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1—Overview of Vaango

1.1 History

Vaango has been developed using the Uintah computational Framework originally developed at the
University of Utah Center for the Simulation of Accidental Fires and Explosions (C-SAFE). �e code
was forked in 2012 for a visual e�ects project in Callaghan Innovation, New Zealand, and subsequently
open-sourced in 2015 a�er being acquired by Parresia Research Limited, New Zealand.

1.1.1 The Center for the Simulation of Accidental Fires and Explosions (C-SAFE)

�eUintah so�ware suite was created by the Center for the Simulation of Accidental Fires and Explosions
(C-SAFE). C-SAFEwas originally created at the University of Utah in 1997 by the Department of Energy’s
Accelerated Strategic Computing Initiative’s (ASCI) Academic Strategic Alliance Program (ASAP). (ASCI
was later renamed to the Advanced Simulation and Computing (ASC) program.)

Center Objective

C-SAFE’s primary objective was to provide a so�ware system in which fundamental chemistry and engi-
neering physics are fully coupledwith nonlinear solvers, visualization, and experimental data veri�cation,
thereby integrating expertise from a wide variety of disciplines. Simulations using the Uintah so�ware
can help to better evaluate the risks and safety issues associated with �res and explosions in accidents
involving both hydrocarbon and energetic materials.

Target Simulation

�e Uintah so�ware system was designed to support the solution of a wide range of highly dynamic
physical processes using a large number of processors. �e speci�c target simulation was the heating of
an explosive device placed in a large hydrocarbon pool �re and the subsequent deagration explosion and
blast wave (Figure 1.1). In that simulation, the explosive device is a small cylindrical steel container (4 in.
outside diameter) �lled with plastic bonded explosive (PBX-9501). Convective and radiative heat uxes
from the �re heat the outside of the container and subsequently the PBX. A�er some amount of time the
critical temperature in the PBX is reached and the explosive begins to rapidly decompose into a gas. �e
solid→gas reaction pressurizes the interior of the steel container causing the shell to rapidly expand and
eventually rupture. �e gaseous products of reaction form a blast wave that expands outward along with
pieces of the container and any unreacted PBX. �e physical processes in this simulation have a wide
range in time and length scales from microseconds and microns to minutes and meters. Uintahwas
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designed as a general-purpose uid-structure interaction code that could simulate not only this scenario
but a wide range of related problems.

Figure 1.1: Target Simulation -
Fire-Container-Explosion.

Complex simulations such as this require both immense computational
power and complex so�ware. Typical simulations include solvers for
structural mechanics, uids, chemical reactions, and material models.
All of these aspects must be integrated in an e�cient manner to achieve
the scalability required to perform these simulations. �e heart of Uin-
tah is a sophisticated computational framework that can integrate mul-
tiple simulation components, analyze the dependencies and commu-
nication patterns between them, and e�ciently execute the resulting
multi-physics simulation. Uintah also provides mechanisms for au-
tomating load-balancing, checkpoint/restart, and parallel I/O.�eUin-
tah core was designed to be general, and is appropriate for use in a
wide range of PDE algorithms based on structured (adaptive) grids and
particle-in-cell algorithms.

1.1.2 Uintah Software

�eUintahComputational Framework (also referred to asUintah or the UCF) consists of a set of so�-
ware components and libraries that facilitate the solution of Partial Di�erential Equations (PDEs) on
Structured AMR (SAMR) grids using up to hundreds to thousands of processors. �e source code and
latest releases can be found at http://uintah.utah.edu.

One of the challenges in designing a parallel, component-based and multi-physics application is deter-
mining how to e�ciently decompose the problem domain. Components, by de�nition, make local de-
cisions. Yet parallel e�ciency is only obtained through a globally optimal domain decomposition and
scheduling of computational tasks. Typical techniques include allocating disjoint sets of processing re-
sources to each component, or de�ning a single domain decomposition that is a compromise between the
ideal load balance of multiple components. However, neither of these techniques will achieve maximum
e�ciency for complex multi-physics problems.

Uintah uses a non-traditional approach to achieving parallelism by employing an abstract task graph
representation to describe computation and communication. �e task graph is an explicit representation
of the computation and communication that occur in the coarse of a single iteration of the simulation
(typically a timestep or nonlinear solver iteration). Uintah components delegate decisions about paral-
lelism to a scheduler component by using variable dependencies to describe communication patterns
and characterizing computational workloads to facilitate a global resource optimization. �e task graph
representation has a number of advantages, including e�cient �ne-grained coupling of multi-physics
components, exible load balancing mechanisms and a separation of application concerns from paral-
lelism concerns. However, it creates a challenge for scalability which we overcome by creating an implicit
de�nition of this graph and representing it in a distributed fashion.

�e primary advantage of a component-based approach is that it facilitates the separate development of
simulation algorithms, models, and infrastructure. Components of the simulation can evolve indepen-
dently. �e component-based architecture allows pieces of the system to be implemented in a rudimen-
tary form at �rst and then evolve as the technologies mature. Most importantly, Uintah allows the aspects
of parallelism (schedulers, load-balancers, parallel input/output, and so forth) to evolve independently of
the simulation components. Furthermore, components enable replacement of computation pieces with-
out complex decision logic in the code itself.

Please see the Vaango Developers Guide for more information about the internal architecture of Uintah.

http://uintah.utah.edu
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Software Ports

Uintah has been ported and runs well on a number of operating systems. �ese include Linux, Mac OSX,
Windows, AIX, and HPuX. Simulating small problems is perfectly feasible on 2-4 processor desktops,
while larger problems will need 100s to 1000s of processors on large computer clusters.

Uintah Software History

�e UCF was orginally built on top of the SCIRun Problem Solving Environment. SCIRun provided a
core set of so�ware building blocks, as well as a powerful visualization package. While Uintah continues
to use the SCIRun core libraries, Uintah’s use of the SCIRun PSE has been retired in favor of using the
VisIt visualization package from LLNL.

1.2 Vaango software

�e Vaango suite of tools is built on top of the Uintah computational framework with an emphasis on
solid mechanics (mechanical and civil engineering) rather than chemistry and uid dynamics. With that
in mind, the �re simulation components have been removed while additional solid mechanics models
and tools have been added relative to Uintah .





2— Basic Vaango usage

Several executable programs have been developed using the VaangoComputational Framework (UCF).
�e primary code that drives the components implemented in Vaango is called vaango .

Although Uintahwas developed for complex �re-explosion simulations, the general nature of the algo-
rithms and the framework has allowed researchers to use the code to investigate a wide range of problems.
�eVaango framework is general purpose enough to allow for the implementation of a variety of implicit
and explicit algorithms on structured grids but focuses on particle based algorithms.

2.1 Installing the Vaango software

For information on downloading theVaango so�ware package and how to setup and build it, please refer
to the Vaango Installation Guide.

2.2 Running Vaango

For single processor simulations, the vaango executable is run from the command line prompt like this:
vaango input.ups

where input.ups is an XML formatted input �le. �eVaango so�ware contains numerous example input
�les located in the src/StandAlone/inputs directory.

For multiprocessor runs, the user generally uses mpirun to launch the code. Depending on the envi-
ronment, batch scheduler, launch scripts, etc, mpirun may or may not be used. However, in general,
something like the following is used:

mpirun -np num_processors vaango input.ups

num processors is the number of processors that will be used. �e input �le must contain a patch layout
that has at least the same number (or greater) of patches as processors speci�ed by a number following
the -np option shown above.

In addition, the -mpi ag is optional but sometimes necessary if thempi environment is not automatically
detected from within the vaango executable.

Vaango provides for restarting from checkpoint as well. For information on this, see Section 2.6, which
describes how to create checkpoint data, and how to restart from it.
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2.3 Vaango Problem Speci�cation

�e Vaango framework uses XML like input �les to specify the various parameters required by sim-
ulation components. �ese are called Uintah Problem Speci�cation �les and have the extension .ups
because they are directly based on theUintah input �le format. �e .ups �les are validated based on the
speci�cation found in src/StandAlone/inputs/UPS SPEC/ups spec.xml and its sibling �les.

�e application developer is free to use any of the speci�ed tags to specify the data needed by the simu-
lation. �e essential tags that are required by Vaango include the following:

<Uintah_specification >

<SimulationComponent >

<Time>

<DataArchiver >

<Grid>

Individual components have additional tags that specify properties, algorithms, materials, etc. that are
unique to that individual components. Within the individual sections on MPM, ICE, and MPMICE the
individual tags will be explained more fully.

�e vaango executable veri�es that the input �le adheres to a consistent speci�cation and that all neces-
sary tags are speci�ed. However, it is up to the individual creating or modifying the input �le to put in
physically reasonable set of consistent parameters.

2.4 Simulation Components

�e input �le tag for SimulationComponent has the type attribute that must be speci�ed with either
mpm, mpmice, ice, peridynamics as in:
<SimulationComponent type = "mpm" />

2.5 Time Related Variables

Vaango components are time-dependent codes. As such, one of the �rst entries in each input �le de-
scribes the time-stepping parameters. An input �le segment is given below that encompasses all of the
possible parameters. �e function of each of these parameters is described below.
<Time>

<maxTime > 1.0 </maxTime >

<initTime > 0.0 </initTime >

<delt_min > 0.0 </delt_min >

<delt_max > 1.0 </delt_max >

<delt_init > 1.0e-9 </delt_init >

<max_delt_increase > 2.0 </max_delt_increase >

<timestep_multiplier >1.0 </timestep_multiplier >

<max_timestep > 100 </max_timestep >

<end_on_max_time_exactly >true </end_on_max_time_exactly >

</Time>

�e following �elds are required:

• maxTime - how long in physical time to run the simulation for
• initTime - what time to begin the simulation at
• delt min - the smallest timestep the simulation will take
• delt max - the largest timestep the simulation will take
• timestep multiplier - multiplies the timestep by this number (before adjusting to min or max
timestep)

�e following �elds are optional:
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• delt init -�e timestep to take initially (assuming it’s less than the one computed by the simulation)
• initial delt range - �e period of time to use the delt init (default = 0)
• max delt increase - Maximum amount to multiply the previous delt by (if the newly computed
delt is greater than the previous one)

• max iterations - �e number of timesteps to run the simulation for (even on a restart)
• max timesteps -�e timestepnumber to end the simulation on (not usually usedwithmax iterations )
• override restart delt - On a restart, use this delt instead of the most-recently-used delt.
• clamp timesteps to output - Sync the delt with the DataArchiver - when an output timestep oc-
curs, reduce the delt to have the time land on the timestep interval (default = false)

• end on max time exactly - clamp the delt such that the last timesteps end on what was speci�ed
inmaxTime (default = false)

A word about timesteps: In general, the timestep (delt) is computed at various stages within a
timestep, and the smallest one is used, unless it needs to raise the delt to the delt min .

2.6 Data Archiver

�e Data Archiver section speci�es the directory name where data will be stored and what variables will
be saved and how o�en data is saved and how frequently the simulation is checkpointed.

2.6.1 Saving data

�e <�lebase> tag is used to specify the directory name and by convention, the .uda su�x is attached
denoting the “VaangoData Archive”.

Data can be saved based on a frequency setting that is either based on integer time intervals:
<outputTimestepInterval > 100 </outputTimestepInterval >

or real-valued timestep intervals:
<outputInterval > 1.0e-3 </outputInterval >}

Each simulation component speci�es variables with label names that can be speci�ed for data output. By
convention, particle data are denoted by p. followed by a particular variable name such as mass, velocity,
stress, etc. Whereas for node based data, the convention is to use the g. followed by the variable name,
such as mass, stress, velocity, etc. Similarly, cell-centered and face-centered data typically end with the a
trailingCC or FC, respectively. Within theDataArchiver section, variables are speci�edwith the following
format:

<save label = "p.mass" />

<save label = "g.mass" />

To see a list of variables available for saving for a given component, execute the following command from
the StandAlone directory:
inputs/labelNames component

where component is, e.g.,mpm , ice , etc.

2.6.2 Reduction variables

While most variable data remains con�ned to a single patch and is transferred to adjacent patches only
if needed, there are certain variables that need to be communicated to all the patches. Such variables are
typically reduced before communication and are called Reduction variables.

MPM reduction variables that can be saved in the data archive include the following possibilities:
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<save label = "TotalMass" />

<save label = "TotalMomentum" />

<save label = "ThermalEnergy" />

<save label = "KineticEnergy" />

<save label = "StrainEnergy" />

<save label = "AccStrainEnergy" />

<save label = "TotalVolumeDeformed" />

<save label = "CenterOfMassPosition" />

�e accumulated strain energy, AccStrainEnergy , is useful for incremental material models where only
an incremental strain energy computed in each step.

2.6.3 Check-pointing for restarts

Check-pointing information can be created that provides a mechanism for restarting a simulation at a
later point in time. �e <checkpoint> tag with the cycle and interval attributes describe how many
copies of checkpoint data is stored (cycle) and how o�en it is generated (interval). You may also use
thewalltimeStart andwalltimeInterval options for specifying when and how o�en a checkpoint will be
output based on wall-clock time.

As an example of checkpoint data that has two timesteps worth of checkpoint data that is created every
.01 seconds of simulation time are shown below:
<checkpoint cycle = "2" interval = "0.01"/>

An alternative checkpointing scheme that saves data every 25 timesteps can be speci�ed using:
<checkpoint cycle = "2" timestepInterval = "25"/>

To restart from a checkpointed archive, simply put -restart in the vaango command-line arguments and
specify the .uda directory instead of a ups �le (vaango reads the copied input.xml from the archive).
One can optionally specify a certain timestep to restart from with -t timestep with multiple checkpoints,
but the last checkpointed timestep is the default. When restarting, vaango copies all of the appropriate
information from the old uda directory to its new uda directory.

Here are some examples:
./ vaango -restart disks.uda .000 -nocopy

./ vaango -restart disks.uda .000 -t 29

2.7 Simulation Options

�ere are many options available when running MPM simulations. �ese are generally speci�ed in the
<MPM> section of the input �le. A list of these options taken from inputs/UPS SPEC/mpm spec.xml is
given in the VaangoDevelopers Manual.

2.8 Geometry creation

Within several of the components, the material is described by a combination of physical parameters and
the geometry. Geometry objects use the notion of constructive solid geometry operations to compose the
layout of the material from simple shapes such as boxes, spheres, cylinders and cones, as well as operators
which include the union, intersections, di�erences of the simple shapes. In addition to the simple shapes,
triangulated surfaces can be used in conjunction with the simple shapes and the operations on these
shapes.

See Chapter 3 for further detail.
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2.8.1 Resolution

An additional input in the <geom object> �eld is the <res> tag. In MPM, this simply refers to how
many particles are placed in each cell in each coordinate direction. For multi-material ICE simulations,
the <res> serves a similar purpose in that one can specify the subgrid resolution of the initial material
distribution of mixed cells at the interface of geometry objects.

2.9 Boundary conditions

Boundary conditions are speci�edwithin the<Grid> but are described separately for clarity. �e essential
idea is that boundary conditions are speci�ed on the domain of the grid. Values can be assigned either
on the entire face, or parts of the face. Combinations of various geometric descriptions are used to aid in
the assignment of values over speci�c regions of the grid. Each of the six faces of the grid is denoted by
either the minus or plus side of the domain.

�e XML description of a particular boundary condition includes which side of the domain, the ma-
terial id, what type of boundary condition (Dirichlet or Neumann) and which variable and the value
assigned. �e following is a an MPM speci�cation of a Dirichlet boundary condition assigned to the ve-
locity component on the x minus face (the entire side) with a vector value of [0.0,0.0,0.0] applied to all
of the materials.
<Grid>

<BoundaryConditions >

<Face side = "x-">

<BCType id = "all" var = "Dirichlet" label = "Velocity">

<value> [0.0 ,0.0 ,0.0] </value >

</BCType >

</Face>

<Face side = "x+">

<BCType id = "all" var = "Dirichlet" label = "Velocity">

<value> [0.0 ,0.0 ,0.0] </value >

</BCType >

</Face>

. . . .

<BoundaryCondition >

. . . .

<Grid>

�e notation <Face side = ”x-”> indicates that the entire x minus face of the boundary will have the
boundary condition applied. �e id = ”all” means that all the materials will have this value. To specify
the boundary condition for a particular material, specify an integer number instead of the ”all”. �e var
= ”Dirichlet” is used to specify whether it is a Dirichlet or Neumann or symmetry boundary conditions.
Di�erent components may use the var to include a variety of di�erent boundary conditions and are ex-
plained more fully in the following component sections. �e label = ”Velocity” speci�es which variable
is being assigned and again is component dependent. �e <value>[0.0,0.0,0.0] </value> speci�es the
value.

An example of a more complicated boundary condition demonstrating a hot jet of uid issued into the
domain is described. �e jet is described by a circle on one side of the domain with boundary conditions
that are di�erent in the circular jet compared to the rest of the side.
<Face circle = "y-" origin = "0.0 0.0 0.0" radius = ".5">

<BCType id = "0" label = "Pressure" var = "Neumann">

<value> 0.0 </value >

</BCType >

<BCType id = "0" label = "Velocity" var = "Dirichlet">

<value> [0. ,1. ,0.] </value>

</BCType >

<BCType id = "0" label = "Temperature" var = "Dirichlet">

<value> 1000.0 </value>

</BCType >

<BCType id = "0" label = "Density" var = "Dirichlet">
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<value> .35379 </value>

</BCType >

<BCType id = "0" label = "SpecificVol" var = "computeFromDensity">

<value> 0.0 </value>

</BCType >

</Face>

<Face side = "y-">

<BCType id = "0" label = "Pressure" var = "Neumann">

<value> 0.0 </value >

</BCType >

<BCType id = "0" label = "Velocity" var = "Dirichlet">

<value> [0. ,0. ,0.] </value>

</BCType >

<BCType id = "0" label = "Temperature" var = "Neumann">

<value> 0.0 </value>

</BCType >

<BCType id = "0" label = "Density" var = "Neumann">

<value> 0.0 </value>

</BCType >

<BCType id = "0" label = "SpecificVol" var = "computeFromDensity">

<value> 0.0 </value>

</BCType >

</Face>

�e jet is described by the circle on the y minus face with the origin at (0, 0, 0) and a radius of 0.5. For
the region outside of the circle, the boundary conditions are di�erent. Each side must have at least the
side speci�ed, but additional circles and rectangles can be speci�ed on a given face.

An example of the rectangle is speci�ed as with the lower corner at (0, 0.181, 0) and upper corner at
(0, 0.5, 0).
<Face rectangle = "x-" lower = "0.0 0.181 0.0" upper = "0.0 0.5 0.0">

2.10 Grid speci�cation

�e <Grid> section speci�es the domain of the structured grid and includes tags which indicate the lower
and upper corners, the number of extra cells which can be used by various components for the application
of boundary conditions or interpolation schemes.

�e grid is decomposed into a number of patches. For single processor problems, usually one patch is used
for the entire domain. For multiple processor simulations, there must be at least one patch per processor.
Patches are speci�ed along the x,y,z directions of the grid using the <patches>[2,5,3] </patches> which
speci�es two patches along the x direction, �ve patches along the y direction and 3 patches along the z
direction. �e maximum number of processors that vaango could use is 2 × 5 × 3 = 30. Attempting to
use more processors than patches will cause a run time error during initialization.

Finally, the grid spacing can speci�ed using either a �xed number of cells along each x,y,z direction or
by the size of the grid cell in each direction. To specify a �xed number of grid cells, use the <resolu-
tion>[20,20,3] </resolution> . �is speci�es 20 grid cells in the x direction, 20 in the y direction and 3 in
the z direction. To specify the grid cell size use the <spacing>[0.5,0.5,0.3] </spacing> . �is speci�es the
a grid cell size of .5 in the x and y directions and .3 in the z direction. �e <resolution> and <spacing>
cannot be speci�ed together. �e following two examples would generate identical grids:
<Level>

<Box label="1">

<lower> [0,0,0] </lower >

<upper> [5,5,5] </upper >

<extraCells > [1,1,1] </extraCells >

<patches > [1,1,1] </patches >

</Box>

<spacing > [0.5 ,0.5 ,0.5] </spacing >

</Level>
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<Level>

<Box label="1">

<lower> [0,0,0] </lower >

<upper> [5,5,5] </upper >

<resolution > [10 ,10 ,10] </resolution >

<extraCells > [1,1,1] </extraCells >

<patches > [1,1,1] </patches >

</Box>

</Level>

�e above examples indicate that the grid domain has a lower corner at (0, 0, 0) and an upper corner at
(5, 5, 5) with one extra cell in each direction. �e domain is broken down into one patch covering the
entire domain with a grid spacing of (.5, .5, .5). Along each dimension there are ten cells in the interior
of the grid and one layer of extraCells outside of the domain. extraCells are the Uintah nomenclature
for what are frequently referred to as ghost-cells .





3—Geometry creation

�e creation of geometry objects within the computational domain is a crucial part of the simulation
process. �is chapter discusses the options available for creating geometry in Vaango .

Example input �les for creating the geometries discussed in this chapter can be found in input-
s/MPM/GeometryPieceExamples .

3.1 Basic geometry objects

Each geometry object has the following properties, label (string name), type (box, cylinder, sphere, etc),
resolution (vector quantity), and any unique geometry parameters such as origin, corners, triangulated
data �le, etc. �e operators which include, the union, the di�erence, and intersection tags contain either
lists of additional operators or the primitives pieces.

As an example of a non-trivial geometry object is shown below:

<geom_object >

<intersection >

<box label = "Domain">

<min>[0.0 ,0.0 ,0.0]</min>

<max>[0.1 ,0.1 ,0.1]</max>

</box>

<union>

<sphere label = "First node">

<origin >[0.022 ,0.028 ,0.1 ]</origin >

<radius >0.01</radius >

</sphere >

<sphere label = "2nd node">

<origin >[0.030 ,0.075 ,0.1 ]</origin >

<radius >0.01</radius >

</sphere >

</union >

</intersection >

<res>[2,2,2]</res>

<velocity >[0. ,0. ,0.]</velocity >

<temperature >0 </temperature >

</geom_object >

�e following geometry objects are given with their required tags:
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3.1.1 Box

box requires the tagsmin andmax which are vector quantities
speci�ed in the [a, b, c] format.

<box label="box_1">

<min>[0.0, 0.0, 0.0]</min>

<max>[1.0, 2.0, 3.0]</max>

</box>

Figure 3.1: A box geometry piece.

3.1.2 Parallelepiped

parallelepiped requires the locations of four points that de�ne
the bounds of the parallelepiped. �e point p1 is a corner while
the the vectorsp2 - p1 , p3 - p1 , andp4 - p1 represent the vectors
along the three edges of the parallelepiped starting from p1 .

<parallelepiped label="box_1">

<p1>[ 0.0, 0.0, 0.0]</p1>

<p2>[ 1.0, 0.0, 0.0]</p2>

<p3>[ 1.0, 2.0, 0.5]</p3>

<p4>[-1.0, 1.0, 2.0]</p4>

</parallelepiped >

Figure 3.2: A parallelepiped geometry
piece.

