of the dry material. Beyond a certain level of saturation, this trend
is reversed, as seen in the simulations used for parameter calibration.
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Figure 40 – Split-Hopkinson pressure bar: uniaxial: 12.8% w/w partially saturated
Boulder clay: Time evolution.
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Figure 41 – Split-Hopkinson pressure bar: uniaxial: 12.8% w/w partially saturated
Boulder clay: r, z vs. time.
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10 Simulations of explosions with ARENA

Oneof themain reasons for the development of theArenamodel is the simulation of explosions in soil.
While explosions and their e�ects on soils are of scienti�c and engineering interest themselves, we are
more interested in the e�ect of these explosions on objects on the surface. In this section we describe
a few simulations of these e�ects. ¿e actual explosive gases and pressure pulse are approximated, �rst
by a piston and then by a pulse that has the shapemeasured in experiments. Since the experiments were
performed in a centrifuge, we include the e�ect of the arti�cial gravity that is induced in the process.

10.1 An one-dimensional impact simulation

In this simulation, we approximate the explosive pulse by a piston. ¿e piston impacts a soil sample
that is modeled with Arena a er which the impact wave passes through the soil sample and initiates
motion in a plate sitting on the free surface of the soil. We would like to examine whether the degree
of saturation of the soil sample has any e�ect on the motion of the plate.

¿e entire simulation is performed under an arti�cial gravity of 10g. ¿e piston is assumed to be made
of steel and has a density of 8000 kg/m3. It is modeled as a compressive Neo-Hookean material, with
thickness 1 cm and initial velocity 30 m/s. ¿e soil is modeled �rst using the properties of dry Boulder
clay with an initial density of 1270 kg/m3, initial porosity 0.52, and damage model activated. ¿e soil
sample is 3 cm thick and is initially at rest. A er that the soil is replaced with wet Boulder clay that has
an initial density of 1830 kg/m3 and an initial saturation of 0.9. For the steel plate on the surface of the
soil, we use the same properties as that of the piston. We assume that the steel plate is 1 cm thick and
at rest 2 mm above the surface of the soil.

¿e domain is discretized into a grid of 1 mm spacing, with four particles per cell. To keep the problem
approximately one-dimensional, only one MPM cell is used in the directions normal to the direction
of motion of the piston. Four MPM particles are used to discretize each cell.

Figure 42 shows an animation of the simulation (needs Adobe Acrobat reader). In the �gure, the
impactor is colored dark blue at t = 0, the soil is blue, and the plate is yellow. ¿e animation on the top
represents the dry soil while that on the bottom of the �gure is for the wet soil.

Figure 42 – Animation of MPM simulation the behavior of a plate on the surface of
a soil sample impacted by a piston.
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¿e plate on the soil surface is provided more momentum by the partially saturated soil and moves
further than the plate on the dry soil. It is di�cult to separate out the e�ect of mass density from that
of the constitutivemodel on themomentumof the plate. However, we have estimated frompreliminary
comparisons with a sti� elastic model for the soil that the impact of mass density is about 60% on the
initial velocity of the plate.

Figure 43(a) shows an animation of the velocities of the particles in the plate a er the soil has transferred
its momentum. ¿e wet soil (blue) transmits its velocity to the plate much earlier than the dry soil.
Note that the terminal velocities in the two cases reach approximately the same value a er some time.
¿e di�erence in the initial acceleration between the two plates is small. However, the wet soil causes
a slightly larger displacement (Figure 43(b)) of the plate under these high gravity conditions and we
speculate that it is this di�erence in displacement makes wet soil appear more destructive.

(a) Plate velocity. (b) Plate displacement.

Figure 43 – Animation of particle velocities and a snapshot of the displacements in
the plate on the soil surface.

10.2 A lump of clay impacting a hollow box

In this simulation we model the impact of a lump of Boulder clay on a hollow box under 1g gravity.
¿e hollow box, which is initially at rest, is made of steel of density 7850 kg/m3, bulk modulus 8.9 GPa,
and shear modulus 3.52 GPa. ¿e outer dimensions of the box are 20 cm × 20 cm × 3 cm and the wall
thickness is 5 mm. We use the Arenamodel for Boulder clay to model the clay lump and compare
the dry and partially saturated cases. For clay, we use the properties listed in the previous section and
assign an initial horizontal velocity of 20 m/s and a vertical velocity of 100 m/s.

¿e initial con�guration of the simulation is shown in Figure 44. We have used the magnitude of
the displacement of the box as its color while the soil lump shows the pore pressure as spheres and
the elastic volumetric strain as glyphs that deform as a factor of the deformation gradient of each soil
particle. ¿e discretization is relatively coarse. ¿ere is an initial separation between the soil lump and
the box.

Soon a er the soil lump impacts the box, we get the propagation of stress waves in the box as depicted
in Figure 45. ¿e �gure shows the particle velocities in the box when impacted by dry clay (le ) versus
those when impacted by wet clay (right) and the plastic volumetric strain in the clay samples. ¿e wet
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(a) View from side. (b) View from bottom.

Figure 44 – Initial con�guration of the simulation of a lump of clay impacting a hol-
low box.

clay exhibits signi�cantly larger plastic volumetric strains than the dry clay at approximately the same
time a er impact (300 microsec). However, the velocities in the box are approximately the same in
both cases.

(a) Dry Boulder clay. (b) Wet Boulder clay.

Figure 45 – Comparison of stress waves produced a er initial impact.

A er 3.2milliseconds, we see fromFigure 46 that the lumps have started to break up andmany particles
show a signi�cant amount of deformation as indicated by the �atness of the glyphs. Moreover, the box
has not yet displaced signi�cantly and both the dry and the wet sand produces approximately the same
displacement in the box.

At 26 milliseconds, we observe that the wet clay has displaced the box further than the dry clay (Fig-
ure 47). ¿is is similar to what we saw in the previous section. Also, many of the wet clay fragments
have le the domain owing to their greater density and momentum. ¿is observation suggests that
the Arenamodel has to be modi�ed to allow for water to exit the particles when the material is disag-
gregated. Typical partially saturated soil models that solve the mass balance equations for the phases
without making the restrictive assumptions of Arenawill also run into similar issues because the ma-
terial loses continuity in simulations such that these.
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(a) Dry Boulder clay. (b) Wet Boulder clay.