3.1.3 Sphere

sphere has an origin tag speci�ed as a vector and the radius
tag speci�ed as a oat.

<sphere label="ball_1">

<origin >[ 0.0, 0.0, 0.0]</origin >

<radius > 0.75 </radius >

</sphere >

Figure 3.3: A sphere geometry piece.
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3.1.4 Cylinder

cylinder has a tag for the top andbottom origins (vector) plus
a tag for the radius (oat).

<cylinder label="cyl_1">

<bottom >[ -0.5, -0.5, -0.5]</bottom >

<top>[ 1.5, 1.5, 1.5]</top>

<radius > 0.5 </radius >

</cylinder >

Figure 3.4: A cylinder geometry piece.

3.1.5 Cone

cone has a tag for the top and bottom origins (vector) as well
as tags for the top and bottom radius (oat) to create a right
circular cone/frustum.

<cone label="cone_1">

<bottom >[ -0.5, -0.5, -0.5]</bottom >

<top>[ 1.5, 1.5, 1.5]</top>

<bottom_radius > 0.7 </bottom_radius >

<top_radius > 0.1 </top_radius >

</cone>

Figure 3.5: A cone geometry piece.

3.1.6 Ellipsoid

ellipsoid has an origin tag speci�ed as a vector. An ellipsoid
is de�ned by two orthogonal axis vectors v1 and v2 and three
semi-axis lengths r1 , r2 , r3 . �e axis vectors must be orthogo-
nal towithin 1e-12 a�er dot product or the simulationwill throw
an exception.

<ellipsoid label="ellipsoid_1">

<origin >[ 0.0, 0.0, 0.0]</origin >

<v1> [0.353553 , 0.353553 , 0.4] </v1>

<v2> [0.087038295569 , -0.783349583783 ,

0.615457362205] </v2>

<r1> 0.6403119924052649 </r1>

<r2> 1.0 </r2>

<r3> 2.0 </r3>

</ellipsoid > Figure 3.6: An ellipsoid geometry piece.
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3.1.7 Torus

torus has a center , an axis vector, andmajor andminor radii.
�e major radius must be greater than the minor radius. �e
axis vector is converted internally into a unit vector and cannot
have zero length.

<torus label="torus object">

<center > [0.1, 0.1, 0.1] </center >

<axis_vector >[ 1.5, 1.5, 1.5] </axis_vector >

<major_radius > 1.0 </major_radius >

<minor_radius > 0.5 </minor_radius >

</torus>

Figure 3.7: A torus geometry piece.

3.1.8 Triangulated surface

tri is a tag for describing a triangulated surface. �e �le name pre�x tag
speci�es the �le name to use for reading in the triangulated surface de-
scription and the points �le.

<tri label = "goblet">

<file_name_prefix > tri_goblet </file_name_prefix >

</tri>

�edefault behavior is to expect a triangulated surface �le (�le name.tri )
that contains a list of integers describing the connectivity of points speci-
�ed in �le name.pts . Here is an excerpt from the tri goblet.tri �le:

0 49 6

0 6 18

18 6 8

18 8 22

....

�e tri goblet.pts �le contains data of the form:
-2.6575 -0.366357 2.656

-2.69162 -0.57185 2.656

-2.61027 -0.577179 2.53656

-2.69395 -0.641317 2.656

-2.5085 -0.406282 2.39336

....

�e tri tag can also be used to read triangulated surfaces in OBJ , PLY ,
and STL formats. �e �le type tag speci�es the type of �le to be read.
For a PLY �le, the �le has to have the .stl extension and we can use the
following:

<tri label = "horse">

<file_name_prefix > horse </file_name_prefix >

<file_type > ply </file_type >

</tri>

For an OBJ �le, with extension .obj , we need
<tri label = "teddy bear">

<file_name_prefix > teddy </file_name_prefix >

<file_type > obj </file_type >

</tri>

For a STL �le, with extension .stl , the UPS �le requires
<tri label = "panther">

<file_name_prefix > panther </file_name_prefix >

<file_type > stl </file_type >

</tri>

Figure 3.8: �e triangle mesh.

Figure 3.9: A tri geometry
piece.

Figure 3.10: Particles created
from a PLY mesh.
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If you are unsure of the size of the domain that will �t
your geometry, examine the output to get information on
the bounding box of the object that has been read in.

tri geometry pieces can scaled , reected , and translated . �e
order of the co-ordinates can also be rearranged to suit a given
simulation.
To scale an object we use the scaling factor tag:

<tri label = "panther">

<file_name_prefix > panther </file_name_prefix >

<file_type > stl </file_type >

<scaling_factor > 0.5 </scaling_factor >

</tri>

To translate an object we use the translation vector tag:
<tri label = "panther">

<file_name_prefix > panther </file_name_prefix >

<file_type > stl </file_type >

<scaling_factor > 0.5 </scaling_factor >

<translation_vector > [0.0, -15.0, 0.0] </

translation_vector >

</tri>

To reect an object about an axis we use the reection vector
tag. Reections are currently allowed only with reect to the
global coordinates and require a value of -1 to reect and 1 to
retain the current orientation.

<tri label = "panther">

<file_name_prefix > panther </file_name_prefix >

<file_type > stl </file_type >

<scaling_factor > 0.5 </scaling_factor >

<reflection_vector > [1.0, 1.0, -1.0] </

reflection_vector >

</tri>

�e order of the axes can also be change during the geometry
set-up phase to align the object along a particular orientation.
�e axis sequence tag is used for that purpose. Allowed values
are [1, 2, 3], [2, 3, 1], [3, 1, 2], [1, 3, 2] , [3, 2, 1], and [2, 1, 3].

<tri label = "panther">

<file_name_prefix > panther </file_name_prefix >

<file_type > stl </file_type >

<scaling_factor > 0.5 </scaling_factor >

<axis_sequence > [2,1,3] </axis_sequence >

</tri>

�eorder inwhich the scaling, translation, and reection
operations are carried out matters. Translation followed
by scaling will lead to di�erent results than scaling fol-
lowed by translation. �e same holds for reection. In-
ternally, objects are scaled �rst, reected, and then trans-
lated.

Figure 3.11: Particles created from a
STL mesh.

Figure 3.12: Scaled geometry.

Figure 3.13: Scaled and translated ge-
ometry.

Figure 3.14: Reected geometry in z-
direction.

Figure 3.15: Change of coordinate se-
quence.

3.1.9 Boolean operations

�e boolean operators on the geometry pieces include di�erence, intersection, and union . Multiple
operators can be used to form very complex geometry pieces.
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�e di�erence takes two geometry pieces and subtracts the
second geometry piece from the �rst geometry piece.

<difference >

<box label="box_1">

<min>[-0.75, -0.75, -0.75]</min>

<max>[ 0.75, 0.75, 0.75]</max>

</box>

<sphere label="ball_1">

<origin >[ 0.0, 0.0, 0.0]</origin >

<radius > 1.00 </radius >

</sphere >

</difference >

<difference >

<sphere label="ball_1">

<origin >[ 0.0, 0.0, 0.0]</origin >

<radius > 1.00 </radius >

</sphere >

<box label="box_1">

<min>[-0.75, -0.75, -0.75]</min>

<max>[ 0.75, 0.75, 0.75]</max>

</box>

</difference >

Figure 3.16: �e di�erence of a sphere
from a cube.

Figure 3.17: �e di�erence of a cube from
a sphere.

�e intersection operator requires at least two geometry pieces
in forming an intersection geometry piece.

<intersection >

<box label="box_1">

<min>[-0.75, -0.75, -0.75]</min>

<max>[ 0.75, 0.75, 0.75]</max>

</box>

<sphere label="ball_1">

<origin >[ 0.0, 0.0, 0.0]</origin >

<radius > 1.00 </radius >

</sphere >

</intersection > Figure 3.18: An intersection of a sphere
and a cube.

�e union operator aggregates a collection of geometry pieces.
<union>

<box label="box_1">

<min>[-0.75, -0.75, -0.75]</min>

<max>[ 0.75, 0.75, 0.75]</max>

</box>

<sphere label="ball_1">

<origin >[ 0.0, 0.0, 0.0]</origin >

<radius > 1.00 </radius >

</sphere >

</union>

Figure 3.19: A union of a sphere and a
cube.
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3.2 Special geometry objects

A few special geometry objects exist that do not force the material points to be distributed according to
the geometry of the background grid. �ese are discussed below.

3.2.1 Smooth Cylinder

smoothcyl is a geometry object that generates a body �t parti-
cle spatial distribution. �is eliminates “stair-stepped” bound-
aries typical of the standard, grid-based, discretization scheme.

�e smoothcyl geometry is designed to work best with
<interpolator>cpdi </interpolator> . Other algorithms
may give erroneous answers.

�e basic usage requires coordinates of the bottom and top
center points, and a radius .

<smoothcyl label="cyl smooth">

<bottom >[ -1.0, -1.0, -1.0]</bottom >

<top>[ 1.0, 1.0, 1.0]</top>

<radius > 0.5 </radius >

</smoothcyl >
Figure 3.20: A smoothcyl geometry ob-
ject. Particle volumes vary with radius.

A hollow smoothcyl can be created by specifying an additional
thickness parameter. �e thickness is required to be smaller
than the radius. �e particle and grid resolution should be cho-
sen such that the thickness contains at least two layers of parti-
cles.

<smoothcyl label="cyl smooth">

<bottom >[ -1.0, -1.0, -1.0]</bottom >

<top>[ 1.0, 1.0, 1.0]</top>

<radius > 0.5 </radius >

<thickness > 0.2 </thickness >

</smoothcyl >

Figure 3.21: A hollow smoothcyl geome-
try object.

Endcaps can be added to the smoothcyl by specifying an ad-
ditional endcap thickness parameter.

<smoothcyl label="cyl smooth">

<bottom >[ -1.0, -1.0, -1.0]</bottom >

<top>[ 1.0, 1.0, 1.0]</top>

<radius > 0.5 </radius >

<thickness > 0.2 </thickness >

<endcap_thickness > 0.4 </endcap_thickness >

</smoothcyl >

Figure 3.22: A hollow smoothcyl with
endcaps geometry object.
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Partial sectors of a smoothcyl can also be modeled by speci-
fying arc information. �e start angle and arc angle default to
0 and 360 and have to be speci�ed in degrees. �e number of
particles between arc start and arc angle is determined indi-
vidually for each ring of particles by attempting to keep particle
spacings approximately equal in the radial and angular direc-
tions, and thus particle volumes approximately constant.

<smoothcyl label="cyl smooth">

<bottom >[ -1.0, -1.0, -1.0]</bottom >

<top>[ 1.0, 1.0, 1.0]</top>

<radius > 0.5 </radius >

<thickness > 0.2 </thickness >

<endcap_thickness > 0.2 </endcap_thickness >

<arc_start_angle_degree > 30 </

arc_start_angle_degree >

<arc_angle_degree > 90 </arc_angle_degree >

</smoothcyl >
Figure 3.23: A partial hollow smoothcyl
with endcaps.

Multiple smoothcyl geometries within a <geom object> tag are not discretized using a body �t
particle distribution as described here (rather the default discretization scheme is used). �is will
be �xed eventually, at which point it may be possible to create more general endcaps using unions
of smoothcyl .

3.2.2 Smooth sphere

If quarter-symmetry simulations are not required, a smoother
approximation to a sphere can be modeled using the
smooth sphere tag. �e center tag speci�es the center
of the sphere, the outer radius tag is the outer radius, in-
ner radius the inner radius, and the num radial pts tag
indicates the number of points through the thickness. Op-
tionally, one can use the algorithm tag to determine which
algorithm (spiral or equal area ) will be used to generate
points and the output �le tag to save the points and volume
to a �le that can be read in by the �le geometry object creator.

<smooth_sphere label="sphere_1">

<center >[ 0.0, 0.0, 0.0]</center >

<outer_radius > 1.0 </outer_radius >

<inner_radius > 0.9 </inner_radius >

<num_radial_pts > 5 </num_radial_pts >

<algorithm > spiral </algorithm >

<output_file > generated_sphere.pts </

output_file >

</smooth_sphere >

Figure 3.24: A hollow
smooth sphere geometry ob-
ject generated with the spiral
algorithm.

Figure 3.25: A hollow
smooth sphere geometry ob-
ject generated with the equal area
algorithm.
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3.2.3 Spherical membrane

�e default discretization of a sphere leads to a rough approxi-
mation of the surface of a sphere. �e sphere membrane ge-
ometry allows more control over the distribution of particles
while retaining the possibility of modeling quarter symmetry
spheres. �e origin tag speci�es the center of the sphere, the
radius tag is the outer radius, the thickness the thickness of
the sphere wall, the num lat label the number of points along
the latitude and num long label indicates the number of points
along the longitude.

<sphere_membrane label="membrane">

<origin >[ 0.0, 0.0, 0.0]</origin >

<radius > 1.0 </radius >

<thickness > 0.1 </thickness >

<num_lat > 10 </num_lat >

<num_long > 10 </num_long >

</sphere_membrane >

Figure 3.26: A hollow
sphere membrane geometry
object.

3.2.4 Corrugated edge

�e corrugated tag creates a plate with one corrugated edge.
�e particle spacing is determined from the grid size and the
number of particles per grid cell. �e input requires the mini-
mum and maximum limits of the plate xymin and xymax , the
thickness , the plate normal , the corr edge edge that is to be
corrugated (values of x+ , y+ , x- , and y- are allowed), the type
of curve (sin or cos ), the wavelength and the amplitude of
the corrugation. A sample input can be:

<corrugated >

<xymin> [0.0 ,0.0 ,0.0] </xymin>

<xymax> [20.0 ,20.0 ,0.0] </xymax>

<thickness > 1.0 </thickness >

<normal > [0.0 ,0.0 ,1.0] </normal >

<corr_edge > x+ </corr_edge >

<curve> sin </curve>

<wavelength > 2.0 </wavelength >

<amplitude > 2.0 </amplitude >

</corrugated >

Figure 3.27: A corrugated edge ge-
ometry object.
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3.2.5 Reading in an Abaqus format volumemesh

For certain geometries, none of the approaches discussed ear-
lier work well and a three-dimensional mesh is the most vi-
able approach for importing geometries into Vaango . �e
abaqus mesh geometry object has been designed to read in
Abaqus format mesh data generated using Abaqus or mesh-
ing tools such as gmsh and stored in ASCII format in <�le-
name>.inp . A typical input �le speci�cation for such data is:

<geom_object >

<abaqus_mesh label = "torus">

<file_name > Torus_6.inp </file_name >

</abaqus_mesh >

<res>[2,2,2]</res>

<velocity >[0.0 ,0.0 ,0.0]</velocity >

<temperature >300</temperature >

<color>1</color>

</geom_object >

<geom_object >

<abaqus_mesh label = "box 1">

<file_name > Box_1.inp </file_name >

</abaqus_mesh >

<res>[2,2,2]</res>

<velocity >[0.0 ,0.0 ,0.0]</velocity >

<temperature >300</temperature >

<color>2</color>

</geom_object >

....

Figure 3.28: A geometry object that
is meshed using gmsh .

Figure 3.29: A abaqus mesh geom-
etry object.

If the user does not own anAbaqus license, input �les can be generated using the following process.
1. Create the geometry and generate a .step �le using a tool such as SolidWorks (commercial),
the open-source FreeCAD , or Salome-MECA .

2. Clean up the geometry usingMeshLab andmake sure there are no self-intersecting triangles
and non-manifold edges. Save the cleaned surface mesh geometry in the .stl format.

3. Use gmsh to generate a volume mesh from the cleaned geometry taking care to ensure a
uniform distribution of tetrahedra. Save the mesh in Abaqus .inp format.

3.2.6 Specifying particle locations directly

In addition to the above, it is also possible inMPM simulations
to describe geometry by providing a �le containing a series of
particle locations. �ese can be in either ASCII or binary for-
mat. In addition, it is also possible to provide initial data for
certain variables on the particles, including volume, temper-
ature, external force, �ber direction (used in material models
with transverse isotropy) and velocity. �e following is an ex-
ample in which external force and �ber direction are speci�ed:

<file>

<name>LVcoarse.pts</name>

<var>p.externalforce </var>

<var>p.fiberdir </var>

</file>

Figure 3.30: A �le based geometry
object.

�e text �le LVcoarse.pts looks like:
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0.0385 0.0335 0.0015 0 0 0 0.248865 -0.0593421 -0.966718

0.0395 0.0335 0.0015 0 0 0 0.254892 -0.0220365 -0.966718

0.0405 0.0335 0.0015 0 0 0 0.267002 0.0197728 -0.963493

0.0415 0.0335 0.0015 0 0 0 0.261177 0.0588869 -0.963493

...

Because these �les can be arbitrarily large, an additional preprocessing step must be taken before issuing
the vaango command. particleFileSplitter is a utility that splits the data in the .pts �le into a series of
�les (�le.pts.0, �le.pts.1, , etc), one for each patch. By doing this, each processor needs only read in the
data for the patches that it contains, rather than each processor reading in the entire �le, which can be
hard on the �le system. Note, that this step is required, even if only using a single patch, and must be
reissued any time the patch con�guration is changed. Usage of this utility, which is compiled into the
StandAlone/particleFileSplitter executable, is:

particleFileSplitter input.ups

An associated utility that can be used to extract particle position and volume information from a UDA
�le is StandAlone/createFileGeomPieceFromUda . An example of its usage is

createFileGeomPieceFromUda file_geom_pfs_hummer_inp.uda .000 file_geom_pfs_hummer.dat

�is utility extracts the material points and their volumes into �les with amat su�x. For example, for an
input �le containing 6 materials, the extracted �les are named:

file_geom_pfs_hummer.dat.mat0

file_geom_pfs_hummer.dat.mat1

file_geom_pfs_hummer.dat.mat2

file_geom_pfs_hummer.dat.mat3

file_geom_pfs_hummer.dat.mat4

file_geom_pfs_hummer.dat.mat5

Wecannow create another input �le �le geom.ups containing the �le geometry objects and two patches:
<geom_object >

<file label = "container">

<name> file_geom_pfs_hummer.dat.mat0 </name>

<var> p.volume </var>

</file>

<res>[2,2,2]</res>

<velocity >[0.0 ,0.0 , -10]</velocity >

<temperature >300</temperature >

</geom_object >

<geom_object >

<file label = "base">

<name> file_geom_pfs_hummer.dat.mat1 </name>

<var> p.volume </var>

</file>

<res>[2,2,2]</res>

<velocity >[0.0 ,0.0 , -10]</velocity >

<temperature >300</temperature >

</geom_object >

...

To activate these objects we run particleFileSplitter :
particleFileSplitter file_geom.ups

to get the split �les
file_geom_pfs_hummer.dat.mat0.0

file_geom_pfs_hummer.dat.mat0.1

file_geom_pfs_hummer.dat.mat1.0

file_geom_pfs_hummer.dat.mat1.1

....

A�er this step we can run the usual Vaango simulation with
mpirun -np 2 vaango file_geom.ups
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3.2.7 Using image data to create particles

Another option is available for initializing particle positions in
MPM simulations from three-dimensional image data, such as
might be collected via micro-CT scans or confocal microscopy.
�e image data are provided as 2-byte (16-bit/short) raw �les,
and usage in the input �le is given as:

<geom_object >

<image>

<name> Almond_Kiss_2003112600.raw </name>

<res> [425, 420, 260] </res>

<threshold > [11, 200] </threshold >

</image>

<file label = "container">

<name> Almond_Kiss_2003112600.pts </name>

<format > bin </format >

</file>

<res>[1,1,1]</res>

<velocity >[0.0 ,0.0 , -10]</velocity >

<temperature >300</temperature >

</geom_object >

Figure 3.31: An image and �le based
geometry object.

Note that the geom object resolution is typically given as [1, 1, 1]. �e <image> section gives the name
of the 3D image �le, the resolution of the image in pixels in the various coordinate directions, and a
threshold range. Particles will be generated at voxels within the speci�ed range. �e <�le> section is the
same as that described earlier.

�e level section in the input �le also requires the same resolution for consistency. For example,

<Level>

<Box label = "1">

<lower>[0, 0, 0]</lower >

<upper>[1, 1, 1]</upper >

<resolution >[425, 420, 260]</resolution >

<patches >[1,1,1]</patches >

<extraCells >[1,1,1]</extraCells >

</Box>

</Level>

A di�erent preprocessing utility is needed when using image data (for the same reasons described previ-
ously). Usage is as follows:

particleImageFileSplitter -b input.ups

�e -b ag indicates that binary spheres.pts.# �les will be created, which saves considerable disk space
when performing large simulations.

A convenient tool for creating raw image �les is the Slicer3D so�ware which can be downloaded
from https://www.slicer.org/. If the micro-CT image is loaded into Slider3D, it can be con-
verted into NRRD format with separate �les for the header (extension nrhd ). If the compression
option is turned o� while saving as nrhd , a raw �le containing 16-bit pixel values is created. �is
�le can be used as input to Vaango .

https://www.slicer.org/


3.3 Adding particles to a simulation in progress 33

3.3 Adding particles to a simulation in progress

Vaango also contains Jim Guilkey’s algorithm for inserting or
transporting blocks of particles into or around the computa-
tional domain. �e functionality uses a time threshold for ac-
tivation of the insertion. Currently, capabilities include transla-
tion some distances x, y and z and initiation of a new “initial”
velocity vector. Particles, de�ned by color which is speci�ed
as an integer, in the geometry object section of the input �le,
can have a limitless number of transformations applied to them.
�ere are no limits to howmany geometry objects can be spec-
i�ed, however, each transformation can only act on one color
index. �us movement of more than one block of particles can
require multiple input lines.
Particle insertion is activated and directed with the following
ags found in the MPM section of the input �le:

<MPM>

<with_color > true </with_color >

<insert_particles >true</insert_particles >

<insert_particles_file >geom_insert_time.dat</

insert_particles_file >

</MPM>

�e adjacent images show a stream of rubbery material ying
into the domain and folding on itself. Another particularly use-
ful idea to note from the image, is the secondary box above the
normal domain, in which the particles to be inserted reside be-
fore they are inserted. Current application of particle insertion
tends to follow this motif.

Figure 3.32: A geometry object with
particle insertion.

A typical input �le, e.g., geom insert.ups , will contain:
<MPM>

...

<with_color > true </with_color >

<insert_particles >true</insert_particles >

<insert_particles_file >geom_insert_time.dat</insert_particles_file >

...

</MPM>

<MaterialProperties >

<MPM>

<material name="goo">

....

<include href="geom_insert_objects.xml"/>

</material >

...

</MPM>

</MaterialProperties >

<Grid>

<BoundaryConditions >

<Face side="x-">

<BCType id="all" var="Dirichlet" label="Velocity">

<value> [20.0 ,0.0 ,0.0] </value>

</BCType >

</Face>

<Face side="x+">

<BCType id="all" var="Dirichlet" label="Velocity">

<value> [0.0 ,0.0 ,0.0] </value >

</BCType >

</Face>

...

</BoundaryConditions >

<Level>

<Box label="output_box">
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<lower>[0.0, -1.0,-1.0]</lower >

<upper>[8.0, 1.0, 1.0]</upper>

<resolution >[160 ,40 ,40]</resolution >

<patches >[2,1,2]</patches >

<extraCells > [1,1,1] </extraCells >

</Box>

<Box label="input_box">

<lower>[0.0 ,1.0 , -1.0]</lower>

<upper>[0.2 ,2.0, 1.0]</upper>

<resolution >[4,20,40]</resolution >

<patches >[2,1,2]</patches >

<extraCells > [1,1,1] </extraCells >

</Box>

</Level>

</Grid>

�e geom insert time.dat �le is a text �le containing:
<time > <color > <trans x> <trans y> <trans z> <new x vel > <new y vel > <new z vel >

For example,
0 0 -0.175 -1.25 0 20 0 0

0.00125 1 -0.175 -1.25 0 20 0 0

0.0025 2 -0.175 -1.25 0 20 0 0

0.00375 3 -0.175 -1.25 0 20 0 0

0.005 4 -0.175 -1.25 0 20 0 0

.....

During the �rst timestep inwhich the current physical time plus the calculated∆t for the current timestep
exceeds the time speci�ed for a color block, the particles of that color will be translated along the three
coordinates and given a new velocity. Each line in the �le can be used to de�ne a unique transformation
for one particle color group. For instance, if a �le contained the line:
0.1 1 10 10 0 0 0 8

a�er ‘0.1 s’ of physical time any particle of color ‘1’ will be translated 10 units in the positive x- and
y-direction, 0 units in the positive z-direction and given a new velocity of 8 units/s in the positive z-
direction, with no velocity in the x- or y-direction.

�e geom insert objects.xml �le contains the geometry objects that will be pushed into the computa-
tional domain. An example is
<Uintah_Include >

<geom_object >

<box label="0">

<min>[0.175 , 1, -0.25]</min>

<max>[0.2, 1.5, 0.25]</max>

</box>

<res>[2,2,2]</res>

<velocity >[0.0 ,0.0 ,0.0]</velocity >

<temperature >300.0</temperature >

<color>0</color>

</geom_object >

<geom_object >

<box label="1">

<min>[0.175 , 1, -0.25]</min>

<max>[0.2, 1.5, 0.25]</max>

</box>

<res>[2,2,2]</res>

<velocity >[0.0 ,0.0 ,0.0]</velocity >

<temperature >300.0</temperature >

<color>1</color>

</geom_object >

....

</Uintah_Include >

Notice that all objects initially occupy the same position in the input box level.
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Anexample problemexists in inputs/MPM/GeometryPieceExamples namedgeom insert.ups that demon-
strates particle insertion. �e geom insert objects.xml �le de�nes the geometry objects (also the color)
and geom insert time.dat de�nes the times, translations and new velocity of the particle blocks.

3.4 OpenSCAD input �le for mortar geometry

One way of creating complex geometries is to use a tool such asOpenSCAD . �e script below shows how
a mortar shell with �ns can be created with OpenSCAD .
module linear_extrude_fs(height = 1, isteps = 20, twist = 0) {

union() {

for (i = [0 : 1: isteps -1]) {

translate ([0, 0, i*height/isteps ])

linear_extrude(

height = height/isteps ,

twist = 0,

scale = f_lefs ((i+1)/isteps) / f_lefs(i/isteps)

)

scale(f_lefs(i/isteps))

obj2D_lefs ();

}

}

}

function f_lefs(x) =

let(span = 150, start = 20, normpos = 45)

sin(x*span + start) / sin(normpos);

stem_dia = 5;

stem_rad = stem_dia / 2;

stem_height = 20;

stem_faces = 12;

wing_thick = 2*PI*stem_rad/stem_faces;

echo(wing_thick);

num_wings = 6;

wing_length = 5;

wing_height = 10;

wing_points = [[0, 0], [wing_length , 0], [0, wing_height ]];

wing_angle = 360/ num_wings;

stem_face_angle = 360/ stem_faces;

module obj2D_lefs () {

translate ([0 ,0])

circle(stem_dia , $fn=stem_faces);

}

module uxo_stem(diameter = 5, height = 10) {

cylinder(d = diameter , h = height , $fn=stem_faces);

}

module uxo_wing () {

in_by = 1;

translate ([ stem_rad - in_by , 0, -stem_height ])

rotate ([90, 0, 0])

linear_extrude(height = wing_thick , center = true)

polygon(wing_points);

}

union() {

color ([1 ,0 ,0])

linear_extrude_fs(height =30);

translate ([0, 0, -stem_height ])

uxo_stem(diameter = stem_dia , height = stem_height);

for (i = [0 : num_wings -1]) {
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rotate ([0, 0, 360/ num_wings*i + stem_face_angle /2])

uxo_wing ();

}

}

A plot of the resulting model can be seen in the adja-
cent �gure. �is input script can be easily modi�ed
to create other shapes for penetration studies.

Figure 3.33: A mortar shell model generated with
OpenSCAD.
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4.1 Introduction

�e Material Point Method (MPM) is described in detail in the Vaango theory manual. �e method is
used as an alternative to �nite elements for problems where large deformations are expected that are not
handled well by �nite elements due to element locking and distortion.

An example of an MPM simulation of two disks initially approaching each other is shown in Figure 4.1.
�e simulation involves material points on an overlying mesh.
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Figure 4.1: Initial particle representation of two colliding disks on an overlying mesh.

4.2 Vaango Speci�cation

Vaango input �les are constructed in XML format. Each begins with:
<?xml version =’1.0’ encoding=’ISO -8859-1’ ?>

while the remainder of the �le is enclosed within the following tags:
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<Uintah_specification >

</Uintah_specification >

�e following subsections describe the remaining inputs needed to construct an input �le for an MPM
simulation. �e order of the various sections of the input �le is not important.

�e MPM, ICE and MPMICE components are dimensionless calculations. It is the responsibility
of the analyst to provide the following inputs using a consistent set of units.

4.2.1 Common Inputs

Each Vaango component is invoked using a single executable called vaango , which chooses the type of
simulation to execute based on the SimulationComponent tag in the input �le. For the case of MPM
simulations, this looks like:
<SimulationComponent type="mpm" />

�ere are a number of �elds that are required for any component. �e �rst is that describing the timestep-
ping parameters, these are largely common to all components, and are described in Section 2.5. �e only
one that bears commenting on at this point is:

<timestep_multiplier > 0.5 </timestep_multiplier >

�is is e�ectively theCFLnumber forMPMsimulations, that is the numbermultiplied by the timestep size
that is automatically calculated by the MPM code. Experience indicates that one should generally keep
this value below 0.5, and should expect to use smaller values for high-rate, large-deformation simulations.

�e next �eld common to the input �les for all components is:
<DataArchiver >

</DataArchiver >

�is is described in Section 2.6. To see a list of variables available for saving inMPM simulations, execute
the following command from the StandAlone directory:
inputs/labelNames mpm

Note that for visualizing particle data, one must save p.x, and at least one other variable by which to color
the particles.

�e other principle common �eld is that which describes the computational grid. For MPM, this is typi-
cally broken up into two parts, the Level section speci�es the physical extents and spatial resolution of the
grid. For more information, consult Section 2.10. �e other part speci�es kinematic boundary conditions
on the grid boundaries. �ese are discussed below in Section 4.3.

4.2.2 Physical Constants

�e only physical constant required (or optional for that matter) for MPM simulations is gravity, this is
speci�ed as:
<PhysicalConstants >

<gravity > [0,0,0] </gravity >

</PhysicalConstants >

4.2.3 MPM Flags

�ere are many options available when running MPM simulations. �ese are generally speci�ed in the
MPM section of the input �le.



4.2 Vaango Speci�cation 39

Most options have default values and are not required to be speci�ed unless the defaults need to be
changed.

Some of these options are described below:

• Axisymmetry: �e axisymmetric ag is used to indicate that an axisymmetric simulation should
be conducted instead of the usual three-dimensional simulation.
Options: true or false
Default: false .
All axisymmetric simulations assume that the plane of rotational symmetry is the xy-plane, ax-
isymmetric r-coordinate coincides with the grid x-direction, axisymmetric z-coordinate coincides
with the grid y-direction, and that the axisymmetric θ-coordinate is in the z-direction of the grid.
�eGrid for axisymmetric computationsmust be only one cell thick in the z-direction. Plane strain
calculations can be simulated by applying appropriate grid boundary conditions in 3D. Plane stress
calculations are not allowed in Vaango .

<MPM>

<axisymmetric > false </axisymmetric >

</MPM>

• Time integrator: �e time integrator ag determine the type of integration to be used in the
MPM simulation.
Options: explicit , implicit , or fracture .
Default: explicit .
If the explicit option is chosen integration is done using forward Euler, while implicit uses backward
Euler. if the fracture option is chosen, some special integration features needed for FractureMPM
are activated.

<MPM>

<time_integrator > explicit </time_integrator >

</MPM>

• Interpolator: �e interpolator ag indicates the interpolation technique to be used to interpolate
from the grid to particles and to project particle data to the grid.
Options: linear , gimp , 3rdorderBS 4thorderBS , cpdi , or cpti
Default: linear .
�e linear option activates traditional MPM with linear grid interpolation functions. gimp acti-
vates the GIMP algorithm. 3rdorderBS and 4thorderBS activate third- and fourth-order B-spline
interpolation. cpdi and cpti activate the CPDI and CPTI interpolators.

<MPM>

<interpolator > gimp </interpolator >

</MPM>

Options other than linear require an extraCells tag (ghost cells) when specifying the Grid :
<Grid>

...

<extraCells > [1,1,1] </extraCells >

</Grid>

For axisymmetric simulations the z-value of extraCells can be 0.
�e CPDI interpolator may also require a critical length value, cpdi lcrit , that determines the max-
imum distance a particle can extend before its full extent is ignore by the CPDI algorithm.
Default: 1.0e10 .

<MPM>

<interpolator > cpdi </interpolator >

<cpdi_lcrit > 1.0e3 </cpdi_lcrit >

</MPM>
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• Mass and velocity controls: To control the simulation in the event of small masses (particle or
grid) or large velocities,Vaango provides a few clamps on the minimum andmaximum quantities
that are allowed in a simulation. If these values are exceeded, particles are deleted.
�eminimum particle mass ,minimum mass for acc , andmaximum particle velocity tags are
used to set these values.
Defaults: 3.0e-15, 1.0e-199, 3.0e105.

<MPM>

<minimum_particle_mass > 1.0e-10 </minimum_particle_mass >

<minimum_mass_for_acc > 1.0e-10 </minimum_mass_for_acc >

<maximum_particle_velocity > 1.0e9 </maximum_particle_velocity >

</MPM>

• Particle color: �ewith color ag indicates that color tags are being used in the simulation. Each
geometry object can then be assigned a <color > tag which has an integer value.
Options: true or false
Default: false .
�e color ag is particularly useful for debugging simulations where a particular material is asso-
ciated with a large number of geometry objects. It is also required for simulations with on-the-y
data analysis.

<MPM>

<with_color > false </with_color >

</MPM>

• Grid reset: A fundamental feature ofMPM is that the grid is reset a�er every time step. However, in
some simulations we would like to compare Vaango simulations with �nite element simulations.
A do grid reset ag is used to tell the simulation not to reset the grid in such simulations.
Options: true or false
Default: true .

<MPM>

<do_grid_reset > true </do_grid_reset >

</MPM>

• Damping: Two types of damping are allowed inVaango : a velocity-based damping that is applied
during the integration of the acceleration, and a Richtmyer-von Neumann arti�cial viscosity that
is slightly more complex (see the �eory Manual for details).
Velocity-based damping is always active and controlled by the arti�cial damping coe� ag.
Default: 0.0

<MPM>

<artificial_damping_coeff > 0.0 </artificial_damping_coeff >

</MPM>

Richtmyer-von Neumann viscosity is activated by the arti�cial viscosity ag and requires two pa-
rameters, arti�cial viscosity coe�1 and arti�cial viscosity coe�1 .
Options: true or false
Defaults: false, 0.2, 2.0

<MPM>

<artificial_viscosity > false </artificial_viscosity >

<artificial_viscosity_coeff1 > 0.2 </artificial_viscosity_coeff1 >

<artificial_viscosity_coeff2 > 2.0 </artificial_viscosity_coeff2 >

</MPM>

Viscous heating is automatically turned onwhen the arti�cial viscosity ag is on. If arti�cial viscosity
is o�, viscous heating can still be activated using the arti�cial viscosity heating tag. However, this
is typically not allowed in a simulation.
Options: true or false
Default: false
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<MPM>

<artificial_viscosity_heating > false </artificial_viscosity_heating >

</MPM>

• Deformation gradient: Deformation gradient computation algorithms can be switched by activat-
ing the deformation gradient tag. See the Vaango�eory Manual for further information.
Options: �rst order , sybcycling , taylor series , or cayley hamilton
Default: �rst order

<MPM>

<deformation_gradient algorithm="taylor_series">

<num_terms > 5 </num_terms >

</deformation_gradient >

</MPM>

A parameter, num terms , indicating the number of terms of the Taylor series to be evaluated can
also be added to the tag. �e default value is 1.
A pressure stabilization step can be added to the deformation gradient computation by activating
the do pressure stabilization ag. See the Vaango�eory Manual for details. Options: true or
false
Default: false

<MPM>

<do_pressure_stabilization > false </do_pressure_stabilization >

</MPM>

• Load curves: Simulations where loads are applied directly to MPM particles require load curves.
�e use load curves tag indicates whether a set of load curves is expected in the input �le.
Options: true or false
Default: false

<MPM>

<use_load_curves > false </use_load_curves >

</MPM>

�e default method computing the forces at particles can be inaccurate because particle surfaces
areas are not computed with enough accuracy. �ese errors can be mitigated to some extent by
using a CPDI -like interpolation scheme to interpolate particle forces to the corners of a particle
domain. �is feature can be activated with the use CBDI boundary condition ag.
Options: true or false
Default: false

<MPM>

<use_CBDI_boundary_condition > false </use_CBDI_boundary_condition >

</MPM>

If the use load curves ags is false but you still want some way of controlling the magnitude of
the external force applied to a particle, you can use the forceBC force increment factor tag to
increment the external force at all the particles every timestep. However, this ag is ideally avoided
in simulations.
Default: 0.0

<MPM>

<forceBC_force_increment_factor > 0.0 </forceBC_force_increment_factor >

</MPM>

• Prescribed deformations: Some special simulations require a set of prescribed deformations to
be applied to particles instead of the standard method of computing deformation gradients from
velocity gradients. �e simulation can be directed to search for these by activating the
use prescribed deformation ag. �e prescribed values of deformation are stored in a
prescribed deformation �le . An exact deformation ag can also be speci�ed to make sure that
the time increment ∆t is changed to match prescribed deformation times exactly.
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Options: true or false
Defaults: false, false

<MPM>

<use_prescribed_deformation > true </use_prescribed_deformation >

<prescribed_deformation_file > deformation_file.dat </

prescribed_deformation_file >

<exact_deformation > false </exact_deformation >

</MPM>

• Rotating coordinate system: Vaango also give you the option of performing your computations
write respect to a rotating coordinate system. �is feature is activated by the rotating coordinate system
tag and requires a center of rotation, an axis, and angular rotation speed, and optionally, a body ref-
erence point.
Defaults: [0, 0, 0], [0, 0, 1], 0.0, [0, 0, 0]

<MPM>

<rotating_coordinate_system >

<rotation_center > [1, 0, 0] </rotation_center >

<rotation_axis > [0, 0, 1] </rotation_axis >

<rotation_speed_angular > 10 </rotation_speed_angular >

<body_reference_point > [0, 0, 0] </body_reference_point >

</rotating_coordinate_system >

</MPM>

�e body force that is generated by rotation (or any other body force such as gravity), can be used
to initialize particle stresses by activating the initialize stress using body force tag.
Options: true or false
Defaults: false, false

<MPM>

<initialize_stress_using_body_force > false </

initialize_stress_using_body_force >

</MPM>

• Surface normals: Normals to object surfaces are estimated by default during every time step. �ese
are required for contact computations. For some bimaterial contact problems, these computed
normals may not be collinear. To force collinearity, an average of the two normals is taken when
the collinear bimaterial contact normals ag is activated.
Options: true or false
Default: false

<MPM>

<collinear_bimaterial_contact_normals > false </

collinear_bimaterial_contact_normals >

</MPM>

• Boundary traction faces: For some special simulations, we may require the contact tractions at
the domain boundaries to be computed and saved. �is feature is activated using the bound-
ary traction faces ag which takes a list of text strings as input. �e allowed values of xminus ,
Options: xplus , yminus , yplus , zminus , and zplus .
Default: [] .

<MPM>

<boundary_traction_faces >[xminus ,xplus ,zminus]</boundary_traction_faces >

</MPM>

• Cohesive zones: �ecohesive zone capability of Vaango can be activatedwith theuse cohesive zones
tag. See the Vaango�eory Manual for details.
Options: true or false
Default: false

<MPM>

<use_cohesive_zones > false </use_cohesive_zones >

</MPM>
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• Coupled thermal problems: MPM can also be used to solve heat conduction problems and certain
thermal e�ects are implemented in Vaango .
�emost basic e�ect is thermal expansion which can be activated with the do thermal expansion
ag.
Options: true or false
Default: false

<MPM>

<do_thermal_expansion > false </do_thermal_expansion >

</MPM>

Another e�ect that can be activated using a ag is heating due to contact friction,
do contact friction heating .
Options: true or false
Default: false

<MPM>

<do_contact_friction_heating > false </do_contact_friction_heating >

</MPM>

�e full heat conduction machinery in Vaango can be activated using one of three ags:
do explicit heat conduction , do implicit heat conduction , or
do transient implicit heat conduction . See theVaango�eoryManual for further information.
Options: true or false
Defaults: false, false, false

<MPM>

<do_explicit_heat_conduction > false </do_explicit_heat_conduction >

<do_implicit_heat_conduction > false </do_implicit_heat_conduction >

<do_transient_implicit_heat_conduction > false </

do_transient_implicit_heat_conduction >

</MPM>

If PETSc is used for implicit heat conduction, you canush the solver using the extra solver ushes
ag to save memory. However, this ag currently has no e�ect on the solve.

• Particle removal: Failed or “localized” particles can be removed or isolated from a simulation
using the erosion tag. Available erosion algorithms are applied directly only to selected material
models, but can be applied in general when used with conjunction with the material model tag
<d basic damage> .
Options: none , RemoveMass , AllowNoTension , ZeroStress , AllowNoShear , or BrittleDamage
Default: none

<MPM>

<erosion algorithm="BrittleDamage"> </erosion >

</MPM>

Vaango also provides the option of deleting particles that have been isolated from the rest of the
simulation by checking failed particles that are inside a cell containing only a few other particles.
�is capability can be activated by using the ag delete rogue particles .
Options: true or false
Default: false

<MPM>

<delete_rogue_particles > false </delete_rogue_particles >

</MPM>

• Particle addition/insertion: �ere are two types of particle addition algorithms in Vaango :
1. Convert failed particles to a di�erent material
2. Insert particles into an on-going simulation

To allow the conversion of failed particles, the input �le requires a the material to be converted and
thematerial a failed particle is to be converted into. Given these requirements, the algorithm can be
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activated using can add MPM material in conjunction with the ags create new particles and
manual new material .
Options: true or false
Defaults: false, false, false

<MPM>

<can_add_MPM_material > true </can_add_MPM_material >

<create_new_particles > true </create_new_particles >

<manual_new_material > true </manual_new_material >

</MPM>

Particle insertion is used for simulations similar to those shown in Section 3.3. �e ag
insert particles is used to activate this functionality.
Options: true or false
Default: false

<MPM>

<insert_particles > true </insert_particles >

<insert_particles_file > insert_particle_times.dat </insert_particles_file >

</MPM>

• Manufactured solutions: Several manufactured solutions have been implemented in Vaango to
test the MPM algorithm and material models. A manufactured solution simulation can be run by
activating the run MMS problem ag.
Options: none , AxisAligned , GeneralizedVortex , ExpandingRing , AxisAligned3L , Uniaxial-
StrainHarmonic ,UniaxialStrainHomogeneousLinear , orUniaxialStrainHomogeneousQuadratic
Default: none

<MPM>

<run_MMS_problem > GeneralizedVortex </run_MMS_problem >

</MPM>

• Adaptive mesh re�nement: �eMPM implementation in Vaango also allows for a rudimentary
adaptive mesh and particle re�nement capability. �is feature can be activated using the AMR ag.
Options: true or false Defaults: false

<MPM>

<AMR> true </AMR>

<use_gradient_enhanced_velocity_projection > false </

use_gradient_enhanced_velocity_projection >

<refine_particles > true </refine_particles >

</MPM>

�eMPM ags used in Vaango change frequently and the latest set can be found in
inputs/UPS SPEC/mpm spec.xml andMPM/MPMFlags.cc .

4.2.4 Material Properties

�e Material Properties section of the input �le actually contains not only those, but also the geometry
and initial condition data as well. Below is a simple example, copied from inputs/MPM/disks.ups. �e
name �eld is optional. �e �rst �eld is the material density . �e constitutive model �eld refers to the
model used to generate a stress tensor on eachmaterial point. �euse of thesemodels is described in detail
in Section 5. Next are the thermal transport properties, thermal conductivity and speci�c heat . Note
that these are required even if heat conduction is not being computed. �ese are the required material
properties. �ere are additional optional parameters that are used in other auxiliary calculations, for a
list of these see the inputs/UPS SPEC/mpm spec.xml .

Next is the speci�cation of the geometry, and, along with it, the initial state of the material contained in
that geometry. For more information on how initial geometry can be speci�ed, see Section 3.1. Within
the geom object is the res �eld. �is indicates how many particles per cell are to be used in each of the
coordinate directions. Following that are initial values for velocity and temperature. Finally, the color
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designation has a number of uses, for example when one wishes to identify initially distinct regions of the
same material. In Section 4.4 is a description of how this �eld is used to identify particles for on the y
data extraction.

An arbitrary number ofmaterial �elds can be speci�ed. As the calculation proceeds, each of these ma-
terials has their own �eld variables, and, as such, each material behaves independently of the others.
Interactions between materials occur as a result of “contact” models. �eir use is described in detail in
Section 4.2.5.

<MaterialProperties >

<MPM>

<material name="disks">

<density >1000.0 </density >

<constitutive_model type="comp_mooney_rivlin">

<he_constant_1 >100000.0 </he_constant_1 >

<he_constant_2 >20000.0 </he_constant_2 >

<he_PR>.49</he_PR >

</constitutive_model >

<thermal_conductivity >1.0</thermal_conductivity >

<specific_heat >5</specific_heat >

<geom_object >

<cylinder label = "gp1">

<bottom >[.25 ,.25 ,.05]</bottom >

<top>[.25 ,.25 ,.1]</top>

<radius > .2 </radius >

</cylinder >

<res>[2,2,2]</res>

<velocity >[2.0 ,2.0 ,0]</velocity >

<temperature >300</temperature >

<color> 0 </color >

</geom_object >

</material >

<contact >

<type>null</type>

<materials >[0]</materials >

</contact >

</MPM>

</MaterialProperties >

4.2.5 Contact

Whenmultiple materials are speci�ed in the input �le, eachmaterial interacts with its own �eld variables.
In other words, each material has its own mass, velocity, acceleration, etc. Without any mechanism for
their interaction, each material would behave as if it were the only one in the domain. Contact models
provide the mechanism by which to specify rules for inter material interactions. �ere are a number of
contact models from which to choose, the use of each is described next. See the input �le segment in
Section 4.2.4 for an example of their proper placement in the input �le, namely, a�er all of the MPM
materials have been described.