Figure 46 – Comparison of deformed particles at t = 3.2 millisec .

(a) Dry Boulder clay. (b) Wet Boulder clay.

Figure 47 – Comparison of deformed particles at t = 26 millisec.
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10.3 An explosion in soil inside a centrifuge

Let us now examine the e�ects of explosions in soil contained in a box that is being rotated in a cen-
trifuge. ¿e con�guration of the box and the soil is shown in Figure 48. ¿e centrifuge rotates at 4 to 9
radians/s, producing arti�cial gravity loads between 10g and 40g in the soil. ¿e soil is contained in a
steel bucket that is isolated from the soil by an elastomeric DuxSeal layer and an aluminum plate with
an elastomeric pad protect the bottom of the bucket from explosions. ¿e explosive charge is placed
between 1 cm and 9 cm from the surface of the soil and is usually centered in the bucket though it can
be o�set as shown in the �gure to avoid shock focusing.

Figure 48 – Geometry of the soil sample and box that is rotating in a centrifuge.

10.3.1 The spin-up phase

To simulate the e�ect of the rotation of the centrifuge, each simulation is run through a spin-up phase
where the centrifugal forces are computed. ¿e spin-up simulation is run until the stresses in the soil
have stabilized. Our approach described in Appendix C is used to vary the yield condition parameters
of the soil. Figure 49(a) shows the distribution of the tensile strength (PEAKI0/3) in the soil at the be-
ginning of a simulation. ¿e material is Colorado Mason sand. Only a quarter of the simulated region
is shown in the �gure. For simplicity, the steel bucket and the DuxSeal layer have not been modeled.
Only the aluminum plate below the soil is included and is shown in blue in the �gure. A er running
the simulation for 1 millisecond, we reach the tensile strength distribution depicted in Figure 49(b).
We would like to point out that the additional gravity load leads to small changes in the tensile strength
distribution because the damagemodel is activated in the process.¿erefore, just the process of applying
a gravity load of 40g is enough to cause inelastic deformations that lead to damage in the soil.

Due to the application of the 40g acceleration induced by the rotation of the centrifuge, the soil sample
in the bucket is compressed. Figure 50 shows the initial and �nal densities of the sample during the
spin-up phase. We observe that though the change in density is small, there is a clear layering e�ect
induced by the spin-up process. ¿e material is less dense near the surface. An e�ect due to the vari-
ability of the material is also observed from the simulation. Note that the initial density of the sand is
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(a) Tensile strength at t = 0 ms (b) Tensile strength at t = 1 ms

Figure 49 –¿e tensile strength distribution in a sample of Colorado Mason sand
contained in a centrifuge producing 40g acceleration at the beginning
(a) and end (b) of the spin-up phase. ¿e process of spin-up is enough to
induce plastic strains and activate the Arena damage model.

1700 kg/m3 with a reference porosity 0f 0.4212 and an initial porosity of 0.36. ¿e material is dry.

(a) Density at t = 0 ms (b) Density at t = 1 ms

Figure 50 –¿e density distribution in the Colorado Mason sand sample at the be-
ginning and end of the spin-up phase of the simulation.

Figure 51 shows the vertical stress distribution in the soil at the end of the spin-up phase (1 millisec
rotation). As expected, the stresses are smallerwhen a 20 g acceleration applied to the sample compared
to when a 40 g acceleration is applied. Also, the vertical stress varies from zero at the surface to 150
kPa (at 20 g) to 300 kPa (at 40 g) at the bottom of the sample.

We can see from Figure 52 that the stress has stabilized at almost all depths a er 1 ms. ¿e plots in the
�gure show the evolution of the vertical stress in the soil at distances of 1 cm, 1.52 cm, 2.03 cm, 2.54
cm, 3.05 cm, and 3.56 cm from the point at which the explosive charge is placed. It can be observed
that the vertical stress varies with location at the same depth due to the variability of the material. ¿e

12Recall that the reference porosity is the porosity of dry Colorado Mason sand at the reference density of 1520 kg/m3 .
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(a) Vertical stress at 20 g (b) Vertical stress at 40 g

Figure 51 –¿e vertical stress in the dry Colorado Mason sand sample at the end of
the spin-up phase for two di�erent centrifuge rotation speeds.

stress takes longer to settle own to a steady value at points closer to the spherical hole representing the
charge in the horizontal plane but further in the vertical plane (in this case the charge is at a depth of
5.1 cm). It is not clear why that is the case.

(a) Stress at depth of 5.1 cm (b) Stress at depth of 15.2 cm

Figure 52 – Evolution of vertical stress with time during the spin-up phase of the sim-
ulation at two di�erent depths from the surface.

To examine whether there is a signi�cant amount of plastic deformation during the spin-up phase, we
plot the volumetric plastic strain in the soil at the end of that phase. Snapshots of the strain (shown in
Figure 53) indicate that for a 20 g load, we get approximately 0.06% plastic strain at the bottom of the
sample and at 40 g, 0.12% plastic strain.

Interestingly, a signi�cant amount of damage is observed during the spin-up phase particularly at a
few isolated particles near the surface of the soil. ¿is can be seen in Figure 54 both for the 20g and the
40g cases. We attribute these e�ects partly to boundary e�ects caused by the planes of symmetry in the
simulation (anomalous tension) and partly to theWeibull modulus used to generate the distribution of
yield parameters in the simulation. We also observe that both the 20g and the 40g simulation appear
to predict the same amount of damage at the end of the spin-up phase even though the stresses and
plastic strains are di�erent. It is possible that this anomaly is caused by theMPMalgorithm and further

© Parresia Research Limited
PAR-10021867-1516: GranularMediaModelProjectDocumentationFinalLongVersion.pdf

Page 101 of 129



Arena model
PAR-10021867-1516.v1 Wednesday 20th September, 2017

(a) Vol. plastic strain at 20 g (b) Vol. plastic strain at 40 g

Figure 53 –¿e volumetric plastic strain in a dry Colorado Mason sand sample in-
side a centrifuge at the end of the spin-up phase for two di�erent cen-
trifuge rotation speeds.

research is needed to determine the cause.