Null contact

�e simplest contact model is the null model, which indicates that no inter material interactions are to
take place. �is is typically only used in single material simulations. Its usage looks like:

<contact >

<type>null</type>

</contact >

Single velocity contact

�e next simplest model is the single velocity model. �e basic MPM formulation provides “free” no-
slip, no-interpenetration contact, assuming that all particle data communicates with a single �eld on the
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grid. For a single material simulation with multiple objects, that is the case. If one wishes to achieve
that behavior in Vaango -MPM when multiple materials are present, the single velocity contact model
should be used. It is speci�ed as:

<contact >

<type>single_velocity </type>

<materials >[0,1]</materials >

</contact >

Note that for this, and all of the contact models, the materials tag is optional. If it is omitted, the as-
sumption is that all materials will interact via the same contact model. (�is will be further discussed
below.)

Friction contact

�e ultimate in contact models is the friction contact model. For a full description, the reader is directed
to the paper by Bardenhagen et al.[1]. Briey, the model both overcomes some de�ciences in the single
velocity �eld contact (either the “free” contact or the model described above, which behave identically),
and it enables some additional features. With single velocity �eld contact, initially adjacent objects are
treated as if they are e�ectively stuck together. �e friction contact model overcomes this by detecting if
materials are approaching or departing at a given node. If they are approaching, contact is “enforced” and
if they are departing, another check is made to determine if the objects are in compression or tension.
If they are in compression, then they are still rebounding from each other, and so contact is enforced. If
tension is detected, they are allowed to move apart independently. Frictional sliding is allowed, based on
the value speci�ed formu and the normal force between the objects. An example of the use of this model
is given here:

<contact >

<type>friction </type>

<materials >[0,1,2]</materials >

<mu> 0.5 </mu>

</contact >

A slightly improved implementation of the Bardenhagen contact model can be accessed with the alterna-
tive tag:

<contact >

<type>friction_bard </type>

<materials >[0,1,2]</materials >

<mu> 0.5 </mu>

</contact >

A more recent friction contact algorithm [2] uses logistic regression to identify the interface between
two (or more) materials in contact. �is model can be activated using:

<contact >

<type>friction_LR </type>

<materials >[0,1,2]</materials >

<mu> 0.5 </mu>

</contact >

For more detail, please see the section on Logistic regression friction contact in the theory manual.

�e logistic regression friction contact model is not activated if there is only one material but
multiple geometry objects in the input �le. Please associate objects that you would like to interact
via friction contact with separate materials.

Approach contact

A slightly simpli�ed version of the friction model is the approach model. It is the same as the frictional
model above, except that it doesn’t make the additional check on the traction between two bodies at each
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node. At times, it is necessary to neglect this, but some loss of energy will result. Speci�cation is of the
model is also nearly identical:

<contact >

<type>approach </type>

<materials >[0,1,2]</materials >

<mu> 0.5 </mu>

</contact >

Speci�ed/Rigid contact

Finally, the contact infrastructure is also used to provide a moving displacement boundary condition.
Imagine a billet being smashed by a rigid platen, for example. Usage of this model, known as speci�ed
contact, looks like:

<contact >

<type>specified </type>

<filename >TXC.txt</filename >

<materials >[0,1,2]</materials >

<master_material >0</master_material >

<direction >[1,1,1]</direction >

<stop_time >1.0 </stop_time >

<velocity_after_stop >[0, 0, 0]</velocity_after_stop >

</contact >

For reasons of backwards compatibility, the speci�ed contact type is interchangable with rigid. By de-
fault, when either model is chosen, material 0 is the “rigid” material, although this can be overridden
by the use of the master material �eld. If no �lename �eld is speci�ed, then the particles of the rigid
material proceed with the velocity that they were given as their initial condition, either until the reach a
computational boundary, or until the simulation time has reached stop time, a�er which, their velocity
becomes that given in the velocity after stop �eld. �e direction �eld indicates in which cartesian di-
rections contact should be speci�ed. Values of 1 indicate that contact should be speci�ed, 0 indicates that
the subject materials should be allowed to slide in that direction.

If a �lename �eld is speci�ed, then the user can create a text �le which contains four entries per line.
�ese are:
time1 velocity_x1 velocity_y1 velocity_z1

time2 velocity_x2 velocity_y2 velocity_z2

.

.

.

�evelocity of the rigidmaterial particles will be set to these values, based on linear interpolation between
times, until stop time is reached.

�e �gures below show how the speci�ed contact algorithm can be used to simulate uniaxial tension and
compression tests. �e green block is the rigid master material that moves with a speci�ed velocity.

Initial state for tension
test.

Deformed state for
tension test.

Initial state for
compression test.

Deformed state for
compression test.

An alternative way of performing this type of contact is via surface normals. In that case, the input has
the form:
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<contact >

<type>specified </type>

<master_material > 0 </master_material >

<master_material_is_rigid > true </master_material_is_rigid >

<normal_only > true </normal_only >

</contact >

�is allows speci�ed contact with arbitrarily moving geometries. In the �gures below, note the motion of
the rigid disk to the le� and compare it to that of the the deformable disk which shows stress waves. �e
motion of the rigid disk is una�ected by the contact event.

Note, one should not try to apply traction boundary conditions (via the PhysicalBC tag), to the rigid
material used in this type of contact, as this constitutes trying to mix displacement and traction
boundary conditions.

Composite contact

Finally, it is possible to specify more than one contact model. Suppose one has a simulation with three
materials, one rigid, and the other two deformable. �e user may want to have the rigid material interact
in a rigid manner with the other two materials, while the two deformable materials interact with each
other in a single velocity �eld manner. Speci�cation for this, assuming the rigid material is 0 would look
like:

<contact >

<type>single_velocity </type>

<materials >[1,2]</materials >

</contact >

<contact >

<type>specified </type>

<filename >prof.txt</filename >

<stop_time >1.0</stop_time >

<direction >[0, 0, 1]</direction >

</contact >

An example of this usage can be found in inputs/MPM/twoblock-single-rigid.ups.
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4.3 BoundaryConditions

Boundary conditionsmust be speci�ed on each face of the computational domain (x−, x+, y−, y+, z−, z+)
for each material. An example of their speci�cation is as follows, where the entire Grid �eld is included
for context:

<Grid>

<BoundaryConditions >

<Face side = "x-">

<BCType id = "all" var = "Dirichlet" label = "Velocity">

<value> [0.0 ,0.0 ,0.0] </value >

</BCType >

</Face>

<Face side = "x+">

<BCType id = "all" var = "Neumann" label = "Velocity">

<value> [0.0 ,0.0 ,0.0] </value >

</BCType >

</Face>

<Face side = "y-">

<BCType id = "all" var = "Dirichlet" label = "Velocity">

<value> [0.0 ,0.0 ,0.0] </value >

</BCType >

</Face>

<Face side = "y+">

<BCType id = "all" var = "Neumann" label = "Velocity">

<value> [0.0 ,0.0 ,0.0] </value >

</BCType >

</Face>

<Face side = "z-">

<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType >

</Face>

<Face side = "z+">

<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType >

</Face>

</BoundaryConditions >

<Level>

... See Section 2.10 ...
</Level>

</Grid>

�ethreemain types of numerical boundary conditions (BCs) that can be applied are “Neumann”, “Dirich-
let”, and “Symmetric”, and the use of each is illustrated above. In the case of MPM simulations, Neumann
BCs are usedwhen onewishes to allow particles to advect freely out of the computational domain. Dirich-
let BCs are used to specify a velocity, zero or otherwise (indicated by the value tag), on one of the compu-
tational boundaries. Symmetric BCs are used to indicate a plane of symmetry. �is has a variety of uses.
�e most obvious is simply when a simulation of interest has symmetry that one can take advantage of
to reduce the cost of a calculation. Similarly, since Vaango is a three-dimensional code, if one wishes to
achieve plane-strain conditions, this can be done by carrying out a simulation that is one cell thick with
Symmetric BCs applied to each face of the plane, as in the example above. Finally, Symmetric BCs also
provide a free slip boundary.

�ere is also the �eld id = ”all” . In principal, one could set di�erent boundary condition types for di�erent
materials. In practice, this is rarely used, so the usage illustrated here should be used.

4.3.1 Physical Boundary Conditions

It is o�en more convenient to apply a speci�ed load at the MPM particles. �e load may be a function of
time. Such a load versus time curve is called a load curve. In Vaango , the load curve infrastructure is
available for general use (and not only for particles). However, it has been implemented only for a special
case of pressure loading. Namely, a surface is speci�ed through the use of the geom object description,
and a pressure vs. time curve is described by specifying their values at discrete points in time, between
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which linear interpolation is used to �nd values at any time. At t = 0, those particles in the vicinity of the
the surface are tagged with a load curve ID, and those particles are assigned external forces such that the
desired pressure is achieved.

We invoke the load curve in theMPM section (See Section 4.2.3) of the input �le by settinguse load curves
to true . �e default value is false .

In Vaango , a load curve infrastructure is implemented in the �le
.../MPM/PhysicalBC/LoadCurve.h . �is �le is essentially a templated structure that has the following
private data

// Load curve information

std::vector <double > d_time;

std::vector <T> d_load;

int d_id;

�e variable d id is the load curve ID, d time is the time, and d load is the load. Note that the load can
have any form - scalar, vector, matrix, etc.

In our current implementation, the actual speci�cation of the load curve information is in the Physi-
calBC section of the input �le. �e implementation is limited in that it applies only to pressure boundary
conditions for some special geometries (the implementation is in .../MPM/PhysicalBC/PressureBC.cc ).
However, the load curve template can be used in other, more general, contexts.

A sample input �le speci�cation of a pressure load curve is shown below. In this case, a pressure is applied
to the inside and outside of a cylinder. �e pressure is ramped up from 0 to 1 GPa on the inside and from
0 to 0.1 MPa on the outside over a time of 10 microsecs.

<PhysicalBC >

<MPM>

<pressure >

<geom_object >

<cylinder label = "inner cylinder">

<bottom > [0.0 ,0.0 ,0.0] </bottom >

<top> [0.0 ,0.0 ,.02] </top>

<radius > 0.5 </radius >

</cylinder >

</geom_object >

<load_curve >

<id>1</id>

<time_point >

<time> 0 </time>

<load> 0 </load>

</time_point >

<time_point >

<time> 1.0e-5 </time>

<load> 1.0e9 </load>

</time_point >

</load_curve >

</pressure >

<pressure >

<geom_object >

<cylinder label = "outer cylinder">

<bottom > [0.0 ,0.0 ,0.0] </bottom >

<top> [0.0 ,0.0 ,.02] </top>

<radius > 1.0 </radius >

</cylinder >

</geom_object >

<load_curve >

<id>2</id>

<time_point >

<time> 0 </time>

<load> 0 </load>

</time_point >

<time_point >

<time> 1.0e-5 </time>

<load> 101325.0 </load>

</time_point >

</load_curve >
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</pressure >

</MPM>

</PhysicalBC >

�e complete input �le can be found in inputs/MPM/thickCylinderMPM.ups . An additional example
which is used to achieve triaxial loading can be found at inputs/MPM/TXC.ups . �ere, the material ge-
ometry is a block, and so the regions described are at surfaces upon which the pressure is applied.

4.4 On the Fly DataAnalysis

In the event that one wishes to monitor the data for a small region of a simulation at a rate that is more
frequent than the what the DataArchiver can reasonably provide (for reasons of data storage and e�ect
on run time), Vaango provides a DataAnalysis feature. As it applies to MPM, it allows one to specify a
group of particles, by assigning those particles a particular value of the color parameter. In addition, a list
of variables and a frequency of output is provided. �en, at run time, a sub-directory (particleExtract/L-
0 ) is created inside the uda which contains a series of �les, named according to their particle IDs, one
for each tagged particle. Each of these �les contains the time and position for that particle, along with
whatever other data is speci�ed.

To use this feature, onemust include the <with color>true </with color> tag in theMPM section
of the input �le. (See Section 4.2.3.)

�e following input �le snippet is taken from inputs/MPM/disks.ups

<DataAnalysis >

<Module name="particleExtract">

<material >disks</material >

<samplingFrequency > 1e10 </samplingFrequency >

<timeStart > 0 </timeStart >

<timeStop > 100 </timeStop >

<colorThreshold >

0

</colorThreshold >

<Variables >

<analyze label="p.velocity"/>

<analyze label="p.stress"/>

</Variables >

</Module >

</DataAnalysis >

For all particles that are assigned a color greater than the colorThreshold¿, the variables p.velocity and
p.stress are saved every every 1/samplingFrequency time units, starting at timeStart until timeStop¿.

It is also possible to save grid based data with this module, see Section 6 for more information.

4.5 PrescribedMotion

�e prescribed motion capability inVaango allows the user to prescribe arbitrary material deformations
and superimposed rotations. �is capability is particularly useful in verifying that the constitutive model
is behaving as expected and is frame indi�erent. To prescribe material motion the following tag must be
included in theMPM section of the input �le:
<MPM>

<use_prescribed_deformation >true</use_prescribed_deformation >

</MPM>
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�e desired motion must then be speci�ed in a �le named time defgrad rotation . �e format of this �le
is as follows:
t0 F11 F12 F13 F21 F22 F23 F31 F32 F33 theta0 a0 a1 a2

t1 F11 F12 F13 F21 F22 F23 F31 F32 F33 theta1 a0 a1 a2

. . .

tn F11 F12 F13 F21 F22 F23 F31 F32 F33 thetan a0 a1 a2

where the �rst column is time, columns two through ten are the nine components of the prescribed defor-
mation gradient, the eleventh column is the desired rotation angle, and the remaining three columns are
the three components of the axis of prescribed rotation. �e components of the deformation gradient are
linearly interpolated for times between those speci�ed in the table. �e axis of rotation may be changed
for each speci�ed time. As a result, the angle of rotation about the speci�ed axis linearly increases from
zero to the speci�ed value at the end of the speci�ed interval. For example, the following table:
0 1 0 0 0 1 0 0 0 1 0 0 0 0

1 1 0 0 0 1 0 0 0 1 90 0 0 1

2 1 0 0 0 1 0 0 0 1 91 0 0 1

speci�es a pure rotation (no stretch) about the 3-axis. At time=0 the material will have rotated 90 degrees
about the 3-axis. At time=2 the material will have rotated an additional 91 degrees about the 3-axis for a
total of 181 degrees of rotation. As a warning to the user, it is possible to specify the deformation gradient
such that interpolating between to entries in the table results in a singular deformation gradient. For
example:
0 1 0 0 0 1 0 0 0 1 0 0 0 0

1 1 0 0 0 1 0 0 0 1 0 0 0 1

2 -1 0 0 0 -1 0 0 0 1 0 0 0 1

would result in the simulation failing due to a negative jacobian error between time=1 and time=2 since
the 11 and 22 components are linearly varying from 1 to -1 during that time, which will attempt to invert
the computational cell. �e deformation gradient at time=2 corresponds to a 180 degree rotation about
the 3-axis, and can be accomplished using the rotation feature described above.

As a �nal example the table:
0 1 0 0 0 1 0 0 0 1 0 0 0 0

1 0.5 0 0 0 0.5 0 0 0 0.5 45 0 1 0

2 0.5 0 0 0.5 0.5 0 0 0 0.5 90 0 0 1

would result in 50% hydrostatic compression at time=1 with a 45 degree superimposed rotation about the
2-axis, followed by simple shear and a 90 degree rotation about the 3-axis between time=1 and time=2.

4.6 Cohesive Zones

A cohesive zone formulation is available inVaango based on the description by Daphalapurkar, et al. [3].
As in their implementation, that in Vaango has several limitations. It is limited to a 2D implementation,
and the cohesive zone segments are assumed to not rotate or deform.

In order to use cohesive zones, the following �eld must be added to theMPM section of the input �le:
<MPM>

<use_cohesive_zones >true</use_cohesive_zones >

</MPM>

�e traction functions used in Vaango are those given in Eq. 15 of [3]. �ese require 4 input parame-
ters. �ey are σmax , τmax , δn and δt , the cohesive strengths in the normal and shear directions, and the
displacement jumps in the normal and tangential directions corresponding to the maximum normal and
shear strength values, respectively.

In an input �le, the description of a cohesive zone looks like:
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<cohesive_zone >

<sig_max > 240. </sig_max >

<tau_max > 240. </tau_max >

<delta_n > 0.00004 </delta_n >

<delta_t > 0.0000933 </delta_t >

<cz_filename >HOM.txt</cz_filename >

</cohesive_zone >

Note that in addition to the four parameters listed above, a cohesive zone �lename is also speci�ed. �e
format of this �le will be described below. Units on the strength and displacement correspond to the units
for stress and length used in the remainder of the input �le.

Cohesive zones describe a cohesion law between adjacent materials. As such, they take the place of a
contact model. �us, when using cohesive zones to describe the interaction of materials 1 and 2, the
contact section of the input �le would be:

<contact >

<type>null</type>

<materials >[1,2]</materials >

</contact >

Use of friction or approach contact to describe interaction between objects subsequent to decohesion
should be possible and is being investigated.

�e traction that is applied to the two materials governed by a cohesive zone model is based on the dis-
placement between those two materials, both normal and tangential. �e two adjacent materials are
referred to in the implementation as the “Top” and “Bottom” materials. A normal and tangential vector
describes the orientation of the cohesive zone surface. �e convention for the normal vector is that it
points in the direction from the bottom material to the top material. With this information in hand, we
can describe the format of the cz �lename mentioned above.
px1 py1 pz1 length1 normx1 normy1 normz1 tangx1 tangy1 tangz1 botmat1 topmat1

px2 py2 pz2 length2 normx2 normy2 normz2 tangx2 tangy2 tangz2 botmat2 topmat2

. . .

pxN pyN pzN lengthN normxN normyN normzN tangxN tangyN tangzN botmatN topmatN

where the �rst three columns are the x, y and z coordinates of the position, the fourth column is the
length, the ��h through seventh column is the normal direction (x, y, z) and the eighth through tenth
column is the tangential direction (x, y, z). Finally, the eleventh and twelth columns are the bottom and
top material indices, respectively.

An example of 3 cohesive zone segments follows:
2.5125 0.0 0.025 0.00125 0.0 1.0 0.0 1.0 0.0 0.0 1 2

2.5375 0.0 0.025 0.00125 0.0 1.0 0.0 1.0 0.0 0.0 1 2

2.5625 0.0 0.025 0.00125 0.0 1.0 0.0 1.0 0.0 0.0 1 2

As a 2D simulation in Vaango is actually a 3D simulation that is 1 cell thick, the “length” parameter
described above is actually going to be an area. Namely, the length in the plane of the simulationmultiplied
by the domain thickness in the out of plane direction.

4.7 Examples

�e following examples are meant to be illustrative of a variety of capabilities of Vaango -MPM, but are
by no means exhaustive. Input �les for the examples given here can be found in:
inputs/UintahRelease/MPM

Additional (mostly undocumented) input �les that exercise a greater range of code capabilities can also
be found in:
inputs/MPM
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Figure 4.2: Colliding elastic disks. Particles colored according to velocity magnitude.

Colliding Disks

ProblemDescription

�is is an implementation of an example calculation from [4] in which two elastic disks collide and re-
bound. See Section 7.3 of that manuscript for a description of the problem.

Simulation Speci�cs

Component used: MPM
Input �le name: disks sulsky.ups
Command used to run input �le: vaango disks sulsky.ups
Simulation Domain: 1.0 x 1.0 x 0.05 m
Cell Spacing:

.05 x .05 x .05 m (Level 0)
Example Runtimes:

4 seconds (1 processor, 3.16 GHz Xeon)

Physical time simulated: 3.0 seconds
Associate VisIt session: disks.session

Results

Figure 4.2 shows a snapshot of the simulation, as the disks are beginning to collide.

Additional data is available within the uda in the form of ”dat” �les. In this case, both the kinetic and
strain energies are available and can be plotted to create a graph similar to that in Fig. 5a of [4]. e.g. using
gnuplot:
cd disks.uda .000

gnuplot

gnuplot > plot "StrainEnergy.dat", "KineticEnergy.dat"

gnuplot > quit
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(a) Sliding allowed (b) Sliding prohibited

Figure 4.3: Taylor impact simulation with (a) sliding (b) no sliding, between cylinder and target. Particles
colored according to temperature.

Taylor Impact Test

ProblemDescription

�is is a simulation of an Taylor impact experiment calculation from [5] in a copper cylinder at 718 K that
is �red at a rigid anvil at 188 m/s. �e copper cylinder has a length of 30 mm and a diameter of 6 mm.
�e cylinder rebounds from the anvil a�er 100 µs.

Simulation Speci�cs

Component used: MPM
Input �le name: taylorImpact.ups
Command used to run input �le: vaango inputs/MPM/taylorImpact.ups
Simulation Domain: 8 mm x 33 mm x 8 mm
Cell Spacing:

1/3 mm x 1/3 mm x 1/3 mm (Level 0)
Example Runtimes:

1 hour (1 processor, Xeon 3.16 GHz)

Physical time simulated: 100 µseconds
Associate VisIt session: taylorImpact.session

Results

Figure 4.3(a) shows a snapshot from the end of the simulation. �ere, the cylinder is allowed to slide
laterally across the plate due to the following optional speci�cation in the contact section:

<direction >[0,1,0]</direction >

Figure 4.3(b) shows a snapshot from the end of a similar simulation. In this case, the cylinder is restricted
from sliding laterally across the plate by altering the contact section as follows:

<direction >[1,1,1]</direction >
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(a) Friction coe�cient µ = 0.495. (b) Friction coe�cient µ = 0.

Figure 4.4: Sphere rolling down an “inclined” plane. �e gravity vector is oriented at a 45 degree angle
relative to the plane. Particles are colored by velocity magnitude. Particles are colored according to ve-
locity magnitude, note that the particles at the top of the sphere are moving most rapidly, and those near
the surface of the plane are basically stationary, as expected.

Sphere Rolling Down an Inclined Plane

ProblemDescription

Here, a sphere of so� plastic, initially at rest, rolls under the inuence of gravity down a plane of a harder
plastic. Gravity is oriented such that the plane is e�ectively angled at 45 degrees to the horizontal. �is
simulation demonstrates the e�ectiveness of the contact algorithm, described in [1]. Frictional contact,
using a friction coe�cient of µ = 0.495 causes the ball to start rolling as it impacts the plane, a�er being
dropped from barely above it. �e same simulation is also run using a friction coe�cient of µ = 0.0. �e
di�erence in the results is shown below.

Simulation Speci�cs

Component used: MPM
Input �le name: inclinedPlaneSphere.ups
Command used to run input �le: vaango inputs/MPM/inclinedPlaneSphere.ups
Simulation Domain: 12.0 x 2.0 x 4.8 m
Cell Spacing:

.2 x .2 x .2 m (Level 0)
Example Runtimes:

2.7 hours (1 core, 3.16 GHz Xeon)

Physical time simulated: 2.2 seconds
Associate VisIt session: incplane.session

Results

Figure 4.4(a) and Figure 4.4(b) show snapshots of the simulation, as the sphere is about halfway down
the plane.
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Crushing a FoamMicrostructure

ProblemDescription

�is calculation demonstrates two important strength of MPM.�e �rst is the ability to quickly generate
a computational representation of complex geometries. �e second is the ability of the method to handle
large deformations, including self contact.

In particular, in this calculation a small sample of foam, the geometry for which was collected using
microCT, is represented via material points. �e sample is crushed to 87.5% compaction through the
use of a rigid plate, which acts as a constant velocity boundary condition on the top of the sample. �is
calculation is a small example of those described in [6]. �e geometry of the foam is created by image
procesing the CT data, and based on the intensity of each voxel in the image data, the space represented
by that voxel either receives a particle with the material properties of the foam’s constituent material, or is
le� as void space. �is particle representation avoids the time consuming steps required to build a suitable
unstructured mesh for this very complicated geometry.

Simulation Speci�cs

Component used: MPM
Input �le name: foam.ups
Instruction to run input �le: First, copy foam.ups and foam.pts.gz to the same directory as vaango .

Adjust the number of patches in the ups �le based on the number of processors available to you for
this run. First, uncompress the pts �le:
gunzip foam.pts.gz

�en the command:
tools/pfs/pfs foam.ups

will divide the foam.pts �le, which contains the geometric description of the foam, into number of
patches smaller �les, named foam.pts.0, foam.pts.1, etc. �is is done so that for large simulations,
each processor is only reading that data which it needs, and prevents the thrashing of the �le system
that would occur if each processor needed to read the entire pts �le. �is command only needs to
be done once, or anytime the patch distibution is changed. Note that this step must be done even
if only one processor is available.
To run this simulation:

mpirun -np NP vaango foam.ups

where NP is the number of processors being used.
Simulation Domain: 0.2 X 0.2 X 0.2125 mm
Number of Computational Cells:

102 X 102 X 85 (Level 0)
Example Runtimes:

2.4 hours (4 cores, 3.16 GHz Xeon)

Physical time simulated: 3.75 seconds
Associated VisIt session 1: foam.iso.session
Associated VisIt session 2: foam.part.session

Results

Figure 4.5(a) shows a snapshot of the simulation via isosurfacing, as the foam is at about 50% compaction.
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(a) Rendered via isosurfacing.

(b) Rendered with particles colored by equiv-
alent stress.

Figure 4.5: Compaction of a foam microstructure.

Figure 4.5(b) shows a snapshot of the simulation via particles colored by equivalent stress as the foam is
at about 60% compaction.

In this simulation, the reaction forces at 5 of the 6 computational boundaries are also recorded and can be
viewed using a simple plotting package such as gnuplot. At each timestep, the internal force at each of the
boundaries is accumulated and stored in “dat” �les within the uda, e.g. BndyForce zminus.dat. Because
the reaction force is a vector, it is enclosed in square brackets which may be removed by use of a script in
the inputs directory:
cd foam.uda .000

../ inputs/ICE/Scripts/removeBraces BndyForce\_zminus.dat

gnuplot

gnuplot > plot "BndyForce\_zminus.dat" using 1:4

gnuplot > quit

�ese reaction forces are similar to what would be measured on a mechanical testing device, and help to
understand the material behavior.
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Hole in an Elastic Plate

ProblemDescription

A at plate with a hole in the center is loaded in tension. To achieve a quasi-static solution, the load is
applied slowly and a viscous damping force is used to reduce transients in the solution. As such, this
simulation demonstrates those two capabilities. Speci�cally, take note of:

<use_load_curves > true </use_load_curves >

<artificial_damping_coeff >1.0</artificial_damping_coeff >

in theMPM section of the input �le, and:
<PhysicalBC >

<MPM>

<pressure >

.

.

.

section below that.

Simulation Speci�cs

Component used: MPM
Input �le name: holePlate.ups
Command used to run input �le: vaango inputs/MPM/holePlate.ups
Simulation Domain: 5.0 m x 5.0 m x 0.1 m
Cell Spacing:

0.1 m x 0.1 m x 0.1 m (Level 0)
Example Runtimes:

2 minutes (1 processor, Xeon 3.16 GHz)

Physical time simulated: 10 seconds
Associate VisIt session: holeInPlate.session

Results

Figure 4.6 shows a snapshot of the equivalent stress throughout the plate, as well as the load applied to the
vectors near the edge of the plate. Expected maximum stress is 300Pa. �e 238Pa maximum observed
here is signi�cantly lower, but upon doubling the resolution in the x and y directions, themaximum stress
is 308Pa. To recreate this image, select Controls in the upper le� corner of the screen. Select Expressions,
then click the New button. Now select Insert Function, then Tensor, then e�ective tensor. �e last step is
to select Insert Variable, then Tensor, then p. stress.
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Figure 4.6: Elastic plate with a hole loaded in tension. Particles are colored by equivalent stress, vectors
indicate applied load.

Tungsten Sphere Impacting a Steel Target

ProblemDescription

A 1mm tungsten sphere with an initial velocity of 5000m/s impacts a steel target. Axisymmetric condi-
tions are used in this case, conversion of the input �le to the full 3D simulation is straightforward. �e
user may wish to do both simulations of both to gain con�dence in the applicability of axisymmetry.

�is simulation exercises the elastic plastic constitutive model for the steel material. �is includes sub-
models for equations of state, variable shear modulus, melting, plasticity, etc. �e tungsten is modeled
using the comp neo hook plastic, which is simple vonMises plasticity with linear hardening. One dif-
�culty with using the more sophisticated models is that parameters can be di�cult to �nd for many ma-
terials.

Simulation Speci�cs

Component used: MPM
Input �le name: WSphereIntoSteel.axi.ups
Command used to run input �le: vaango inputs/MPM/WSphereIntoSteel.axi.ups
Simulation Domain: 1.0 cm x 1.5 cm x axisymmetric
Cell Spacing:

0.333 mm x 0.333 mm x axisymmetry (Level 0)
Example Runtimes:

15 seconds (1 processor, Xeon 3.16 GHz)

Physical time simulated: 4 µseconds
Associate VisIt session: WSphereSteel.session

Results

Figure 4.7 shows the initial con�guration for this simulation, with particles colored by the magnitude of
their velocity. Figure 4.8 shows the state of the simulation a�er 4µseconds this simulation, with particles
still colored by velocity magnitude.
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Figure 4.7: Initial con�guration of hypervelocity impact of tungsten sphere into a steel target. Particles
are colored by velocity magnitude.

Figure 4.8: State of the tunsgsten and steel a�er 4µseconds. Particles are colored by velocity magnitude.
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4.8 Method Of Manufactured Solutions (MMS)

�ere are three manufactured solutions available in Vaango for nonlinear elastic constitutive models.
�e input �les are available in the inputs/MPM folder.
AA.ups (Axis Aligned MMS)

GenVortex.ups (Genralized Vortex MMS)

Ring_MMS.ups (Expanding Ring MMS)

All these input �les have the following tag included in theMPM section of the input �le:
<MPM>

<RunMMSProblem >Name of the MMS</RunMMSProblem >

</MPM>

�e exact solutions for these problems are available in puda , and the call to extract the error is
puda -AA_MMS_2 AA_MMS.uda (for AxisAligned MMS)

puda -GV_MMS GenVortex.uda (for Generalized Vortex MMS)

puda -ER_MMS Ring_MMS.uda (for Expanding Ring MMS)

�e current implementation allows the user to add a newmanufactured solution in theMPM component
in a relatively-straight forward way. �e current implementation of these manufactured solutions are
located in src/CCA/Components/MPM/MMS folder. �e following �les require modi�cations either to
change the exisiting MMS or add a new one.
1) src/CCA/Components/MPM/MPMFlags.cc

2) src/StandAlone/inputs/UPS_SPEC/mpm_spec.xml

3) src/CCA/Components/MPM/MMS/MMS.cc

4) src/CCA/Components/MPM/ConstitutiveModel/CNH_MMS.cc (Right now , all these MMS use

the same constitutive model. User can change the constitutive model accordingly)

5) src/StandAlone/tools/puda/puda.cc

Following are the sequential steps to add a new MMS to the existing framework.
1) InMPMFlags.cc , add another if condition for the new MMS string in the following loop
if(d_mms_type =="AxisAligned"){

d_mms_type = "AxisAligned";

} else if(d_mms_type =="GeneralizedVortex"){

d_mms_type = "GeneralizedVortex";

} else if(d_mms_type =="ExpandingRing"){

d_mms_type = "ExpandingRing";

} else if(d_mms_type =="AxisAligned3L"){

d_mms_type = "AxisAligned3L";

}

}

2) Add the same string in the RunMMSProblem tag located in thempm spec.xml �le.
3) �ere are two member functions available inMMS.cc .

MMS:: initializeParticleForMMS

MMS:: computeExternalForceForMMS

Similar to step 1, add another if condition in both the member functions for the new MMS. In the ini-
tializeParticleForMMS function, initialize the particle data at time t = 0, and in the computeExternal-
ForceForMMS function, code the analytical body forces. �e existing analytical solutions can be used as
a guide.
4)Add the exact solution in the src/StandAlone/tools/puda folder. Look at theAA MMS.cc, GV MMS.cc,
and ER MMS.cc for reference. Add the option for the new MMS in the puda.cc �le.
5) If the new MMS has a non-zero stress, necessary modi�cations needs to be made in the initializeCM-
Data function located in that particular constitutive model (CNH MMS.cc for reference).
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�e MPM code contains a large number of constitutive models that provide a Cauchy stress on each
particle based on the velocity gradient computed at that particle. �e following is a list and very brief
description of the most commonly used models. �e reader may wish to consult the inputs/MPM and
inputs/MPMICE directories to �nd explicit examples of the use of thesemodels, and others not described
in this section.
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5.1 Special materials

5.1.1 Rigid Material

�is model was designed for use with the speci�ed contact model described in Section 4.2.5. It is de-
signed to compute zero stress and identity deformation of the material, and is basically a fast place-holder
for materials that should not develop any stress.

<constitutive_model type="rigid">

</constitutive_model >

Figure 5.1: A rigid disk (le�) interacting with a deformable disk (right).

5.1.2 Ideal Gas

�e ideal gas material provides an equation of state capability that allows compression but no shear or
tension. Usage is:

<constitutive_model type="ideal_gas">

<gamma> 1.4 </gamma >

<specific_heat > 800.0 </specific_heat >

<reference_pressure > 101325.0 </reference_pressure >

</constitutive_model >

5.1.3 Water

�is is a model for water, reported in [7]. �e P-V relationship is given by:

p = κ [( ρ
ρ0

)
γ

− 1] (5.1)

Shear stress is simple Newtonian behavior. It has not been validated, but gives qualitatively reasonable
behavior. Usage is given by:

<constitutive_model type="water">

<bulk_modulus >15000.0 </bulk_modulus >

<viscosity >.5</viscosity >

<gamma>7.0</gamma >

</constitutive_model >
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5.2 Elastic materials

Please refer to the Vaango�eory Manual for brief descriptions of the theory used in these material
models.

5.2.1 Hypoelastic material

A hypoelastic material model can be speci�ed in the UPS input �le using:
<constitutive_model type="hypo_elastic">

<K> 32.0e6 </K>

<G> 12.0e6 </G>

<alpha> 1.0e-4 </alpha>

</constitutive_model >

Here K is the bulk modulus, G is the shear modulus, and α is the coe�cient of thermal expansion. If the
Young’s modulus (E) and Poisson’s ratio (ν) of the material are known, the bulk and shear modulus can
be computed using

K = E
3(1 − 2ν)

and G = E
2(1 + ν)

. (5.2)

5.2.2 Compressible Mooney-Rivlin Model

�is model is generally parameterized for rubber type materials. Usage is as follows:
<constitutive_model type="comp_mooney_rivlin">

<he_constant_1 >100000.0 </he_constant_1 >

<he_constant_2 >20000.0 </he_constant_2 >

<he_PR>.49</he_PR >

</constitutive_model >

where <he constant (1,2)> are usually referred to as C1 and C2 in the literature, and he PR is the Pois-
son’s ratio (ν). �e initial shear modulus, G, is related to the two Mooney-Rivlin constants and the initial
bulk modulus can be computed from G and ν using

G = 2(C1 + C2) and K = 2G(1 + ν)
3(1 − 2ν)

. (5.3)

5.2.3 Compressible Neo-HookeanModel

�ere are implementations of several hyperelastic-plastic model described by Simo and Hughes[8] (pp.
307 – 321). �emodel is dubbed ”Uni�ed Compressible Neo-HookeanModel” or UCNH for short. Mod-
els can still be speci�ed with old input �le speci�cations, (i.e. comp neo hook, comp neo hook plastic,
cnh damage, cnhp damage) however these are merely wrappers for the underlying UCNH model. Plas-
tic ow and failure can be modelled in addition to elasticity by specifying several additional options with
input ags. �is models is very robust, and relatively straightforward because hyperelastic models don’t
require rotation back and forth between laboratory and material frames of reference.

NOTE: Support for Implicit CNH and CNH with speci�ed solver does not exist yet.

Purely elastic

For purely-elastic compressible neo-Hookean material simulations, the input has the form:
<constitutive_model type="UCNH">

<bulk_modulus > 8.9e9 </bulk_modulus >

<shear_modulus > 3.52e9 </shear_modulus >

<useModifiedEOS > true </useModifiedEOS >

</constitutive_model >
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Alternatively, this model can be invoked usig the <comp neo hook > tag:
<constitutive_model type="comp_neo_hook">

<bulk_modulus > 8.9e9 </bulk_modulus >

<shear_modulus > 3.52e9 </shear_modulus >

<useModifiedEOS > true </useModifiedEOS >

</constitutive_model >

Elastic with brittle damage

�e cnh damage tag or the <useDamage > tag tells Vaango to use a basic elastic model, with an ex-
tension to failure based on a stress or strain as given below, thus yielding an elastic-brittle failure model.
�ismodel also allows a distribution of failure strain (or stress) based on normal orWeibull distributions.
Note that the post-failure behaviour of simulations is not always robust. �e speci�cation is:

<constitutive_model type="cnh_damage">

<bulk_modulus > 8.9e9 </bulk_modulus >

<shear_modulus > 3.52e9 </shear_modulus >

<useModifiedEOS > true </useModifiedEOS >

</constitutive_model >

When specifying cnh damage , the material heterogeneity and damage speci�cation described for the
general model (UCNH) may also be speci�ed as discussed below.

Elastic-Plastic (J2-plasticity)

For simulations with plasticity enabled, use
<constitutive_model type="UCNH">

<!-- Necessary flags for all CNH models -->

<bulk_modulus > 8.9e9 </bulk_modulus >

<shear_modulus > 3.52e9 </shear_modulus >

<useModifiedEOS > true </useModifiedEOS >

<!-- Plasticity Parameters -->

<usePlasticity > true </usePlasticity >

<yield_stress > 100.0 </yield_stress >

<hardening_modulus > 500.0 </hardening_modulus >

<alpha> 1.0 </alpha>

</constitutive_model >

�is model includes J2-plasticity with isotropic linear hardening, and can be alternatively invoked using
the comp neo hook plastic tag:

<constitutive_model type="comp_neo_hook_plastic">

<bulk_modulus > 8.9e9 </bulk_modulus >

<shear_modulus > 3.52e9 </shear_modulus >

<useModifiedEOS > true </useModifiedEOS >

<yield_stress > 100.0 </yield_stress >

<hardening_modulus > 500.0 </hardening_modulus >

<alpha> 1.0 </alpha >

</constitutive_model >

Elastic-Plastic with damage

�eUCNH model with damage can alternatively be invokedwith the cnhp damage tag. �is constitutive
model is an extension of the hyperelastic-plastic neo-Hookeanmodel to failure based on a stress or strain,
thus yielding an elastic-plastic model with failure. Note that the post-failure behaviour of simulations is
not always robust.

When the cnhp damage tag is used instead of UCNH , the input section for damage and plasticity is
similar to that for UCNH without <useDamage > and <usePlasticity > .

A fairly sophisticated means of seeding explicit material heterogeneity is also provided for. To use these
features the following four steps are required:
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1. Erosion algorithm: To allow for failure (by material point erosion), in the <MPM > block, the
erosion algorithm must be set to one of the following:

<erosion algorithm="AllowNoTension"/>

<erosion algorithm="AllowNoShear"/>

<erosion algorithm="ZeroStress"/>

In the <constitutive model > block:
<useDamage >true</useDamage >

2. Failure criterion: �e failure criterion must be speci�ed. �is is also in the <constitutive model
> block. One of the following must be speci�ed:

<failure_criteria > MohrCoulomb </failure_criteria >

<failure_criteria > MaximumPrincipalStress </failure_criteria >

<failure_criteria > MaximumPrincipalStrain </failure_criteria >

�eMohrCoulomb failure criterion is given by

σ3 − σ1
2

= c cos(ϕ) − σ3 + σ1
2

sin(ϕ) (5.4)

where σi are the ordered principal stresses, positive in tension (σ3 > σ2 > σ1). Note, theMohrCoulomb
failure surface requires a friction angle, ϕ, (in degrees):

<friction_angle > friction angle </friction_angle >

and the cohesion (c) which is assigned using a distribution, as described below.

For the maximum principal stress and strain failure criteria, the cohesion is the maximum
value of principal stress or strain that may be obtained (must be positive).

A tensile cuto� failure surface may be added for MohrCoulomb. �e tensile cuto� is taken to be a
fraction of the cohesion. �is parameter is speci�ed using:

<tensile_cutoff_fraction > 0.1 </tensile_cutoff_fraction >

Setting this to a large number e�ectively removes this failure surface, leaving just Mohr-Coulomb.
3. Material heterogeneity: Material heterogeneity type must be speci�ed. For MohrCoulomb the
cohesion is distributed spatially (an independent assignment for each material point). For Max-
imumPrincipalStress and MaximumPrincipalStrain, the threshold stress or strain for failure, re-
spectively, is distributed spatially (an independent assignment for each material point). Material
heterogeneity is distributed spatially by assigning values consistent with a distribution function.
�ree di�erent distributions may be used. All parameters are in the <constitutive model > block:

<failure_distrib > gauss </failure_distrib >

<failure_distrib > weibull </failure_distrib >

<failure_distrib > constant </failure_distrib >

A Gaussian gauss distribution requires the following parameters:
<failure_mean > Gaussian mean value of cohesion </failure_mean >

<failure_std > Gaussian standard deviation of cohesion </failure_std >

<failure_seed > random number generator seed </failure_seed >

AWeibull (weibull) distribution requires the following parameters:
<failure_mean > Weibull mean value of cohesion </failure_mean >

<failure_std > Weibull modulus </failure_std >

<failure_seed > random number generator seed </failure_seed >

A homogeneous (constant) assignment requires the following parameters:
<failure_mean > value (all particles assigned one value) </failure_mean >
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4. Distribution scaling: Distribution scaling with numerical resolution may optionally be speci�ed.
�is is only available for Gaussian and Weibull distributions. All parameters are in the <constitu-
tive model > block:

<scaling > kayenta </scaling >

<scaling > none (default) </scaling >

For kayenta scaling, the mean value of the distribution is scaled by the factor

(V
V

)
1/n

(5.5)

where V is the particle volume, a function of numerical resolution. �e reference volume, V and
exponent, n, both must be speci�ed

<reference_volume > $\bar V$ </reference_volume >

<exponent > n </exponent >

�e exponent defaults to the Weibull modulus if the Weibull distribution is used. �is physically
motivated scaling provides for an increase inmean cohesionwith decreasing particle size, generally
consistent with the observation that smaller quantities of material contain fewer critical aws.

Post-failure behavior

When a particle has failed, the value of the particle variable p.localized will be larger than one (0 means
the particle has not failed) and can be output in the DataArchiver section of the input �le. In addition,
the total number of failed particles as a function of time TotalLocalizedParticle can be output.

Brittle damage

Another damage model that can be used with cnh damage and cnhp damage is a subset of the brittle
damage model of LS-DYNA’s Concrete Model 159 (FHWA-HRT-057-062, 2007). �e model is invoked
by the following MPMFlag

<erosion algorithm="BrittleDamage"/>

in the <MPM > section of the input �le. Two key features of the model are the use of progressive (as
opposed to sudden) damage due to so�ening to improve numerical stability, and the reduction of mesh
size sensitivity via the speci�cation of fracture energy.

Brittle damage occurs when the mean stress σkk/3 is tensile and the energy τb, related to the maximum
principal strain єmax , has exceeded a threshold value rb0

σkk > 0, τb =
√
Eє2max ≥ rb0 (5.6)

where E is the Young’s modulus. If at the next time step the mean stress is less than zero (compressive),
the damage mechanism can be optionally inactivated such that the current stress is set temporarily to
a fraction of the undamaged stress to model sti�ness recovery due to crack closing. When the mean
stress becomes tensile again, the value of the previous maximum damage d can be restored; recovery is a
user option in Vaango but should be used with caution since sti�ening is more prone to instability. �e
so�ening function for brittle damage is assumed to be

d(τb) =
0.999
D

( 1 + D
1 + D exp−C(τb−rb0)

) (5.7)

where C and D are constants that de�ne the shape of the so�ening stress-strain curve.

To regulatemesh size sensitivity, the fracture energy (G f ), de�ned as the area under the stress-displacement
curve for displacement larger than x0 (the displacement at peak strength), is to be maintained constant.
�e user needs to input G f and D; C is calculated internally.
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�e maximum increment of damage that can accumulate over a single time step is a user-de�ned input
to avoid excessive damage accumulation over a single time step to reduce numerical instability.

For cnh damage , the parameters for brittle damage can be speci�ed as

<constitutive_model type="cnh_damage">

<shear_modulus >3.52e9</shear_modulus >

<bulk_modulus >8.9e9</bulk_modulus >

<brittle_damage_initial_threshold >57.0 </brittle_damage_initial_threshold >

<brittle_damage_fracture_energy >11.2</brittle_damage_fracture_energy >

<brittle_damage_constant_D >0.1</brittle_damage_constant_D >

<brittle_damage_max_damage_increment >0.1</brittle_damage_max_damage_increment >

<brittle_damage_allowRecovery > false </brittle_damage_allowRecovery >

<brittle_damage_recoveryCoeff > 1.0 </brittle_damage_recoveryCoeff >

<brittle_damage_printDamage > false </brittle_damage_printDamage >

</constitutive_model >

�e tags in the input �le for brittle damage are shown in the following table.