(a) Damage at 20 g (b) Damage at 40 g

Figure 54 –¿e amount of damage induced in a dry Colorado Mason sand sample
inside a centrifuge at the end of the spin-up phase for two di�erent cen-
trifuge rotation speeds.

10.3.2 The explosion phase

At the end of the spin-up phase, stresses in the soil have reached a relatively steady state and the ex-
plosion simulation can proceed. Since we are not modeling the explosion directly using a model such
as JWL++, we apply a pressure pulse to the surface of a spherical hole centered at a point that rep-
resents the center of mass of the explosive charge. ¿e pressure pulse that is used in the simulations
is either what we term “medium” (impulse density 30.6 kJ-s/m3) or “medium-low” (impulse density
18.7 kJ-s/m3). Figure 55 shows the shapes of the two pressure pulses. ¿e medium-low pressure pulse
produces initial surface displacements that are close to those observed in experiments. However, that
pulse is not strong enough to break through the surface of the soil. We therefore, focus our attention
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to the medium pulse in what follows.

(a) Medium pressure pulse (b) Medium-low pressure pulse

Figure 55 –¿e pressure pulse used to simulate explosions in sand samples inside a
centrifuge.

¿eMPM particles in the simulation undergo considerable amounts of deformation due to the explo-
sive load as can be seen in Figure 56(a) where the MPM particles are represented as cubic glyphs that
are deformed. ¿ese glyphs make clear that we are, in fact, using a continuum description of the mate-
rial rather than a particle description such as that used in discrete elementmethods. In some situations
it is more convenient to plot the particles using spherical glyphs as shown in Figure 56(b). Spherical
glyphs are used in most of the plots that follow.

(a) Cubic glyphs showing damage (b) Spherical glyphs showing damage

Figure 56 – Plots of damage and the applied forces in the soil particles during the
explosion phase.

In Figure 57(a) we plot the evolution of pressure at various distances from the explosive charge at a
depth of 5.1 cm from the surface of the soil. Two peaks are observed in the pressure at a distance of
10 cm from the charge and the peak pressure is around 2 MPa. In centrifuge experiments performed
under similar conditions only one peak is observed in the pressure a er which the pulse decays rapidly.
It appears that there is a signi�cant amount of viscous damping in the sand that is not captured ade-
quately by our model. A higher resolution study is needed to determine if these peaks are an artifact
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of the MPM grid size. ¿e accelerations at points at various distances from the charge are shown in
Figure 57(b). Experimental data suggest much more rapid damping than that observed in the �gure.

(a) Soil pressures (b) Soil accelerations

Figure 57 – Soil pressures and accelerations due to themedium explosion pulse inside
a centrifuge producing a 20g load.

Accelerations at various locations on the surface of the aluminum plate below the soil at two di�erent
value of gravity are plotted in Figure 58. ¿e e�ect of the g-values on these accelerations appears to be
marginal.

(a) 20 g (b) 40 g

Figure 58

¿e bulge produced at the surface as a function of time a er the explosion is an indicator of the ef-
fectiveness of the Arenamodel in simulating explosion scenarios. ¿ough the explosion is not being
modeled accurately, the shapes of the bulges shown in Figure 59 seem to suggest that the model is rea-
sonably accurate when compared with experiment. ¿e size of the bulge is smaller at larger g-values.
However, if we compare the height of the bulge with experimental data, we observe that the predicted
values are larger than observed. Reducing the pulse energy leads to better �ts to experiment at the cost
of failure to cause tensile failure in the soil model. ¿ese issues need further exploration before the
Arenamodel can be used to model tension dominated situations.
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(a) 1g (b) 20 g

Figure 59 – Bulge evolution in dry ColoradoMason sand from an explosion in a cen-
trifuge and two di�erent g-load levels.

10.3.3 Explosions with a target over partially saturated soil

Considering the fact that the explosive pulse and gases are not being modeled accurately in these sim-
ulations, the best we can do a comparative study rather than accurate predictions. With that in mind
we will model the e�ect of water content on the behavior of ColoradoMason sand and Boulder clay in
a centrifuge under 20g acceleration. ¿ese simulations include a steel target plate that is placed above
the surface of the soil.

In the images from the simulations shown in Figure 60, the depth of burial of the explosive charge is
5.1 cm and the target is 5.1 cm above the soil surface. ¿e MPM particles are displayed at cubic glyphs.
We observe the extreme deformations of these particles and loss of continuity, particularly for the dry
clay simulation. ¿e wet clay deforms less and also displaces the target plate less than the dry clay.
However, the wet clay imparts more momentum to the target plate. ¿ese simulations used the GIMP
interpolation technique. We expect the CPDI method to provide improved continuity of the MPM
Particles.

Let us now consider a more detailed simulation with Colorado Mason sand. As before the centrifuge
applies an acceleration of 20g. ¿e depth of burial is 5.1 cm and the target is 5.1 cm above the soil
surface. Cubic glyphs make the simulation confusing and we use spherical glyphs instead. Figure 61
shows the explosion in the sand at a late stage in the simulations. ¿e wet sand contains 10% water by
weight. ¿e plots for the dry and wet sands do not showmuch di�erence and are only indicative of the
progress of the simulation.

However, if we extract the particle accelerations in the soil as plotted in Figure 62 we notice that the
particle accelerations are larger in the dry sand while the particle pressures are nearly identical.

If we repeat the previous simulations with Boulder clay (dry and 41% water content), we observe the
deformations shown in Figure 63 and the accelerations and pressures in Figure 64. Examining the
deformations in Figure 63 we observe that the dry clay deforms much more above the surface than the
wet clay. However, the stress pulse propagates further in the wet clay than in the dry clay. ¿e pressure
in the dry and wet clays (�gures 64(c) and (d)) shows that the dissipation in the dry clay is faster but
the speed of the pressure pulse is faster in the wet clay. Similar behavior is observed in the acceleration
time-histories for the two cases. Interestingly, the peak accelerations are around 2 to 3 times higher in
the wet clay compared to the dry clay.

It is instructive to compare the momentum imparted to the target and the corresponding impulse
(the sum of the surface forces on the target multiplied by the time) for the sand and clay simulations
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(a) Dry clay (b) Wet clay with 41% water by weight

Figure 60 – Deformation of Boulder clay and displacement of the target plate in a
centrifuge simulation at 20g. ¿e charge is at a depth of 5.1 cm and the
plate is 5.1 cm above the soil surface.

(a) Dry Mason sand (b) Wet Mason sand containing 10% water by
weight

Figure 61 – Explosion simulation with a plate over Mason sand inside a centrifuge
at 20g.
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(a) Acceleration: Dry Mason sand (b) Acceleration: Wet Mason sand containing 10%
water by weight

(c) Pressure: Dry Mason sand (d) Pressure: Wet Mason sand containing 10%
water by weight

Figure 62 – Accelerations and pressures in the soil caused by an explosion simulated
inside Mason sand in a centrifuge bucket.

(a) Dry Boulder clay
(b) Wet Boulder clay containing 41% water by

weight

Figure 63 – Boulder clay explosion simulation with a plate inside a centrifuge at 20g.
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(a) Dry Boulder clay (b) Wet Boulder clay containing 41% water by
weight

(c) Dry Boulder clay (d) Wet Boulder clay containing 41% water by
weight

Figure 64 – Boulder clay accelerations and pressures caused by a simulated explosion
in a centrifuge bucket.
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discussed above. Figure 65(a) and (b) show the evolution of the momentum of the target and the
corresponding “impulse” values. ¿e momentum imparted by the sand is lower than that imparted by
the clay However, there appears to be no signi�cant di�erence between dry and wet soil samples. On
the other hand, if we examine the impulse, the dry sand appears to provide greater impulse that the wet
sand and the converse holds for clay. We are of the opinion that the impulse value is less accurate than
the momentum value but note that the impulse value is typically easier to measure in an experiment.

(a) Total target momentum (b) Target impulse

Figure 65 –Momentum and impulse of the target cause by simulations explosions in
Colorado Mason sand and Boulder clay.

If, instead of a height of 5.1 cm, we place the target plate in contact with the soil surface we observe a
larger peak impact force on the target due to the wet clay. ¿is can be seen in the plots in Figure 66.
¿ere also seem to be two impact peaks for the wet Boulder clay which may possibly be seen in exper-
iments.

(a) Dry Boulder clay (b) Wet Boulder clay containing 41% water by
weight

Figure 66 – Impact forces on a target place on the surface of Boulder clay in a cen-
trifuge bucket due at explosion at a depth of 5.1 cm.

A comparison of the total force on the target and impulse for the simulation with Boulder clay contain-
ing 41%water (by weight) is shown in Figure 67. Counterintuitively, if the target is placed at the surface
it experiences a smaller impulse than than if it is placed 5.1 cm above the surface. ¿is observation,
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if con�rmed by experiments, would suggest that the position of the hull in a vehicle be lowered if the
impact of a blast on a vehicle is to be reduced.

(a) Force on target (b) Impulse on target

Figure 67 – Comparison of force and impulse on the target for two heights of target
(HOT).

10.3.4 Explosion under a vehicle

Of particular interest in engineering design is the situation where an explosion occurs under a vehicle.
Experimental studies have shown that a V-shaped hull in the undercarriage of a vehicle is e�ective at
reducing the e�ect of the blast. ¿e following simulations have been performed to �nd out whether
the Arenamodel also predicts similar results.

We continue simulating explosions under centrifuge loading at 20g. ¿e soil is Boulder clay with 13%
water by weight. ¿ree hull shapes are tested: a plat hull, a round hull, and a V-shaped hull. ¿e hulls
are initially positioned a short distance from the surface of the soil. We have chosen the geometry of the
hulls such that the volumes of the three hulls are identical. Figure 68 shows the initial con�gurations of
the simulations and the deformed state a short time (1.2 millisec) a er the explosion has been initiated.
Nominally, there does not appear to be any di�erence between the the three cases.

However, if we examine the total momentum imparted to each hull, we notice that the V-shaped hull
experiences a smaller velocity than the �at or the round hull (see Figure 69). In fact, the �at and the
roundhull have essentially the samemomentum transferred to themby the explosion. ¿is observation
suggests that the Arenamodel may have merit if used to predict the response of soils even under
conditions that involve a signi�cant amount of disaggregation.
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(a) Flat-bottom hull: initial (b) Flat-bottom hull a er 1.2 millisec.

(c) Round-bottom hull : initial (d) Round-bottom hull a er 1.2 millisec.

(e) V-bottom hull : initial (f) V-bottom hull a er 1.2 millisec.

Figure 68 – Initial and deformed con�gurations a er an explosion at 20g in Boulder
clay containing 13% water by weight.

Figure 69 –¿e momentum transferred to the three hull shapes from an explosion
in Boulder clay containing 13% water by weight.
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11 Observations and discussion

Some observations about the performance of the Arena partially saturated soil model are listed below.

• When the model is driven using pressures or plastic strains, the results are reasonable (see Sec-
tion 7). Interesting features include a kink in the volumetric plastic strain vs. hydrostatic com-
pressive strength curves and an increase in the plastic porosity a er a plastic volumetric strain
threshold is exceeded.

• Single particle hydrostatic, compressive, tensile, and multiple strain path tests were performed
with the partially saturated model. ¿e results are reasonable and have been veri�ed where pos-
sible (see Section 8).

• In some uniaxial extension tests, the closest point projection on the yield surface can produce a
compression mean stress (p) if the trial stress falls outside the yield surface in the �rst timestep.
¿is can possibly be mitigated by choosing a β-nonassociativity parameter that produces the
expected tensile stress .

• In Section 9, we use the parameters �tted to a dry Mason sand sample and the full machinery of
the partially saturated soil model to predict the behavior of Mason sand containing 18.4% water
by weight. ¿e correspondence between our predictions and experimental data is remarkable.

• ¿e damage model was �tted using a dry Mason sand SHPB test, and matched experiments
reasonablywell during the loading phase. However, the simulations did not capture the observed
decrease in the radial stress with when the deformation gradient became constant a er failure.
Such a decrease would have been observed in the simulations if the hydrostatic strength in the
Arenamodel had been allowed to decrease a er failure. We do not have any direct experimental
evidence that the hydrostatic strength decreases with increasing con�nement, so further study
is warranted.