Tag Symbol Description
brittle damage initial threshold rb0 material property
brittle damage fracture energy G f material property
brittle damage constant D D material property

brittle damage max damage increment optional, default=0.1
brittle damage allowRecovery allow crack closing (sti�ening)

optional, default=false
brittle damage recoveryCoe� fraction of undamaged stress to recover

(between 0 and 1), optional
default=1.0 (full recovery) used only
when brittle damage allowRecovery
is set to true

brittle damage printDamage print the state of damage
of damaged particles, default=false
(to reduce large amounts of output)

When a particle is damaged, the value of the particle variablep.damage can be output in theDataArchiver
section of the input �le.

5.3 Elastic modulus models

For selected hypoelasticity-based material models, the model used to compute the bulk and shear mod-
ulus can be chosen separately. Some of these elastic moduli models are discussed below.

5.3.1 Support vector model

�e tabular plasticity model discussed later in this manual can be combined with a support vectormodel
for the bulkmodulus. �e support vector based elasticmodulusmodel is speci�ed using an input descrip-
tion of the following form.

<constitutive_model type=".....">

<elastic_moduli_model type="support_vector">

<filename >SVR_fit.json</filename >

<G0>3500</G0>

<nu>0.189</nu>

</elastic_moduli_model >

......

</constitutive_model >
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�e JSON input �le is required to contain a support vector regression �t to pressure data as a function of
the total volumetric strain and the plastic volumetric strain. �e format of the JSON �le should be of the
following form:

1 {
2 "X_var": ["Total volumetric strain (\%)", "Plastic volumetric strain (\%)"],

3 "y_var": "Pressure (MPa)",

4 "X_conversion_factor": [0.01, 0.01],

5 "y_conversion_factor": 1000000.0,

6 "X_scale": [0.018115942028985508, 0.031249261081060988],

7 "X_min": [-10.0, 0.0],

8 "X_max": [45.2, 32.00075667088534],

9 "y_scale": [0.00016356411948678396],

10 "y_min": [-1112.690309606444],

11 "y_max": [5001.12],

12 "gamma": 4.7474110414223025,

13 "support_vectors": [[0.9998641304347827, 1.0], [0.8832644927536233, 1.0],

14 [0.9954365942028985, 1.0], [0.6534438405797102, 0.7060732743351001],

15 [0.8108822463768116, 1.0], [0.7982101449275363, 0.943522446672424], ...],

16 "dual_coeffs": [[10.0, 10.0, 10.0, -10.0, 10.0, 10.0, 2.5932059232147773, 10.0, ...],

17 "intercept": [0.8428855972115061]

18 }

An initial value of G0 is used if nu is less than -1.0 or greater than 0.5. Otherwise the shear modulus is
computed from the bulk modulus model using the value of nu at the Poisson’s ratio.

An example of �tting a support vector regression model in Python is shown below.
#!/usr/bin/env python

# coding: utf -8

#

# Load packages

#

import numpy as np

from sklearn.svm import SVR , NuSVR

from sklearn import preprocessing

from sklearn.model_selection import StratifiedShuffleSplit

from sklearn.model_selection import ShuffleSplit

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import train_test_split

from sklearn.model_selection import cross_val_score

import pandas as pd

import matplotlib.pyplot as plt

import json

from json import JSONEncoder

import sys

#

# Load input data from CSV files

#

unload_09 = pd.read_csv("./ Sand_unload_09.csv", header=0, skiprows =1)

unload_18 = pd.read_csv("./ Sand_unload_18.csv", header=0, skiprows =1)

unload_27 = pd.read_csv("./ Sand_unload_27.csv", header=0, skiprows =1)

unload_36 = pd.read_csv("./ Sand_unload_36.csv", header=0, skiprows =1)

unload_45 = pd.read_csv("./ Sand_unload_45.csv", header=0, skiprows =1)

#

# Compute plastic strains from intersection with strain axis

#

t_09 = -unload_09.iloc [-1,1]/( unload_09.iloc[-4,1] - unload_09.iloc[-1,1])

t_18 = -unload_18.iloc [-1,1]/( unload_18.iloc[-4,1] - unload_18.iloc[-1,1])

t_27 = -unload_27.iloc [-1,1]/( unload_27.iloc[-4,1] - unload_27.iloc[-1,1])

t_36 = -unload_36.iloc [-1,1]/( unload_36.iloc[-4,1] - unload_36.iloc[-1,1])

t_45 = -unload_45.iloc [-1,1]/( unload_45.iloc[-4,1] - unload_45.iloc[-1,1])

eps_p_09 = (1 - t_09) * unload_09.iloc[-1,0] + t_09 * unload_09.iloc[-4,0]

eps_p_18 = (1 - t_18) * unload_18.iloc[-1,0] + t_18 * unload_18.iloc[-4,0]

eps_p_27 = (1 - t_27) * unload_27.iloc[-1,0] + t_27 * unload_27.iloc[-4,0]

eps_p_36 = (1 - t_36) * unload_36.iloc[-1,0] + t_36 * unload_36.iloc[-4,0]

eps_p_45 = (1 - t_45) * unload_45.iloc[-1,0] + t_45 * unload_45.iloc[-4,0]

#

# Add intersection point to data

#

unload_09.loc[unload_09.index.max()+1] = (eps_p_09 , 0.0)

unload_18.loc[unload_18.index.max()+1] = (eps_p_18 , 0.0)
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unload_27.loc[unload_27.index.max()+1] = (eps_p_27 , 0.0)

unload_36.loc[unload_36.index.max()+1] = (eps_p_36 , 0.0)

unload_45.loc[unload_45.index.max()+1] = (eps_p_45 , 0.0)

#

# Separate out strain and pressure data

#

eps_09 = unload_09.iloc [:,0]

eps_18 = unload_18.iloc [:,0]

eps_27 = unload_27.iloc [:,0]

eps_36 = unload_36.iloc [:,0]

eps_45 = unload_45.iloc [:,0]

p_09 = unload_09.iloc [:,1]

p_18 = unload_18.iloc [:,1]

p_27 = unload_27.iloc [:,1]

p_36 = unload_36.iloc [:,1]

p_45 = unload_45.iloc [:,1]

eps_p = (eps_p_09 , eps_p_18 , eps_p_27 , eps_p_36 , eps_p_45 , 0.0)

#

# Create data for 0% plastic strain

#

eps_p_00_data = pd.DataFrame ({’TotalStrainVol ’ : eps_09 - eps_p_09 , ’Pressure ’ : p_09})

eps_00 = eps_p_00_data.iloc [:,0]

p_00 = eps_p_00_data.iloc [:,1]

print(eps_00)

#

# Define functions for creating extended data in compression and tension

#

def create_extra_compression_data(eps , p, eps_max):

x0_com = eps.values [1]

x1_com = eps.values [0]

y0_com = p.values [1]

y1_com = p.values [0]

com_strain = eps_max

t_com_strain = (com_strain - x0_com)/( x1_com - x0_com)

dx_com = (x1_com - x0_com)*10

nx_com = (( com_strain - x1_com)/dx_com).astype(int)

t_com = np.linspace (1.001 , t_com_strain , nx_com)

x_com = list(map(lambda t : (1 - t)*x0_com + t*x1_com , t_com))

y_com = list(map(lambda t : (1 - t)*y0_com + t*y1_com , t_com))

com_data = pd.DataFrame ({’TotalStrainVol ’ : x_com , ’Pressure ’ : y_com})

return com_data

#

def create_extra_tension_data(eps , p, eps_min):

x0_ten = eps.values [-2]

x1_ten = eps.values [-1]

y0_ten = p.values [-2]

y1_ten = p.values [-1]

ten_strain = eps_min

t_ten_strain = (ten_strain - x0_ten)/( x1_ten - x0_ten)

dx_ten = (x0_ten - x1_ten)*10

nx_ten = (( x1_ten - ten_strain)/dx_ten).astype(int)

t_ten = np.linspace (1.001 , t_ten_strain , nx_ten)

x_ten = list(map(lambda t : (1 - t)*x0_ten + t*x1_ten , t_ten))

y_ten = list(map(lambda t : (1 - t)*y0_ten + t*y1_ten , t_ten))

ten_data = pd.DataFrame ({’TotalStrainVol ’ : x_ten , ’Pressure ’ : y_ten})

return ten_data

#

# Create extra data in compression and tension

#

data_00_com_extra = create_extra_compression_data(eps_00 , p_00 , 15)

data_09_com_extra = create_extra_compression_data(eps_09 , p_09 , 25)

data_18_com_extra = create_extra_compression_data(eps_18 , p_18 , 30)

data_27_com_extra = create_extra_compression_data(eps_27 , p_27 , 35)

#

data_00_ten_extra = create_extra_tension_data(eps_00 , p_00 , -10)

data_09_ten_extra = create_extra_tension_data(eps_09 , p_09 , -5)

data_18_ten_extra = create_extra_tension_data(eps_18 , p_18 , 0)

data_27_ten_extra = create_extra_tension_data(eps_27 , p_27 , 5)

data_36_ten_extra = create_extra_tension_data(eps_36 , p_36 , 20)

data_45_ten_extra = create_extra_tension_data(eps_45 , p_45 , 30)

#

# Save the input unloading data in a data frame

#
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data_00_orig = pd.DataFrame ({’TotalStrainVol ’ : eps_00 , ’Pressure ’ : p_00})

data_09_orig = pd.DataFrame ({’TotalStrainVol ’ : eps_09 , ’Pressure ’ : p_09})

data_18_orig = pd.DataFrame ({’TotalStrainVol ’ : eps_18 , ’Pressure ’ : p_18})

data_27_orig = pd.DataFrame ({’TotalStrainVol ’ : eps_27 , ’Pressure ’ : p_27})

data_36_orig = pd.DataFrame ({’TotalStrainVol ’ : eps_36 , ’Pressure ’ : p_36})

data_45_orig = pd.DataFrame ({’TotalStrainVol ’ : eps_45 , ’Pressure ’ : p_45})

#

# Convert into loading form (increasing compressive strains)

#

data_00_asc = data_00_orig.sort_index(ascending=False)

data_09_asc = data_09_orig.sort_index(ascending=False)

data_18_asc = data_18_orig.sort_index(ascending=False)

data_27_asc = data_27_orig.sort_index(ascending=False)

data_36_asc = data_36_orig.sort_index(ascending=False)

data_45_asc = data_45_orig.sort_index(ascending=False)

#

# Convert the extra tensile data into compressive loading form

#

data_00_ten_asc = data_00_ten_extra.sort_index(ascending=False)

data_09_ten_asc = data_09_ten_extra.sort_index(ascending=False)

data_18_ten_asc = data_18_ten_extra.sort_index(ascending=False)

data_27_ten_asc = data_27_ten_extra.sort_index(ascending=False)

data_36_ten_asc = data_36_ten_extra.sort_index(ascending=False)

data_45_ten_asc = data_45_ten_extra.sort_index(ascending=False)

#

# Merge the data frames together

#

data_00 = data_00_ten_asc.append(data_00_asc , ignore_index = True)

data_00 = data_00.append(data_00_com_extra , ignore_index = True)

data_09 = data_09_ten_asc.append(data_09_asc , ignore_index = True)

data_09 = data_09.append(data_09_com_extra , ignore_index = True)

data_18 = data_18_ten_asc.append(data_18_asc , ignore_index = True)

data_18 = data_18.append(data_18_com_extra , ignore_index = True)

data_27 = data_27_ten_asc.append(data_27_asc , ignore_index = True)

data_27 = data_27.append(data_27_com_extra , ignore_index = True)

data_36 = data_36_ten_asc.append(data_36_asc , ignore_index = True)

data_45 = data_45_ten_asc.append(data_45_asc , ignore_index = True)

#

# Extract back into separate strain and pressure variables

#

eps_00_extra = data_00.iloc [:,0]

eps_09_extra = data_09.iloc [:,0]

eps_18_extra = data_18.iloc [:,0]

eps_27_extra = data_27.iloc [:,0]

eps_36_extra = data_36.iloc [:,0]

eps_45_extra = data_45.iloc [:,0]

p_00_extra = data_00.iloc [:,1]

p_09_extra = data_09.iloc [:,1]

p_18_extra = data_18.iloc [:,1]

p_27_extra = data_27.iloc [:,1]

p_36_extra = data_36.iloc [:,1]

p_45_extra = data_45.iloc [:,1]

#

# Set up strains for training

#

eps_p_00 = 0

strains_00 = np.column_stack (( eps_00_extra , np.repeat(eps_p_00 , eps_00_extra.shape [0])))

strains_09 = np.column_stack (( eps_09_extra , np.repeat(eps_p_09 , eps_09_extra.shape [0])))

strains_18 = np.column_stack (( eps_18_extra , np.repeat(eps_p_18 , eps_18_extra.shape [0])))

strains_27 = np.column_stack (( eps_27_extra , np.repeat(eps_p_27 , eps_27_extra.shape [0])))

strains_36 = np.column_stack (( eps_36_extra , np.repeat(eps_p_36 , eps_36_extra.shape [0])))

strains_45 = np.column_stack (( eps_45_extra , np.repeat(eps_p_45 , eps_45_extra.shape [0])))

#

# Collect strains and pressures together

#

strains = np.concatenate (( strains_00 , strains_09 , strains_18 , strains_27 , strains_36 ,

strains_45), axis =0)

pressures = np.concatenate (( p_00_extra , p_09_extra , p_18_extra , p_27_extra , p_36_extra ,

p_45_extra), axis =0)

#

# Do bootstrapped data generation

#

data_00_3d = np.column_stack ((strains_00 , p_00_extra))
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data_09_3d = np.column_stack ((strains_09 , p_09_extra))

data_18_3d = np.column_stack ((strains_18 , p_18_extra))

data_27_3d = np.column_stack ((strains_27 , p_27_extra))

data_36_3d = np.column_stack ((strains_36 , p_36_extra))

data_45_3d = np.column_stack ((strains_45 , p_45_extra))

data_all = np.concatenate ((data_00_3d , data_00_3d , data_00_3d , data_00_3d ,

data_09_3d , data_09_3d , data_09_3d ,

data_18_3d , data_18_3d , data_18_3d ,

data_27_3d , data_27_3d ,

data_36_3d , data_36_3d ,

data_45_3d), axis =0)

#

# Shuffle the data

#

np.random.shuffle(data_all)

strains_shuffle = data_all [:,(0,1)]

pressures_shuffle = data_all [:,2]

#

# Separate into train and test sets

#

eps_train , eps_test , p_train , p_test = train_test_split(strains , pressures ,

test_size =0.4, random_state =0)

#

# Set up data scaling functions

#

strain_scaler = preprocessing.MinMaxScaler ()

strain_scaler_min_max = strain_scaler.fit(strains)

scaled_strains_train = strain_scaler_min_max.transform(eps_train)

scaled_strains_test = strain_scaler_min_max.transform(eps_test)

scaled_strains = strain_scaler_min_max.transform(strains_shuffle)

#

pressure_scaler = preprocessing.MinMaxScaler ()

pressure_scaler_min_max = pressure_scaler.fit(pressures.reshape(-1, 1))

scaled_pressures_train = pressure_scaler_min_max.transform(p_train.reshape(-1, 1))

scaled_pressures_test = pressure_scaler_min_max.transform(p_test.reshape(-1, 1))

scaled_pressures = pressure_scaler_min_max.transform(pressures_shuffle.reshape(-1, 1))

#

# Do SVR fit

#

curve_fitter_1_01 = SVR(kernel=’rbf’, C=1.0, epsilon =0.01)

fit1_01 = curve_fitter_1_01.fit(scaled_strains_train , np.ravel(scaled_pressures_train))

#

# Compute error norm

#

score1_01 = fit1_01.score(scaled_strains_test , scaled_pressures_test)

#

# Compute cross validation scores to search the parameter space

#

cv = ShuffleSplit(n_splits =10, test_size =0.5, random_state =0)

scores_1_01 = cross_val_score(curve_fitter_1_01 , scaled_strains , np.ravel(

scaled_pressures), cv=cv)

#

# Define function for computing predicted bulk modulus adn plotting

#

def computeAndPlotBulkElastic(svgfile , curve_fitter , C, epsilon):

s_pressures_pred_00 = curve_fitter.predict(strain_scaler_min_max.transform(

strains_00))

s_pressures_pred_09 = curve_fitter.predict(strain_scaler_min_max.transform(

strains_09))

s_pressures_pred_18 = curve_fitter.predict(strain_scaler_min_max.transform(

strains_18))

s_pressures_pred_27 = curve_fitter.predict(strain_scaler_min_max.transform(

strains_27))

s_pressures_pred_36 = curve_fitter.predict(strain_scaler_min_max.transform(

strains_36))

s_pressures_pred_45 = curve_fitter.predict(strain_scaler_min_max.transform(

strains_45))

pressures_pred_00 = pressure_scaler.inverse_transform(s_pressures_pred_00.reshape

(-1,1))

pressures_pred_09 = pressure_scaler.inverse_transform(s_pressures_pred_09.reshape

(-1,1))

pressures_pred_18 = pressure_scaler.inverse_transform(s_pressures_pred_18.reshape
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(-1,1))

pressures_pred_27 = pressure_scaler.inverse_transform(s_pressures_pred_27.reshape

(-1,1))

pressures_pred_36 = pressure_scaler.inverse_transform(s_pressures_pred_36.reshape

(-1,1))

pressures_pred_45 = pressure_scaler.inverse_transform(s_pressures_pred_45.reshape

(-1,1))

# Compute tangent moduli for input data

K_00 = np.gradient(p_00_extra *1.0e6, eps_00_extra *0.01)

K_09 = np.gradient(p_09_extra *1.0e6, eps_09_extra *0.01)

K_18 = np.gradient(p_18_extra *1.0e6, eps_18_extra *0.01)

K_27 = np.gradient(p_27_extra *1.0e6, eps_27_extra *0.01)

K_36 = np.gradient(p_36_extra *1.0e6, eps_36_extra *0.01)

K_45 = np.gradient(p_45_extra *1.0e6, eps_45_extra *0.01)

# Compute tangent moduli for predicted data

#print(pressures_pred_09.shape , strains_09.shape)

K_pred_00 = np.gradient(np.ravel(pressures_pred_00)*1.0e6, strains_00 [: ,0]*0.01)

K_pred_09 = np.gradient(np.ravel(pressures_pred_09)*1.0e6, strains_09 [: ,0]*0.01)

K_pred_18 = np.gradient(np.ravel(pressures_pred_18)*1.0e6, strains_18 [: ,0]*0.01)

K_pred_27 = np.gradient(np.ravel(pressures_pred_27)*1.0e6, strains_27 [: ,0]*0.01)

K_pred_36 = np.gradient(np.ravel(pressures_pred_36)*1.0e6, strains_36 [: ,0]*0.01)

K_pred_45 = np.gradient(np.ravel(pressures_pred_45)*1.0e6, strains_45 [: ,0]*0.01)

# Compute error

K_error_00 = list(map(lambda x, y: 1 if x == 0 else (x - y)/x * 100, K_00 , K_pred_00

))

K_error_09 = list(map(lambda x, y: 1 if x == 0 else (x - y)/x * 100, K_09 , K_pred_09

))

K_error_18 = list(map(lambda x, y: 1 if x == 0 else (x - y)/x * 100, K_18 , K_pred_18

))

K_error_27 = list(map(lambda x, y: 1 if x == 0 else (x - y)/x * 100, K_27 , K_pred_27

))

K_error_36 = list(map(lambda x, y: 1 if x == 0 else (x - y)/x * 100, K_36 , K_pred_36

))

K_error_45 = list(map(lambda x, y: 1 if x == 0 else (x - y)/x * 100, K_45 , K_pred_45

))

plot_label = "SVR (C=" + str(C) + ", $\epsilon$=" + str(epsilon) + ")"

fig = plt.figure(figsize =(14 ,6))

ax = fig.add_subplot (121)

plt.plot(eps_00_extra - eps_p_00 , K_00 *1.0e-9, ’C5’, label=labels [5])

plt.plot(eps_09_extra - eps_p_09 , K_09 *1.0e-9, ’k-’, label=labels [0])

plt.plot(eps_18_extra - eps_p_18 , K_18 *1.0e-9, ’C0’, label=labels [1])

plt.plot(eps_27_extra - eps_p_27 , K_27 *1.0e-9, ’C3’, label=labels [2])

plt.plot(eps_36_extra - eps_p_36 , K_36 *1.0e-9, ’C1’, label=labels [3])

plt.plot(eps_45_extra - eps_p_45 , K_45 *1.0e-9, ’C4’, label=labels [4])

plt.plot(strains_00 [:,0] - eps_p_00 , K_pred_00 *1.0e-9, ’C5--’, label=plot_label ,

linewidth =2)

plt.plot(strains_09 [:,0] - eps_p_09 , K_pred_09 *1.0e-9, ’k--’, linewidth =2)

plt.plot(strains_18 [:,0] - eps_p_18 , K_pred_18 *1.0e-9, ’C0--’, linewidth =2)

plt.plot(strains_27 [:,0] - eps_p_27 , K_pred_27 *1.0e-9, ’C3--’, linewidth =2)

plt.plot(strains_36 [:,0] - eps_p_36 , K_pred_36 *1.0e-9, ’C1--’, linewidth =2)

plt.plot(strains_45 [:,0] - eps_p_45 , K_pred_45 *1.0e-9, ’C4--’, linewidth =2)

#plt.axis([-10, 45, -10, 50])

plt.axis([0, 10, 0, 50])

plt.xlabel(’Elastic volumetric strain (%)’, fontsize =16)

plt.ylabel(’Tangent buk modulus (GPa)’, fontsize =16)

ax.legend(loc=’best’, fontsize =10)

ax = fig.add_subplot (122)

plt.plot(eps_00_extra - eps_p_00 , K_error_00 , ’C5’, label=labels [5])

plt.plot(eps_09_extra - eps_p_09 , K_error_09 , ’k’, label=labels [0])

plt.plot(eps_18_extra - eps_p_18 , K_error_18 , ’C0’, label=labels [1])

plt.plot(eps_27_extra - eps_p_27 , K_error_27 , ’C3’, label=labels [2])

plt.plot(eps_36_extra - eps_p_36 , K_error_36 , ’C1’, label=labels [3])

plt.plot(eps_45_extra - eps_p_45 , K_error_45 , ’C4’, label=labels [4])

#plt.axis([0, 14, -3, 4])

plt.xlabel(’Elastic volumetric strain (%)’, fontsize =16)

plt.ylabel(’Error in predicted modulus (%)’, fontsize =16)

ax.legend(loc=’best’, fontsize =10)
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#fig.savefig(svgfile)

#

# Create plot of the fit

#

computeAndPlotBulkElastic(’

Fox_DrySand_BulkModulus_TotalElasticStrain_Tension_SVR_1_01_scaled_cv.svg’,

curve_fitter_1_01 , 1, 0.01)

#

# Extract the SVR parameters for the fit

#

print(curve_fitter_1_01.support_.shape , curve_fitter_1_01.support_vectors_.shape ,

curve_fitter_1_01.dual_coef_.shape , curve_fitter_1_01.fit_status_ ,

curve_fitter_1_01.intercept_)

#

# Compute gamma

#

gamma = 1/(2* scaled_strains_train.var())

#

# Get the scaling parameters

#

eps_scale = strain_scaler.scale_

eps_min = strain_scaler.data_min_

eps_max = strain_scaler.data_max_

p_scale = pressure_scaler.scale_

p_min = pressure_scaler.data_min_

p_max = pressure_scaler.data_max_

#

# Save as JSON

#

class NumpyEncoder(json.JSONEncoder):

def default(self , obj):

if isinstance(obj , np.integer):

return int(obj)

elif isinstance(obj , np.floating):

return float(obj)

elif isinstance(obj , np.ndarray):

return obj.tolist ()

else:

return super(NumpyArrayEncoder , self).default(obj)

# Save the scaling parameters , kernel parameters , support vectors , duals , and intercept

def save_svr_json(json_file , X_var , y_var , X_conv , y_conv , X_scaler , y_scaler ,

X_train_scaled , fitter):

X_scale = X_scaler.scale_

X_min = X_scaler.data_min_

X_max = X_scaler.data_max_

y_scale = y_scaler.scale_

y_min = y_scaler.data_min_

y_max = y_scaler.data_max_

d = X_train_scaled.shape [1]

sigma_sq = X_train_scaled.var()

gamma = 1/(d*sigma_sq)

X_sup_vec = fitter.support_vectors_

X_dual = fitter.dual_coef_

X_intercept = fitter.intercept_

json_data = {}

json_data[’X_var ’] = X_var

json_data[’y_var ’] = y_var

json_data[’X_conversion_factor ’] = X_conv

json_data[’y_conversion_factor ’] = y_conv

json_data[’X_scale ’] = X_scale

json_data[’X_min ’] = X_min

json_data[’X_max ’] = X_max

json_data[’y_scale ’] = y_scale

json_data[’y_min ’] = y_min

json_data[’y_max ’] = y_max

json_data[’gamma ’] = gamma

json_data[’support_vectors ’] = X_sup_vec

json_data[’dual_coeffs ’] = X_dual

json_data[’intercept ’] = X_intercept

# Set numpy ’s printoptions to display all the data with max precision

np.set_printoptions(threshold=np.inf ,
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linewidth=sys.maxsize ,

suppress=True ,

nanstr=’0.0’,

infstr=’0.0’,

precision=np.finfo(np.longdouble).precision)

with open(json_file , ’w’) as outfile:

json.dump(json_data , outfile , cls=NumpyEncoder , indent =2)

#

save_svr_json(’ARL_Sand_SVR_fit_10_001.json’,

[’Total volumetric strain (%)’, ’Plastic volumetric strain (%)’],

pressure_scaler , scaled_strains_train , curve_fitter_10_001)

5.3.2 Neural-networkmodel for the bulk modulus

Instead of a tabular or a support vector model, the tabular plasticity model can also use a neural network
model. �is model can be invoked using:
<constitutive_model type="tabular_plasticity_cap">

<elastic_moduli_model type="neural_net_bulk">

<filename >mlp_regression.h5</filename >

<mean_elastic_strain >0.0</mean_elastic_strain >

<mean_plastic_strain >0.5</mean_plastic_strain >

<std_dev_elastic_strain >1.0</std_dev_elastic_strain >

<std_dev_plastic_strain >0.5</std_dev_plastic_strain >

<mean_bulk_modulus >0.0</mean_bulk_modulus >

<std_dev_bulk_modulus >1.0e6</std_dev_bulk_modulus >

<G0>3500</G0>

<nu>0.189</nu>

</elastic_moduli_model >

...