• ¿e parameters �tted directly to the quasistatic data for Boulder clay did not produce a good
match to the SHPB experiments on dry Boulder clay. We had to reduce the crush curve steepness
to match the SHPB data for dry clay.

• Simulations of Boulder clay mixed with 40.8% water by weight suggested that the clay swells
signi�cantly (the porosity remains nearly constant, thereby reducing the saturation). If we use a
saturation of 0.9 and a value of psat1 = 5, we canmatch the experimental data reasonably well. Ad-
dressing this problem requires using parameter values inconsistent with calibration, suggesting
a need for further research.

• ¿e �uctuations in the experimental values of r seen in the saturated Boulder clay area because
small di�erence in axial and radial stresses are not resolved by the SHPB instrumentation system.

• In Section 9, we used our partially saturated soil model with a saturation of 30% and dry clay pa-
rameters to predict the SHPB response of a clay containing 12.8% water by weight. We were able
tomatch the experiments reasonably only a er using a value of psat1 = -1. ¿is implies that the hy-
drostatic strength actually decreases relative to the dry clay at this level of saturation. We believe
that the compressive strength decreases with saturation in this case because the clay grains can
move relative to each other more easily when a small amount of water is added, thus decreasing
the strength relative to that of the dry material. Beyond a certain level of saturation, this trend
is reversed, as seen in the simulations with clay containing 40.8% water by weight. We recom-
mend further research to investigate our hypothesis that compressive strength decreases with
saturation because of a grain lubrication e�ect.

• From the piston impact simulations in Section 10, we observe that the wet soil provides more
momentum to the target plate than the dry soil. Whether this is purely due to the higher density
of the wet soil or is in�uenced by the elastoplastic soil model requires further research. We note
that the terminal velocity of the target plate reaches approximately the same value for both wet
and dry clay even though the displacement is larger for the wet clay.
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• Simulations of a clay lump impacting a hollow steel box indicate that, if the clay is wet, larger
volumetric plastic strains develop in the material than if it is dry. We also observe that wet clay
particles appear to dissipate less energy and disaggregate a er than dry clay. ¿is is counterin-
tuitive and needs further research. As was seen in the piston impact simulations, the wet clay
displaces the target further than the dry clay - in line with experimental observations. ¿e lump
impact simulation clearly indicates the need for further research into disaggregation models for
soil because the continuum assumption breaks down at large strains.

• ¿e spin-up simulations that emulate the e�ect of centrifugal forces (see Section 10.3.1) indicate
that the Arenamodel predicts that the soil can experience inelastic strains and damage even
before any explosion has occurred. Whether this is realistic can only be determined a er further
research. Interestingly, the stress in the material settles to a steady value a few milliseconds a er
the centrifugal load is applied.

• ¿e explosion phase of the centrifuge simulations is simpli�ed considerably if a pressure pulse
is used to represent the explosive gases. However, this is a crude approximation and research
is needed to determine if the JWL++ model can be used instead. Our simulations with JWL++
(not discussed in this report) indicate that there is a loss of symmetry due to inaccuracies in the
MPM contact model used in Vaango.

• Experimental pressure pulse and acceleration data from explosions inside a centrifuge indicate
that there is a signi�cant amount of damping in the soil that is not re�ected in our simulations
(see Section 10.3.2). MPM with Arena predicts re�ections and sinusoidal waves that are not
observed in experiments. ¿at can be caused by the grid resolution and symmetry boundary
conditions and suggests further research.

• Simulations of explosions under a target plate has been presented in Section 10.3.3. ¿ese sim-
ulations predict that particle accelerations are larger in dry sand than in wet sand. However,
in wet clay we observe much higher accelerations than in dry clay. ¿e cause of that di�erence
between the response of Colorado Mason sand and Boulder clay is unclear and suggests further
exploration.

• If we examine the momentum imparted to the target plate by sand and clay, we notice that clay
imparts more momentum than sand. However, we notice no signi�cant di�erence between the
momentum transferred by dry and wet soils.

• If is also interesting to note that a target at a height of 5.1 cm above the soil surface experiences
a larger impulse load than a target that is on the surface.

• Simulations of an explosionunder various shapedhulls suggest that aV-shapedhull ismarginally
better than �at or round hulls in that less momentum is transferred from the soil to the hull (see
Section 10.3.4)
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A Pore pressure evolution from mass balance

Mass balance provides the following equation governing the rate of porosity ϕ associated with the solid
skeleton velocity vs:

Dϕ
Dt

− (B − ϕ)∇ ⋅ vs = 0

[
Swϕ

Kw(pw)
+

(1 − Sw)ϕ
Ka(pw)

]
Dpw

Dt
+ B∇ ⋅ vs = 0 .

(283)

Here, B is the Biot parameter and the scripts “w” refer to the water.Combining these two equations
gives

[
Swϕ

Kw(pw)
+

(1 − Sw)ϕ
Ka(pw)

]
Dpw

Dt
+ (

B
B − ϕ

)
Dϕ
Dt

= 0 . (284)

From equation (139),
ϕ = (1 − S0)ϕ0 exp(εav − εv) + S0ϕ0 exp(ε

w
v − εv) (285)

¿erefore, the material derivative of the porosity is

Dϕ
Dt

= (1 − S0)ϕ0 exp(εav − εv)(
Dεav
Dt

−
Dεv
Dt

) + S0ϕ0 exp(εwv − εv)(
Dεwv
Dt

−
Dεv
Dt

) (286)

Substituting (286) into (284) gives

[
Swϕ

Kw(pw)
+

(1 − Sw)ϕ
Ka(pw)

]
Dpw

Dt
+ (

Bϕ0
B − ϕ

)[(1 − S0) exp(εav − εv)(
Dεav
Dt

−
Dεv
Dt

)+

S0 exp(εwv − εv)(
Dεwv
Dt

−
Dεv
Dt

)] = 0 .
(287)

For equilibrated �uid pressures, pa = pw , and we can write the above using quantities that are positive
in compression as