</constitutive_model >

�e input �le is required to contains a HDF5 representation of the �tted neural network produced by
Tensorow 2.0 . �e mean and standard deviations are required as inputs with the assumption that the
input data were �tted a�er scaling the data such that the mean was zero and the standard deviation 1.

An example of �tting a neural network is given below.
# Load the required packages

import numpy as np

import pandas as pd

import PolylineIntersection as pl

from keras.models import Sequential

from keras.layers import Dense

from keras.utils import plot_model

import matplotlib.pyplot as plt

from sklearn import preprocessing

from keras.models import load_model

import h5py

# Load the CSV data into Pandas dataframes

hydrostat = pd.read_csv("./ DrySand_Hydrostat.csv", header=0, skiprows =7)

data_09 = pd.read_csv("./ DrySand_LoadUnload_09.csv", header=0, skiprows =4)

data_18 = pd.read_csv("./ DrySand_LoadUnload_18.csv", header=0, skiprows =4)

data_27 = pd.read_csv("./ DrySand_LoadUnload_27.csv", header=0, skiprows =4)

data_36 = pd.read_csv("./ DrySand_LoadUnload_36.csv", header=0, skiprows =4)

data_45 = pd.read_csv("./ DrySand_LoadUnload_45.csv", header=0, skiprows =4)

# Rename the columns of each dataframe

column_names = ["TotalStrainVol", "Pressure", "", "", "", ""]

hydrostat.columns = column_names

data_09.columns = column_names

data_18.columns = column_names

data_27.columns = column_names

data_36.columns = column_names

data_45.columns = column_names

# Convert percent into strain , MPa to Pa

strain_fac = 0.01

pressure_fac = 1.0e6
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hydrostat.TotalStrainVol *= strain_fac

hydrostat.Pressure *= pressure_fac

data_09.TotalStrainVol *= strain_fac

data_09.Pressure *= pressure_fac

data_18.TotalStrainVol *= strain_fac

data_18.Pressure *= pressure_fac

data_27.TotalStrainVol *= strain_fac

data_27.Pressure *= pressure_fac

data_36.TotalStrainVol *= strain_fac

data_36.Pressure *= pressure_fac

data_45.TotalStrainVol *= strain_fac

data_45.Pressure *= pressure_fac

# Find the point at which unloading begins

p_max_09 = max(data_09.Pressure)

p_max_index_09 = data_09.Pressure.values.tolist ().index(p_max_09)

p_max_18 = max(data_18.Pressure)

p_max_index_18 = data_18.Pressure.values.tolist ().index(p_max_18)

p_max_27 = max(data_27.Pressure)

p_max_index_27 = data_27.Pressure.values.tolist ().index(p_max_27)

p_max_36 = max(data_36.Pressure)

p_max_index_36 = data_36.Pressure.values.tolist ().index(p_max_36)

p_max_45 = max(data_45.Pressure)

p_max_index_45 = data_45.Pressure.values.tolist ().index(p_max_45)

p_max_index_00 = (np.abs(p_max_09 - hydrostat.Pressure.values)).argmin ()

p_max_00 = hydrostat.Pressure.values[p_max_index_00]

# Create separate dataframes for the unload data

data_09_unload = data_09[p_max_index_09 :]. copy()

data_18_unload = data_18[p_max_index_18 :]. copy()

data_27_unload = data_27[p_max_index_27 :]. copy()

data_36_unload = data_36[p_max_index_36 :]. copy()

data_45_unload = data_45[p_max_index_45 :]. copy()

# Find plastic strains by intersecting the unload data with the pressure axis

pressure_axis = ((-1, 0) ,(1, 0))

poly_09_unload = list(data_09_unload [[’TotalStrainVol ’, ’Pressure ’]]. apply(tuple , axis

=1))

line_09_unload = (poly_09_unload [-1], poly_09_unload [-2])

plastic_strain_09 = pl.line_intersection(pressure_axis , line_09_unload)[0]

poly_18_unload = list(data_18_unload [[’TotalStrainVol ’, ’Pressure ’]]. apply(tuple , axis

=1))

line_18_unload = (poly_18_unload [-1], poly_18_unload [-2])

plastic_strain_18 = pl.line_intersection(pressure_axis , line_18_unload)[0]

poly_27_unload = list(data_27_unload [[’TotalStrainVol ’, ’Pressure ’]]. apply(tuple , axis

=1))

line_27_unload = (poly_27_unload [-1], poly_27_unload [-2])

plastic_strain_27 = pl.line_intersection(pressure_axis , line_27_unload)[0]

poly_36_unload = list(data_36_unload [[’TotalStrainVol ’, ’Pressure ’]]. apply(tuple , axis

=1))

line_36_unload = (poly_36_unload [-1], poly_36_unload [-2])

plastic_strain_36 = pl.line_intersection(pressure_axis , line_36_unload)[0]

poly_45_unload = list(data_45_unload [[’TotalStrainVol ’, ’Pressure ’]]. apply(tuple , axis

=1))

line_45_unload = (poly_45_unload [-1], poly_45_unload [-2])

plastic_strain_45 = pl.line_intersection(pressure_axis , line_45_unload)[0]

print(plastic_strain_09 , plastic_strain_18 , plastic_strain_27 , plastic_strain_36 ,

plastic_strain_45)

# Reverse the order of the unload data to create elastic loading curves

data_00_load = hydrostat [: p_max_index_00]

data_09_load = data_09_unload.sort_index(ascending=False)

data_18_load = data_18_unload.sort_index(ascending=False)

data_27_load = data_27_unload.sort_index(ascending=False)

data_36_load = data_36_unload.sort_index(ascending=False)

data_45_load = data_45_unload.sort_index(ascending=False)

# Simplify the loading dataframes and remove duplicates (if any)

data_00_all = data_00_load [[’TotalStrainVol ’, ’Pressure ’]]. copy().drop_duplicates ()

data_09_all = data_09_load [[’TotalStrainVol ’, ’Pressure ’]]. copy().drop_duplicates ()

data_18_all = data_18_load [[’TotalStrainVol ’, ’Pressure ’]]. copy().drop_duplicates ()

data_27_all = data_27_load [[’TotalStrainVol ’, ’Pressure ’]]. copy().drop_duplicates ()

data_36_all = data_36_load [[’TotalStrainVol ’, ’Pressure ’]]. copy().drop_duplicates ()
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data_45_all = data_45_load [[’TotalStrainVol ’, ’Pressure ’]]. copy().drop_duplicates ()

# Compute max strain and pressure

total_strain_max = data_45_all[’TotalStrainVol ’].max()

pressure_max = data_45_all[’Pressure ’].max()

# Rename strain variables

eps_p_09 = plastic_strain_09

eps_09 = data_09_all[’TotalStrainVol ’]. values

eps_p_18 = plastic_strain_18

eps_18 = data_18_all[’TotalStrainVol ’]. values

eps_p_27 = plastic_strain_27

eps_27 = data_27_all[’TotalStrainVol ’]. values

eps_p_36 = plastic_strain_36

eps_36 = data_36_all[’TotalStrainVol ’]. values

eps_p_45 = plastic_strain_45

eps_45 = data_45_all[’TotalStrainVol ’]. values

eps_00 = np.linspace(0, total_strain_max)

eps_30 = np.linspace(0, total_strain_max)

eps_p_00 = 0

eps_p_30 = 0.5*( eps_p_27 + eps_p_36)

# Rename pressure variables

p_09 = data_09_all[’Pressure ’]. values

p_18 = data_18_all[’Pressure ’]. values

p_27 = data_27_all[’Pressure ’]. values

p_36 = data_36_all[’Pressure ’]. values

p_45 = data_45_all[’Pressure ’]. values

# Scale the data

def scaled(x, min_x , max_x):

return (x - min_x)/( max_x - min_x)

# Unscale the data

def unscaled(x, min_x , max_x):

return min_x + x * (max_x - min_x)

# Convert strains to scaled values

eps_09_scaled = scaled(eps_09 , 0, total_strain_max)

eps_18_scaled = scaled(eps_18 , 0, total_strain_max)

eps_27_scaled = scaled(eps_27 , 0, total_strain_max)

eps_36_scaled = scaled(eps_36 , 0, total_strain_max)

eps_45_scaled = scaled(eps_45 , 0, total_strain_max)

eps_00_scaled = scaled(eps_00 , 0, total_strain_max)

eps_30_scaled = scaled(eps_30 , 0, total_strain_max)

eps_p_09_scaled = scaled(eps_p_09 , 0, total_strain_max)

eps_p_18_scaled = scaled(eps_p_18 , 0, total_strain_max)

eps_p_27_scaled = scaled(eps_p_27 , 0, total_strain_max)

eps_p_36_scaled = scaled(eps_p_36 , 0, total_strain_max)

eps_p_45_scaled = scaled(eps_p_45 , 0, total_strain_max)

eps_p_00_scaled = scaled(eps_p_00 , 0, total_strain_max)

eps_p_30_scaled = scaled(eps_p_30 , 0, total_strain_max)

# Convert pressures to scaled values

p_09_scaled = scaled(p_09 , 0, 1.0e6)

p_18_scaled = scaled(p_18 , 0, 1.0e6)

p_27_scaled = scaled(p_27 , 0, 1.0e6)

p_36_scaled = scaled(p_36 , 0, 1.0e6)

p_45_scaled = scaled(p_45 , 0, 1.0e6)

# Set up data frames for regression

strains_09_scaled = np.column_stack (( eps_09_scaled , np.repeat(eps_p_09_scaled ,

eps_09_scaled.shape [0])))

strains_18_scaled = np.column_stack (( eps_18_scaled , np.repeat(eps_p_18_scaled ,

eps_18_scaled.shape [0])))

strains_27_scaled = np.column_stack (( eps_27_scaled , np.repeat(eps_p_27_scaled ,

eps_27_scaled.shape [0])))

strains_36_scaled = np.column_stack (( eps_36_scaled , np.repeat(eps_p_36_scaled ,

eps_36_scaled.shape [0])))

strains_45_scaled = np.column_stack (( eps_45_scaled , np.repeat(eps_p_45_scaled ,

eps_45_scaled.shape [0])))

strains_30_scaled = np.column_stack (( eps_30_scaled , np.repeat(eps_p_30_scaled ,

eps_30_scaled.shape [0])))
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strains_00_scaled = np.column_stack (( eps_00_scaled , np.repeat(eps_p_00_scaled ,

eps_00_scaled.shape [0])))

strains_scaled = np.concatenate (( strains_09_scaled , strains_18_scaled , strains_27_scaled

, strains_36_scaled , strains_45_scaled), axis =0)

pressures_scaled = np.concatenate (( p_09_scaled , p_18_scaled , p_27_scaled , p_36_scaled ,

p_45_scaled), axis =0)

data_09_scaled = np.column_stack (( strains_09_scaled , p_09_scaled))

data_18_scaled = np.column_stack (( strains_18_scaled , p_18_scaled))

data_27_scaled = np.column_stack (( strains_27_scaled , p_27_scaled))

data_36_scaled = np.column_stack (( strains_36_scaled , p_36_scaled))

data_45_scaled = np.column_stack (( strains_45_scaled , p_45_scaled))

# Bootstrapping step

data_all_scaled = np.concatenate (( data_09_scaled , data_18_scaled , data_27_scaled ,

data_36_scaled , data_45_scaled ,

data_09_scaled , data_09_scaled , data_09_scaled ,

data_09_scaled ,

data_18_scaled , data_18_scaled , data_18_scaled ,

data_18_scaled ,

data_27_scaled , data_27_scaled , data_27_scaled ,

data_27_scaled ,

data_36_scaled , data_36_scaled , data_36_scaled ,

data_36_scaled ,

data_45_scaled , data_45_scaled , data_45_scaled ,

data_45_scaled), axis =0)

#np.random.seed (12345)

np.random.shuffle(data_all_scaled)

strains_shuffle = data_all_scaled [:,(0,1)]

pressures_shuffle = data_all_scaled [:,2]

# Set up the neural network

def baseline2D_model ():

model = Sequential ()

model.add(Dense(64, input_dim =2, kernel_initializer=’normal ’, activation=’sigmoid ’))

model.add(Dense(32, kernel_initializer=’normal ’, activation=’sigmoid ’))

model.add(Dense(32, kernel_initializer=’normal ’, activation=’relu’))

model.add(Dense(1, kernel_initializer=’normal ’))

model.compile(loss=’mean_squared_error ’, optimizer=’adam’)

return model

model2D = baseline2D_model ()

# Fit the model

model2D.fit(strains_shuffle , pressures_shuffle , batch_size =192, epochs =3000 , verbose=1,

validation_split =0.2, shuffle=True)

# Compute predicted values

pressures_pred_09_scaled = model2D.predict(strains_09_scaled)

pressures_pred_18_scaled = model2D.predict(strains_18_scaled)

pressures_pred_27_scaled = model2D.predict(strains_27_scaled)

pressures_pred_36_scaled = model2D.predict(strains_36_scaled)

pressures_pred_45_scaled = model2D.predict(strains_45_scaled)

pressures_pred_30_scaled = model2D.predict(strains_30_scaled)

pressures_pred_00_scaled = model2D.predict(strains_00_scaled)

# Unscale the data

strains_09 = unscaled(strains_09_scaled , 0, total_strain_max)

strains_18 = unscaled(strains_18_scaled , 0, total_strain_max)

strains_27 = unscaled(strains_27_scaled , 0, total_strain_max)

strains_36 = unscaled(strains_36_scaled , 0, total_strain_max)

strains_45 = unscaled(strains_45_scaled , 0, total_strain_max)

strains_30 = unscaled(strains_30_scaled , 0, total_strain_max)

strains_00 = unscaled(strains_00_scaled , 0, total_strain_max)

pressure_max = 1.0e6

pressures_pred_09 = unscaled(pressures_pred_09_scaled , 0, pressure_max)

pressures_pred_18 = unscaled(pressures_pred_18_scaled , 0, pressure_max)

pressures_pred_27 = unscaled(pressures_pred_27_scaled , 0, pressure_max)

pressures_pred_36 = unscaled(pressures_pred_36_scaled , 0, pressure_max)

pressures_pred_45 = unscaled(pressures_pred_45_scaled , 0, pressure_max)

pressures_pred_30 = unscaled(pressures_pred_30_scaled , 0, pressure_max)

pressures_pred_00 = unscaled(pressures_pred_00_scaled , 0, pressure_max)
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# Set up rescale function for plotting

def rescale(data , VARIABLE_TYPE):

result = {

"e" : lambda data : data *100.0 ,

"p" : lambda data : data *1.0e-6

}[ VARIABLE_TYPE ](data)

return result

# Plot the original vs predicted data

lab_09 = str("Plastic strain = {0:.3f}".format(eps_p_09))

lab_18 = str("Plastic strain = {0:.3f}".format(eps_p_18))

lab_27 = str("Plastic strain = {0:.3f}".format(eps_p_27))

lab_36 = str("Plastic strain = {0:.3f}".format(eps_p_36))

lab_45 = str("Plastic strain = {0:.3f}".format(eps_p_45))

lab_00 = str("MLP: Plastic strain = {0:.3f}".format(eps_p_00))

lab_30 = str("MLP: Plastic strain = {0:.3f}".format(eps_p_30))

type(lab_09)

fig = plt.figure(figsize =(6,6))

ax = fig.add_subplot (111)

plt.plot(rescale(eps_09 , "e"), rescale(p_09 , "p"), ’k--’, label=lab_09)

plt.plot(rescale(eps_18 , "e"), rescale(p_18 , "p"), ’C0--’, label=lab_18)

plt.plot(rescale(eps_27 , "e"), rescale(p_27 , "p"), ’C3--’, label=lab_27)

plt.plot(rescale(eps_36 , "e"), rescale(p_36 , "p"), ’C1--’, label=lab_36)

plt.plot(rescale(eps_45 , "e"), rescale(p_45 , "p"), ’C4--’, label=lab_45)

plt.plot(rescale(strains_09 [:,0], "e"), rescale(pressures_pred_09 , "p"), ’k’, linewidth

=2, label=’MLP’)

plt.plot(rescale(strains_18 [:,0], "e"), rescale(pressures_pred_18 , "p"), ’C0’, linewidth

=2)

plt.plot(rescale(strains_27 [:,0], "e"), rescale(pressures_pred_27 , "p"), ’C3’, linewidth

=2)

plt.plot(rescale(strains_36 [:,0], "e"), rescale(pressures_pred_36 , "p"), ’C1’, linewidth

=2)

plt.plot(rescale(strains_45 [:,0], "e"), rescale(pressures_pred_45 , "p"), ’C4’, linewidth

=2)

plt.plot(rescale(strains_30 [:,0], "e"), rescale(pressures_pred_30 , "p"), ’C7’, linewidth

=2, label=lab_30)

plt.plot(rescale(strains_00 [:,0], "e"), rescale(pressures_pred_00 , "p"), ’C8’, linewidth

=2, label=lab_00)

plt.axis([0, 50, 0, 3000])

plt.xlabel(’Total volumetric strain (%)’, fontsize =16)

plt.ylabel(’Pressure (MPa)’, fontsize =16)

ax.legend(loc=’best’, fontsize =14)

fig.savefig(’Fox_DrySand_ElasticStrain_MLP_Total.svg’)

# Save the model and fit in binary HDF5 format for reading into Vaango

model2D.save(’mlp_regression_keras_total_scaled.h5’)
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5.4 ElasticPlastic

�e <elastic plastic> model is a general purpose model that was primarily implemented for the
purpose of modeling high strain rate metal plasticity. Dr. Biswajit Banerjee has written an extensive
description of the theory, implementation and use of thismodel. Because of the amount of detail involved,
and because these subtopics are interwoven, this model is given its own section below.

�ere is a large number remaining models but these are not frequently utilized. �is includes models for
viscoelasticity, soilmodels, and transverse isotropicmaterials (i.e., �ber reinforced composites). Examples
of their use can be found in the inputs directory. Input �les can also be constructed by checking the
source code to see what parameters are required.

�ere are a fewmodels whose use is explicitly not recommended. In particular, HypoElasticPlastic,
Membrane and SmallStrainPlastic. Input �les calling for the �rst of these should be switched to
the ElasticPlastic model instead.

Example input �le for the HypoElasticPlastic model

An example of the portion of an input �le that speci�es a copper body with a hypoelastic stress update,
Johnson-Cook plasticity model, Johnson-Cook Damage Model and Mie-Gruneisen Equation of State is
shown below.

<material >

<include href="inputs/MPM/MaterialData/MaterialConstAnnCopper.xml"/>

<constitutive_model type="elastic_plastic">

<tolerance >5.0e-10</tolerance >

<include href="inputs/MPM/MaterialData/IsotropicElasticAnnCopper.xml"/>

<include href="inputs/MPM/MaterialData/JohnsonCookPlasticAnnCopper.xml"/>

<include href="inputs/MPM/MaterialData/JohnsonCookDamageAnnCopper.xml"/>

<include href="inputs/MPM/MaterialData/MieGruneisenEOSAnnCopper.xml"/>

</constitutive_model >

<geom_object >

<cylinder label = "Cylinder">

<bottom >[0.0 ,0.0 ,0.0]</bottom >

<top>[0.0 ,2.54e-2 ,0.0]</top>

<radius >0.762e-2</radius >

</cylinder >

<res>[3,3,3]</res>

<velocity >[0.0 , -208.0 ,0.0]</velocity >

<temperature >294</temperature >

</geom_object >

</material >

�e general material constants for copper are in the �le MaterialConstAnnCopper.xml. �e contents
are shown below

<?xml version =’1.0’ encoding=’ISO -8859-1’ ?>

<Uintah_Include >

<density >8930.0 </density >

<toughness >10.e6</toughness >

<thermal_conductivity >1.0</thermal_conductivity >

<specific_heat >383</specific_heat >

<room_temp >294.0</room_temp >

<melt_temp >1356.0 </melt_temp >

</Uintah_Include >

�e elastic properties are in the �le IsotropicElasticAnnCopper.xml. �e contents of this �le are
shown below.