[
Swϕ
Kw

+
(1 − Sw)ϕ

Ka
]
Dpw

Dt
− (

Bϕ0
B − ϕ

)[(1 − S0)exp(εv − εav)
∂εav
∂pw

+ S0exp(εv − εwv )
∂εwv
∂pw

]
Dpw

Dt

= −(
Bϕ0
B − ϕ

) [(1 − S0)exp(εv − εav) + S0exp(εv − εwv )]
Dεv
Dt

(288)
Noting that

∂εav
∂pw

=
1
Ka

and
∂εwv
∂pw

=
1
Kw

(289)

we have

[
Swϕ
Kw

+
(1 − Sw)ϕ

Ka
]
Dpw

Dt
− (

Bϕ0
B − ϕ

)[
1 − S0
Ka

exp(εv − εav) +
S0
Kw

exp(εv − εwv )]
Dpw

Dt

= −(
Bϕ0
B − ϕ

) [(1 − S0)exp(εv − εav) + S0exp(εv − εwv )]
Dεv
Dt

(290)

or
Dεv
Dt

=
1

(1 − S0)exp(εv − εav) + S0exp(εv − εwv )
[−

(B − ϕ)ϕ
Bϕ0

(
Sw
Kw

+
1 − Sw
Ka

)+

1 − S0
Ka

exp(εv − εav) +
S0
Kw

exp(εv − εwv )]
Dpw

Dt

(291)
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We can convert this equation into the form

dpw

dεv
=
1
B

(292)

where
B ∶=

1
(1 − S0)exp(εv − εav) + S0exp(εv − εwv )

[−
(B − ϕ)ϕ
Bϕ0

(
Sw
Kw

+
1 − Sw
Ka

)+

1 − S0
Ka

exp(εv − εav) +
S0
Kw

exp(εv − εwv )] .
(293)

We can then �nd the total pore pressure using

pw = ∫
dpw

dεv
dεv . (294)

For a fully saturated medium, S0 = 1, we have

B =
1

Kwexp(εv − εwv )
[−

(B − ϕ)ϕ
Bϕ0

+ exp(εv − εwv )] . (295)

Note that a medium with zero initial porosity, ϕ0 = 0, cannot be modeled using our approach.
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B Computing saturation from weight ratio

¿e experimental SHPB data provided by UT Dallas includes the dry sand density and the water con-
tent in the form of the ratio by weight of the water to the sand/soil. We have to convert that information
into porosity, saturation, and mass density.

To do that we assume that the soil skeleton material has the density of quartz such that the mass (m)
of the dry sand can be written as

mdrysand = mair +mquartz . (296)

Expressed in terms of volume (v) and density (ρ),

ρdrysandvdrysand = ρairvair + ρquartzvquartz . (297)

If we neglect the density of air, we have

ρdrysandvdrysand ≈ ρquartzvquartz Ô⇒
ρdrysand
ρquartz

=
vquartz
vdrysand

. (298)

¿e porosity (ϕ) is de�ned as the ratio of the void volume to the total volume of the sand, i.e.,

ϕ =
vair

vdrysand
= 1 −

vquartz
vdrysand

= 1 −
ρdrysand
ρquartz

. (299)

For partially saturated sand, the SHPB tests provide the ratio

α =
mwater

mdrysand
=

ρwatervwater
ρdrysandvdrysand

. (300)

¿e saturation is de�ned as
Sw =

vwater
vair + vwater

(301)

and the porosity of the wet soil is
ϕ =

vair + vwater
vwetsand

. (302)

¿erefore, if the volume of the sand does not change due to the introduction of water,

Sw =
1
ϕ
vwater
vwetsand

=
1
ϕ
vwater
vdrysand

. (303)

Plugging the above relation into the expression for α gives us

Sw =
α
ϕ
ρdrysand
ρwater

. (304)

¿e mass of the wet sand is

mwetsand = mdrysand +mwater Ô⇒ ρwetsandvwetsand = ρdrysandvdrysand + ρwatervwater . (305)

Since vwetsand = vdrysand, we have

ρwetsand = ρdrysand + ρwater
vwater
vdrysand

= ρdrysand + ϕSwρwater . (306)
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C Weibull parameter variability

¿e probability density function of random variable x that is Weibull distributed can be expressed as

We(x) = βαxα−1 exp(−βxα) for x ≥ 0 . (307)

¿e expression used in the C++11 standard implementation is

We(x) =
a
b
(
x
b
)
a−1

exp [−(
x
b
)
a
] . (308)

¿e relationship between these two expressions is

α ≡ a and β ≡
1
ba
Ô⇒ b = β−1/α . (309)

¿e shape parameter is a = α > 0 and the scale parameter is b > 0. ¿e shape parameter a is also called
theWeibull modulus in the content of material strength distribution.

¿e mean of the distribution is

E(x) = bΓ (1 +
1
a
) = β−1/αΓ (1 +

1
α
) (310)

where Γ is the gamma function. If we assume that the expected value is better represented by the
median, we have

E(x) = b [ln(2)]1/a . (311)

¿e generate the Weibull distribution for a random variable, we typically use a transformation from a
uniformly distributed random variable. To �nd the transformation between two probability distribu-
tions f (y) and g(x), we use the fundamental relation

f (y) = g(x) ∣
dx
dy

∣ (312)

where the absolute value of the Jacobian of the transformation is used to make sure that probabilities
sum to 1. For the special case where the distribution g(x), x ∈ U ∼ [0, 1] is uniform, we have

f (y) = ∣
dx
dy

∣ . (313)

¿erefore,
x = ∫

y

0
f (z) dz . (314)

For the Weibull distribution, the right hand side is the cumulative distribution function,

x = ∫
y

0
We(z) dz = ∫

y

0
βαzα−1 exp(−βzα) dz = 1 − exp(−βyα) = 1 − exp [−(

y
b
)
a
] . (315)

¿is relation can be inverted to give the transformed uniformly distributed random number between
0 and 1:

y = [−
1
β
ln(1 − x)]

1/α

= b [− ln(1 − x)]1/a . (316)

For a random variable that has the mean E(y) ≈ y, from (310), the scale parameter is

b =
E(x)

Γ (1 + 1
a)

≈
y

Γ (1 + 1
a)

. (317)
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¿erefore, the Weibull-transformed uniformly distributed random variable can be written as

y =
y

Γ (1 + 1
a)

[− ln(1 − x)]1/a . (318)

At this stage one typically invokes the fact that if x is uniformly distributed then so is 1− x and we can
simplify the computation by using

y =
y

Γ (1 + 1
a)

[− ln(x)]1/a . (319)

Alternatively, we can assume that the sample median is a better approximation of the expected value
and use equation (311) to compute the scale parameter:

b =
y

[ln(2)]1/a
. (320)

In that case we have

y = y [−
ln(x)
ln(2)

]

1/a

= y [
ln(x)
ln(1/2)

]

1/a

. (321)

¿e existing implementation of the Weibull generator in Uintah uses the following approach. A uni-
formly distributed random number x is generated. ¿is number is used to compute the quantity

F = [− ln(x)]1/a (322)

where a is the Weibull modulus. Two other quantities are computed:

C = [
vexpt
velem

]
1/m

and η =
y

Γ (1 + 1
a)

(323)

where vexpt is a reference volume, velem is the particle volume, m is an exponent, and y is the mean
value of the parameter (y) that is Weibull distributed. ¿e value of y is computed using the product of
F, C, and η, giving

y = [
vexpt
velem

]
1/m y

Γ (1 + 1
a)

[− ln(x)]1/a (324)

¿e code typically uses m = a to get

y =
y

Γ (1 + 1
a)

[−
vexpt
velem

ln(x)]
1/a

. (325)

¿is expression is identical to equation (319) except for a size-e�ect factor.
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D Verifying stress paths for uniaxial strain loading

Most of the simulations discussed in this report have been driven by uniaxial strain. We can check that
the code is doing the right thing by comparing the slope of the loading path in p-q space for elastic
states. ¿is appendix discusses what we should expect for linearly elastic materials.

From linear elasticity,
σ = λtr(ε)I + 2µε (326)

where
λ ∶= K − 2

3G and µ ∶= G Ô⇒ K = λ + 2
3 µ (327)

and K ,G are the bulk and shear modulus, respectively. ¿erefore,

p ∶= 1
3 tr(σ) = (λ + 2

3 µ) tr(ε)

s ∶= σ − pI = λtr(ε)I + 2µε − (λ + 2
3 µ) tr(ε)I = 2µ [ε − 1

3 tr(ε)I] .
(328)

From the second equation above, we can compute

q ∶=
√
3J2 =

√
3
2 s ∶ s =

√
3
2(2µ)2 [ε ∶ ε −

1
3[tr(ε)]2] = 2µ

√
3
2 [ε ∶ ε −

1
3[tr(ε)]2] . (329)

For uniaxial strain in the 1-direction, tr(ε) = ε11 and ε ∶ ε = ε211, and the above equations for p and q
become

p = (λ + 2
3 µ) ε11 = Kε11 and q = 2Gε11 . (330)

¿erefore, for uniaxial strain linear elastic deformations starting from zero strain, the slope of the
loading path is

q
p
=
2G
K

=
2
K
3K(1 − 2ν)
2(1 + ν)

=
3(1 − 2ν)
1 + ν

. (331)

For ν = 0.35, the slope of the loading path is 2
3 which can be used as a check of the algorithm.
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E Parameter confidence intervals and Hessians

For model parameters that are independent and identically distributed, a rigorous way of determining
parameters of the distributions that describe the variability of the material has been elusive. In this
section, we describe one approach for �nding the parameters of distributions.

Consider a linear Hooke’s law constitutive model for which the user-input parameters are the bulk
modulus (K) and the shear modulus (G). ¿e input is the strain tensor (ε) while the output is the
stress tensor (σ). If I is the identity tensor, we can de�ne functions that give isotropic and deviatoric
parts of a tensor

iso(A) = 1
3 tr(A) I and dev(A) = A− iso(A) . (332)

¿en Hooke’s law can be de�ned as

σ(ε,K ,G) = 3K iso(ε) + 2G dev(ε) . (333)

Consider the special case of Hooke s law under axisymmetric loading, where εA is the axial component
of strain, εL is the lateral component of strain, σA is the axial component of stress, and σL is the lateral
component of stress. All other components of stress and strain are zero. ¿e reduced Hooke’s law for
this special case of axisymmetric loading is

⎡
⎢
⎢
⎢
⎢
⎢
⎣

σA
σL
σL

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

4
3G(εA − εL) + K(εA + 2εL)
− 2
3G(εA − εL) + K(εA + 2εL)

− 2
3G(εA − εL) + K(εA + 2εL)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (334)

Further reducing these equations to the case of uniaxial stress (where σL = 0) gives

σA =
9GKεA
G + 3K

and εL =
(2G − 3K)εA
2(G + 3K)

. (335)

Consider uniaxial stress data for which the axial strain (εA) is controlled. ¿e data set is considered
to be complete if the measured data are axial stress (σA) and lateral strain (εL). Conversely, the data
set is incomplete if one of the above two data sets is missing. For illustration, we will address the
unfortunately common case in which experimentalists provide modelers with only axial stress-strain
data, while failing to measure the lateral strain data.

¿e Young’s modulus (E) and Poisson’s ratio (ν) are de�ned as

E =
σA
εA

=
9GK
G + 3K

and ν = −
εL
εA

= −
(2G − 3K)

2(G + 3K)
. (336)

To generate the exact data, we will used bulk and shear moduli for aluminum. ¿ese are Kexact = 78
GPa and Gexact = 26 GPa which imply that Eexact = 70.2 GPa and νexact = 7/20.

We generate some synthetic experimental data for uniaxial stress loading for axial strain values of
εA = [1, 9, 14, 23, 28, 31, 35, 41, 45, 51]×10−5. ¿e corresponding values of σA and εL are taken to bemean
values. A normal distribution is used to generate variability in the synthetic data using a standard
deviation of 650 kPa for stress and 0.0000033 for the lateral strain. ¿e goal is to �nd values of the
model parameters K and G that �t the synthetic data.

Let us de�ne error measures as

δσA =
σA
σexactA

− 1 and δεL =
εL
εexactL

− 1 (337)

where
σexactA =

9GexactKexactεA
Gexact + 3Kexact

and εexactL =
(2Gexact − 3Kexact)εA
2(Gexact + 3Kexact)

. (338)
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¿en the optimization problem to �nd the �tted values of K and G can be framed as as least-squares
minimization problem where the objective function is

f ∶=
1
n∑n

[(δσA)2 + (δεL)2] (339)

where n is the number of observations.

In the following, the phrase “complete data” refers to having enough experimental data to �nd a unique
best-�t set of values for K and G. We can use the exact data as a veri�cation test to demonstrate that
the optimization procedure does indeed give exact �ts for K and G when the data set is complete (i.e.,
includes both axial stress data and lateral strain data) and when the data exactly �ts the Hooke’s law
constitutive model.

Rather than optimizing in a parameter space (K,G), we will seek optimal values of dK and dG de�ned
such that

K = Kfac(1 + dK) and G = Gfac(1 + dG) (340)

Normally, if the exact values of K and G are not known, Kfac and Gfac are set to be numerals that are in
the same order of magnitude as the expected exact solution. If, for example, the answer is expected to
be on the order of 109 (i.e., GPa, as is typical for elastic moduli), then one would set Kfac = Gfac = 109
and then optimize on the dimensionless and much smaller dK and dG. In this case where we happen
to know the exact solutions, let us set Kfac = Kexact and Gfac = Gexact. ¿is way, we know the exact
optimal solution is dK = 0, dG = 0.

Let us de�ne the Hessian matrix at the solution (dK�t, dG�t) as

H ∶=

⎡
⎢
⎢
⎢
⎢
⎣

∂2 f
∂(dK)2

∂2 f
∂(dK)∂(dG)

∂2 f
∂(dG)∂(dK)

∂2 f
∂(dG)2

⎤
⎥
⎥
⎥
⎥
⎦

. (341)

For the exact synthetic data, the Hessian matrix is

H = [
0.317551 −0.117551
−0.117551 1.91755 ] . (342)

¿e eigenvalues and eigenvectors (in columns) of H are

λ ∶= [1.92614, 0.308961] and v ∶= [
−0.0728827 −0.997341
0.997341 −0.0728827] . (343)

If we compute a Taylor series expansion of the objective function at the solution, we can con�rm from
contours of the Taylor series of the error function coincide with the plots of the actual error function.
We can also conform that the directions of the eigenvectors of the Hessian matrix are aligned with the
principal axes of the ellipse that represents a sample contour from the Taylor series for the objective
function centered at the solution for the minimum.

Unlike the exact data case, the overall error to be minimized at values of dK and dG that are not
zero is not zero when there is variability between samples . Hence, an optimized solution will not
exactly match the exact solution in general. For the variable synthetic data, the minimization process
yields the solution dK�t = -0.113977 and dG�t = -0.00106647 with a minimum error of 0.102031. ¿e
corresponding Hessian matrix is

H ∶= [
0.522477 −0.23128
−0.23128 1.84879 ] (344)

with eigenvalues and eigenvectors

λ ∶= [1.88797 0.483304] and v ∶= [
−0.166997 −0.985957
0.985957 −0.166997] . (345)
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Figure 70 shows the contour plot of the objective function, where the thick black ellipse is a sample
contour from the Taylor series expansion of the objective function centered at the solution for the
minimum. ¿e straight red lines show the directions of the eigenvectors of the Hessian matrix.

Figure 70 – Objective function contours in dK-dG space showing a contour from the
Taylor series around the optimum point.

Now consider the situation where the data are incomplete (this is the situation that we observed for the
Mason sand and Boulder clay data in this report). Let us assume that the only data available for �tting
is the axial stress and strain data, while data for lateral strain are missing. Accordingly, an optimization
will not be unique. Given only axial stress-strain data, the only thing that can be optimized is the �t to
Young s modulus,

E =
9GK
3K +G

. (346)

¿ere are an in�nite number ofK andG values that can exactlymatch the slope of the axial stress-strain
data. ¿e optimizer will �nd only one acceptable K and G pair, and we need a way to determine the
constraint for which other values are equally acceptable. When only the axial stress data are available,
the overall error measure is taken to be the sum of squares of the axial stress errors:

f ∶=
1
n∑n

[(δσA)2] . (347)

If we try to �t the exact data, we �nd that the Hessian is

H ∶= [
0.00191195 0.0612799
0.0612799 1.96408 ] (348)
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with eigenvalues and eigenvectors

λ ∶= [1.966 4.63095 × 10−13] and v ∶= [
0.031185 −0.999514
0.999514 0.031185 ] . (349)

As seen above, this time the Hessian matrix has a zero eigenvalue. ¿at means that the provided data
were insu�cient to set values to all of the material properties. ¿us, the optimized values (dK�t, dG�t)
will be only one of an in�nite number of equally good solutions. Because we are �tting only to axial
stress-strain data, any bulk and shear modulus pair will minimize the error as long as that pair has
the same Young’s modulus (to optimally match the slope of the available data). ¿e solution �ts the
incomplete data exactly.

For variable incomplete data, the above process also leads to aHessian with a zero eigenvalue. Figure 71
shows that the contour plot of the objective function with the thick black ellipse is now a degenerate
ellipse of in�nite length in one direction. ¿e slope of that ellipse is simply the plot of the constraint,

9GK
3K +G

= Eexact (350)

being a sample contour from the Taylor series for the objective function centered at the solution for
the minimum. ¿e red lines show the directions of the eigenvectors of the Hessian matrix. Because
the data are incomplete, the ellipse direction associated with the zero eigenvalue of the Hessian matrix
is in�nitely long. ¿at means any K and G value on that line will give equally accurate answers. ¿e
thick green line is the plot of

9GK
3K +G

= constant = E�t . (351)

Note that the solution �ts the incomplete data well, though not exactly.

¿ese exercises using Hooke’s law would be important to run when testing out any optimization so 
ware. Of crucial importance is the situation for which there is not yet enough data to �t the model.
¿atmeans that an optimized �t to the available data is actually not unique, and the eigenvectors of the
Hessianmatrix corresponding to zero eigenvalues tell us admissible directions in which the parameters
may be tweaked without disrupting our previous �ts. In this Hooke’s law example, the �t to incomplete
data allows tweaking themodel parameters, K andG, in any direction for which Young’s modulus does
not change.
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Figure 71 – Objective function contours in dK-dG space showing a contour from the
Taylor series around the optimum point when only the axial stress-axial
strain data are available.
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