<?xml version =’1.0’ encoding=’ISO -8859-1’ ?>

<Uintah_Include >

<shear_modulus >45.45e9</shear_modulus >

<bulk_modulus >136.35 e9</bulk_modulus >
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</Uintah_Include >

�econstants for the Johnson-Cookplasticitymodel are in the �leJohnsonCookPlasticAnnCopper.xml.
�e contents of this �le are shown below.

<?xml version =’1.0’ encoding=’ISO -8859-1’ ?>

<Uintah_Include >

<flow_model type="johnson_cook">

<A>89.6e6</A>

<B>292.0 e6</B>

<C>0.025 </C>

<n>0.31</n>

<m>1.09</m>

</flow_model >

</Uintah_Include >

�e constants for the Johnson-Cook damagemodel are in the �le JohnsonCookDamageAnnCopper.xml.
�e contents of this �le are shown below.

<?xml version =’1.0’ encoding=’ISO -8859-1’ ?>

<Uintah_Include >

<damage_model type="johnson_cook">

<D1>0.54</D1>

<D2>4.89</D2>

<D3> -3.03</D3>

<D4>0.014</D4>

<D5>1.12</D5>

</damage_model >

</Uintah_Include >

�e constants for the Mie-Gruneisen model (as implemented in the Uintah Computational Framework)
are in the �le MieGruneisenEOSAnnCopper.xml. �e contents of this �le are shown below.

<?xml version =’1.0’ encoding=’ISO -8859-1’ ?>

<Uintah_Include >

<equation_of_state type="mie_gruneisen">

<C_0>3940</C_0>

<Gamma_0 >2.02</Gamma_0 >

<S_alpha >1.489</S_alpha >

</equation_of_state >

</Uintah_Include >

As can be seen from the input �le, any other plasticity model, damage model and equation of state can
be used to replace the Johnson-Cook and Mie-Gruneisen models without any extra e�ort (provided the
models have been implemented and the data exist).

�e material data can easily be taken from a material database or speci�ed for a new material in an input
�le kept at a centralized location. At this stagematerial data for a range ofmaterials is kept in the directory
.../Uintah/StandAlone/inputs/MPM/MaterialData.
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5.4.1 Return Algorithms

Two return algorithms are presently available. Both assume the direction of plastic ow is proportional
to the current deviatoric stress.

1. Radial Return (default).
2. Modi�ed Nemat-Nasser/Maudlin Return Algorithm.

Radial Return Algorithm

�e plastic state is obtained using an iterative radial return procedure as described in [8], page 124, except
that the Newton procedure has been generalized to allow ow stresses to be functions of both equivalent
plastic strain and equivalent plastic strain rate.

�e rotated spatial rate of deformation tensor (d) is additively decomposed into an elastic part, de , and a
plastic part, dp,

d = de + dp (5.8)

It is convenient to work with the deviatoric parts of d, de , and dp, denoted η, ηe , and ηp respectively. �e
same additive decomposition obtains

η = ηe + ηp (5.9)

Presently these models are limited to the case of plastic incompressibility (tr(dp) = 0), so that dp = ηp.
�e radial return algorithm assumes a yield condition of the form

f (s, εeqp , ˙ε
eq
p ) =

√
3J2 − σy(εeqp , ˙ε

eq
p ) (5.10)

where σy is the ow stress, J2 = 1
2s ∶ s is the second invariant of the deviatoric part of the Cauchy stress, s,

and the equivalent plastic strain is de�ned as

εeqp = ∫
t

0

√
2
3dp ∶ dpdt = ∫

t

0

√
2
3η

p ∶ ηpdt (5.11)

Assuming a state at the end of the previous time step, time tn, satisfying f (sn , (εeqp )n , ε̇np) ≤ 0, a new state
satisfying Eqn. 5.10 at time tn+1 = tn + ∆t, where ∆t is the time step size, is sought.
Attention is further restricted to plastic ow associated with the yield condition, Eqn. 5.10, i.e.

dp = ηp ∝ ∂ f
∂σ

= λ̇ s
∥s∥ = λ̇n (5.12)

where σ is the Cauchy stress , n = s/ ∥s∥ and λ̇ > 0 is a proportionality constant to be determined.
Attention is also restricted to isotropicmaterials, for which the deviatoric responsemay be separated from
the volumetric response. �e linear hypoelastic/plastic constitutive equation for deviatoric response is

ṡ = 2µ(η − ηp) (5.13)

where µ is the shear modulus. �e shear modulus is required to be constant over the time step. �is
permits evolution of the shear modulus based on the state at the beginning of the time step using the var-
ious shear modulus models described later, which are pressure and temperature dependent. It also allows
for a visoelastic deviatoric stress response provided an instantaneous shear modulus may be de�ned, as
described later in this section for linear hypoviscoelasticity.

A trial stress is calculated assuming no plastic deformation, i.e.

strial = sn + 2µη∆t (5.14)
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If f (strial, (εeqp )n , 0) ≤ 0, the deformation is purely elastic and the solution at time tn+1 is sn+1 = strial,
(εeqp )n+1 = (εeqp )n. If f (strial, (εeqp )n , 0) > 0, the deformation is at least partially plastic. In this case

sn+1 = sn + ṡ∆t (5.15)

where ṡ is given by Eqn. 5.13. Eqn. 5.15 may be rewritten in terms of the trial stress

sn+1 = strial − 2µηp∆t = strial − 2µλ̇∆t sn+1
∥sn+1∥ (5.16)

using Eqn.s 5.14, 5.13 and 5.12. �is equation may be rearranged to give

strial = sn+1 [1 + 2µλ̇∆t
∥sn+1∥] (5.17)

which gives the key result that strial ∝ sn+1, i.e. the trial stress and the updated stress are in the same
direction. Consequently the ow direction may be written

n = sn+1
∥sn+1∥ =

strial
∥strial∥ (5.18)

and Eqn. 5.16 may be rewritten

sn+1 = strial − 2µλ̇∆tn (5.19)

or, contracting both sides with n, and using Eqn. 5.18,

∥sn+1∥ = ∥strial∥ − 2µλ̇∆t (5.20)

which is a scalar equation for the proportionality constant λ̇. Using the yield condition f (sn+1, (εeqp )n+1, ε̇n+1p ) =
0 (Eqn. 5.10), this equation may be written in terms of λ̇

√
2
3 σy((ε

eq
p )n+1, ε̇n+1p ) = ∥strial∥ − 2µλ̇∆t (5.21)

where from Eqn.s 5.11 and 5.12, (εeqp )n+1 = (εeqp )n +
√

2
3 λ̇∆t and

˙εeqp
n+1

=
√

2
3 λ̇.

For the special case of linear isotropic hardening, σy(εeqp , ε̇p) = σy0 + kεeqp , where σy0 is the initial yield
stress and k is the hardening modulus, Eqn. 5.21 may be solved exactly. More generally the solution may
be found using Newton iteration. De�ning ∆λ = λ̇∆t, and letting j denote the iteration, de�ne

g(∆λ j) = ∥strial∥ − 2µ∆λ j −
√

2
3 σy(є

n+1
p, j , є̇

n+1
p, j ) (5.22)

and, using the chain rule, the derivative may be calculated

dg
d∆λ(∆λ j) = −2µ −

2
3

⎡⎢⎢⎢⎢⎣

∂σy
∂εeqp

(єn+1p, j , є̇
n+1
p, j ) +

∂σy
∂є̇n+1p, j

(єn+1p, j , є̇
n+1
p, j )

1
∆t

⎤⎥⎥⎥⎥⎦
(5.23)

�en until ∣g(∆λ j+1)∣ < TOL, calculate

∆λ j+1 = ∆λ j −
g(∆λ j)
dg
d∆λ(∆λ j)

(5.24)

where ∆λ0 = 0, єn+1p,0 = (εeqp )n, є̇n+1p,0 = 0, and, once ∆λ has been determined to a speci�ed accuracy, the
�nal values of plastic strain and strain rate are given by

(εeqp )n+1 = (εeqp )n +
√

2
3∆λ j+1 (5.25)
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˙εeqp
n+1

=
√

2
3
∆λ j+1
∆t

(5.26)

and the �nal value of sn+1 is calculated from Eqn. 5.19.

While several of the allowed ow stresses are of the form σy(εeqp , ˙ε
eq
p ) as given in Eqn. 5.10, others include

temperature and/or pressure dependence. Similarly, several of the shear moduli models are functions of
temperature and/or pressure. Using the radial return algorithm in these cases amounts to convergence to
the yield surface neglecting temperature changes, and assuming a non-associated ow rule of the form in
Eqn. 5.12 (which is non-associated because the pressure dependence of the ow stress has been neglected,
i.e. Eqn. 5.12 no longer holds). �is non associated ow rule results in zero plastic dilation (actually
dilitation). �e end result is convergence to the ow stress with temperature and pressure held constant,
i.e. to σy((εeqp )n+1, ˙εeqp

n+1
, pn , Tn) with µ(pn , Tn) and no plastic dilitation. While holding pressure and

temperature �xed over a time step is probably a good approximation for most explicit calculations, non-
associated ow may not be.

Finally, it was found that this return algorithm worked equally well for linear hypoviscoelastic deviatoric
response, i.e.

ṡ = 2µ(η − ηp) −
N
∑
i=1

si
τi

(5.27)

rather than Eqn. 5.13. Eqn. 5.27 is the constitutive equation for N linear Maxwell elements in parallel,
each with shear modulus µi , time constant τi , and deviatoric stress si , and

s =
N
∑
i=1

si µ =
N
∑
i=1
µi (5.28)

�is model is detailed in the Deviatoric Stress Models section. Combined with a yield condition, the
combination results in a model for viscoplastic material response.

�e radial return algorith is the default, and also may be explicitely invoked with the tag
<plastic_convergence_algo >radialReturn </plastic_convergence_algo >

Modi�ed Nemat-Nasser/Maudlin Return Algorithm

�is stress update algorithm is a slightly modi�ed version of the approach taken by Nemat-Nasser et al.
(1991,1992) [9, 10], Wang (1994) [11], Maudlin (1996) [12], and Zocher et al. (2000) [13]. It is presently only
documented in the code itself. It is also known to give erroneous results under uniaxial stress conditions.

�e modi�ed Nemat-Nasser/Maudlin return algorith is invoked with the tag
<plastic_convergence_algo >biswajit </plastic_convergence_algo >

�is is an experts only algorithm!!!
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5.4.2 Hypo-Elastic Plasticity in Uintah

�e hypoelastic-plastic stress update is a mix and match combination of isotropic models. �e equa-
tion of state may be varied independently of the deviatoric response. For elastic deviatoric response the
shear moduli may be taken to be functions of temperature and pressure. Plasticity is based on an additive
decomposition of the rate of deformation tensor into elastic and plastic parts. Incompressibility is as-
sumed for plastic deformations, i.e. the plastic strain rate is proportional to the deviatoric stress. Various
yield conditions and ow stresses may be mixed andmatched. �ere are also options for damage/melting
modeling. Note that there are few checks to prevent users from mixing and matching inappropriate models.

Additional models can be added to this framework. Presently, the material models available are:

1. Adiabatic Heating and Speci�c Heat:
• Taylor-Quinney coe�cient.
• Constant Speci�c Heat (default).
• Cubic Speci�c Heat.
• Speci�c Heat for Copper.
• Speci�c Heat for Steel.

2. �e equation of state (pressure/volume response):
• Hypoelastic (default).
• Neo-Hookean.
• Mie-Gruneisen.

3. �e deviatoric stress model:
• Linear hypoelasticity (default).
• Linear hypoviscoelasticity.

4. �e melting model:
• Constant melt temperature (default).
• Linear melt temperature.
• Steinberg-Cochran-Guinan (SCG) melt.
• Burakovsky-Preston-Silbar (BPS) melt.

5. Temperature and pressure dependent shear moduli (only works with linear hypoelastic deviatoric
stress model):

• Constant shear modulus (default).
• Mechanical �reshold Stress (MTS) model.
• Steinberg-Cochran-Guinan (SCG) model.
• Nadal-LePoac (NP) model.
• Preston-Tonks-Wallace (PTW) model.

6. �e yield condition:
• von Mises.
• Gurson-Tvergaard-Needleman (GTN).

7. �e ow stress:
• the Isotropic Hardening model
• the Johnson-Cook (JC) model
• the Steinberg-Cochran-Guinan-Lund (SCG) model.
• the Zerilli-Armstrong (ZA) model.
• the Zerilli-Armstrong for polymers model.
• the Mechanical �reshold Stress (MTS) model.
• the Preston-Tonks-Wallace (PTW) model.

8. �e plastic return algorithm:
• Radial Return (default).
• Modi�ed Nemat-Nasser/Maudlin.

9. �e damage model:
• Johnson-Cook damage model.
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�is model is invoked using
<constitutive_model="elastic_plastic_hp">

<shear_modulus >0.2845 e4</shear_modulus >

<bulk_modulus >1.41e4</bulk_modulus >

<initial_material_temperature >298</initial_material_temperature >

<plastic_convergence_algo >radialReturn </plastic_convergence_algo >

<taylor_quinney_coeff > 0.9 </taylor_quinney_coeff >

submodels

</constitutive_model >

where “submodels” indicates subsets of tags corresponding to the listed above (and detailed below). Note
that the speci�ed bulk and shearmoduli are used to calcuate a stable time step size for the �rst time step (hence
it is important that they be consistent with EOS and deviatoric stress submodelmaterial constants). However,
if the default EOS and/or deviatoric stress models are used, then these material constants are su�cient for
bulk and/or deviatoric stress response, and are automatically used in those models. �e bulk modulus is
also used to determine arti�cial viscosity parameters (throughout the simulation).
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5.4.3 Adiabatic Heating and Speci�c Heat

A part of the plastic work done is converted into heat and used to update the temperature of a particle.
�e increase in temperature (∆T) due to an increment in plastic strain (∆єp) is given by the equation

∆T =
χσy
ρCp

∆єp (5.29)

where χ is the Taylor-Quinney coe�cient, and Cp is the speci�c heat. �e value of the Taylor-Quinney
coe�cient is taken to be 0.9 in all our simulations (see [14] for more details on the variation of χ with
strain and strain rate).

�e Taylor-Quinney coe�cient is taken as input in the ElasticPlastic model using the tags

<taylor_quinney_coeff > 0.9 </taylor_quinney_coeff >

Default speci�c heat model

�e default model returns a constant speci�c heat and is invoked using

<specific_heat_model type="constant_Cp">

</specific_heat_model >

Cubic speci�c heat model

�e speci�c heat model is of the form [15]:

Cv =
T̃3

c3T̃3 + c2T̃2 + c1T̃ + c0
(5.30)

where T̃ is the reduced temperature, and c0-c3 are �t parameters. �e reduced temperature is calculated
using T̃ = T/θ(V) and the Debye temperature is:

θ(V) = θ0 (
V0
V

)
a
eb(V0−V)/V (5.31)

where V is the speci�c volume and θ0 is the reference Debye temperature and a and b are �t parameters.
�e constant pressure speci�c heat is calculated via:

Cp = Cv + β2TVKT (5.32)

where β and KT are the volumetric expansion coe�ceint and isothermal bulk modulus respectively.

�e model is invoked using:

<specific_heat_model type="cubic_Cp">

<a> 1.0 </a>

<b> 1.0 </b>

<beta> 1.0 </beta>

<c0> 1.0 </c0>

<c1> 1.0 </c1>

<c2> 1.0 </c2>

<c3> 1.0 </c3>

</specific_heat_model >

where all parameters but β, a and b are required.
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Speci�c heat model for copper

�e speci�c heat model for copper is of the form

Cp =
⎧⎪⎪⎨⎪⎪⎩

A0 T3 − B0 T2 + C0 T − D0 if T < T0
A1 T + B1 if T ≥ T0 .

(5.33)

�e model is invoked using
<specific_heat_model type = "copper_Cp"> </specific_heat_model >

Speci�c heat model for steel

A relation for the dependence of Cp upon temperature is used for the steel ([16]).

Cp =
⎧⎪⎪⎨⎪⎪⎩

A1 + B1 t + C1 ∣t∣−α if T < Tc
A2 + B2 t + C2 t−α

′

if T > Tc
(5.34)

t =
T
Tc
− 1 (5.35)

where Tc is the critical temperature at which the phase transformation from the α to the γ phase takes
place, and A1,A2, B1, B2, α, α

′ are constants.

�e model is invoked using
<specific_heat_model type = "steel_Cp"> </specific_heat_model >

�e heat generated at a material point is conducted away at the end of a time step using the transient heat
equation. �e e�ect of conduction onmaterial point temperature is negligible (but non-zero) for the high
strain-rate problems simulated using Uintah.
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5.4.4 Equation of State Models

�e elastic-plastic stress update assumes that the volumetric part of the Cauchy stress can be calculated
using an equation of state. �ere are three equations of state that are implemented in Uintah. �ese are

1. A default hypoelastic equation of state.
2. A neo-Hookean equation of state.
3. A Mie-Gruneisen type equation of state.

Default hypoelastic equation of state

In this case we assume that the stress rate is given by

σ̇ = λ tr(de) 1 + 2 µ de (5.36)

where σ is the Cauchy stress, de is the elastic part of the rate of deformation, and λ, µ are constants.

If ηe is the deviatoric part of de then we can write

σ̇ = (λ + 2
3
µ) tr(de) 1 + 2 µ ηe = κ tr(de) 1 + 2 µ ηe . (5.37)

If we split σ into a volumetric and a deviatoric part, i.e., σ = p 1 + s and take the time derivative to get
σ̇ = ṗ 1 + ṡ then

ṗ = κ tr(de) . (5.38)

In addition we assume that d = de +dp. If we also assume that the plastic volume change is negligible, we
can then write that

ṗ = κ tr(d) . (5.39)

�is is the equation that is used to calculate the pressure p in the default hypoelastic equation of state, i.e.,

pn+1 = pn + κ tr(dn+1) ∆t . (5.40)

To get the derivative of p with respect to J, where J = det(F), we note that

ṗ = ∂p
∂J

J̇ = ∂p
∂J

J tr(d) . (5.41)

�erefore,

∂p
∂J

=
κ
J
. (5.42)

�is model is invoked in Uintah using

<equation_of_state type="default_hypo">

</equation_of_state >

�e code is in .../MPM/ConstitutiveModel/PlasticityModels/DefaultHypoElasticEOS.cc

If an EOS is not speci�ed then this model is the default.
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Default hyperelastic equation of state

In this model the pressure is computed using the relation

p = 1
2 κ (Je −

1
Je
) (5.43)

where κ is the bulk modulus and Je is determinant of the elastic part of the deformation gradient.

We can also compute

dp
dJ

= 1
2 κ (1 +

1
(Je)2

) . (5.44)

�is model is invoked in Uintah using
<equation_of_state type="default_hyper">

</equation_of_state >

�e code is in .../MPM/ConstitutiveModel/PlasticityModels/HyperElasticEOS.cc.

Mie-Gruneisen equation of state

�e pressure (p) is calculated using a Mie-Grüneisen equation of state

p = pre f + ρΓ(e − ere f ) (5.45)

where ρ is the mass density, Γ the Grüneisen parameter (unitless) and pre f and ere f are known pressure
and internal speci�c energy on a reference curve and are a function of volume only. As the form can be
formally viewed as an expansion valid near the reference curve, ideally the reference curve prescribes
states near those of interest. �e reference curve could be the shock Hugoniot, the standard adiabat
(through the initial state), the 0 K isotherm, the isobar p = 0, the curve e = 0, or some composite of these
curves to cover the range of interest.

For shock calculations it makes sense to use the Hugoniot as a reference curve. We Assume the following
relationship between shock wave velocity, Us and particle velocity, Up,

Us = C0 + sαUp + s2
U2
p

Us
+ s3

U3
p

U2
s

(5.46)

where C0 is the bulk speed of sound, and the s’s are dimensionless coe�cients. �is form is due to Stein-
berg ([17]), and is a straight–forward extension to a nonlinear shock velocity, particle velocity relation-
ship. It reduces to the linear relationship most frequently used, e.g. ([13, 18]), with s2 = s3 = 0. Using the
steady shock jump conditions for conservation of mass, momentum and energy, the Hugoniot reference
pressure, pH and speci�c energy, eH may be determined

pH = ρ0C2
0η

1 − sαη − s2η2 − s3η3
(5.47)

eH = pHη
2ρ0

(5.48)

where ρ0 is the initial density (pre-shock) and

η = 1 − ρ0
ρ

(5.49)
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is a measure of volumetric deformation. Using these relationships and the additional assumption that
ρΓ = ρ0Γ0 the Mie-Grüneisen equation of state may be written

p =
ρ0 C2

0 η(1 −
Γ0η
2 )

(1 − sαη − s2η2 − s3η3)2
+ ρ0Γ0 e (5.50)

To extend the Mie Grüneisen EOS into tensile stress regimes, for η < 0 the pressure is evaluated as

p = ρ0 C2
0 η + ρ0Γ0 e (5.51)

�is equation is integrated explicitly, using beginning timestep values for energy and the current value of
density to update the pressure. For isochoric plasticity,

Je = J = det(F) =
ρ0
ρ
.

where F e is the elastic part of the deformation gradient. �e increment in speci�c internal energy is
computed using

ρ∗∆e = (σ∗i jDi j − qDkk)∆t (5.52)

where σ∗i j and ρ
∗ are the average stress and density over the time step, Di j is the rate of deformation tensor,

and q is the arti�cial viscosity. Note that the arti�cial velocity term must be included explicitly since it is
not accumulated in the total stress.

�e temperature, T , is calculated using the thermodynamic relationship

dT = −ρΓTdv + TdS
Cv

(5.53)

where v is the speci�c volume, S the entropy and Cv the speci�c heat at constant volume. Entropy change
is associated with irreversible, or dissipative, processes. Equating TdS to the dissipated work terms, those
components of temperature change are computed in the appropriate routines, such as plasticity or arti�-
cial viscosity. In fact, not all of the dissipated energy needs be converted to heat, as allowed for by using
the Taylor–Quinney coe�cient (see below). �e �rst term in may be integrated to give the isentropic
temperature change

∆Tisentropic = −TΓ0
ρ0
ρ
Dkk∆t (5.54)

where the same assumption, ρΓ = ρ0Γ0 is used. �e isentropic temperature change is computed as part
of the EOS response.

Should an implicit integration scheme be used the tangent moduli are needed, which in turn require
calculation of

∂p
∂Je

=
ρ0 C2

0 [1 + (Sα − Γ0) (1 − Je)]
[1 − Sα (1 − Je)]3

− Γ0
∂e
∂Je

. (5.55)

We neglect the ∂e
∂Je term in our calculations. Note: this calculation hasn’t been updated for the Steinberg

nonlinear shock velocity, particle velocity relationship.

�is model is invoked in Uintah using
<equation_of_state type="mie_gruneisen">

<C_0>5386</C_0>

<Gamma_0 >1.99</Gamma_0 >

<S_alpha >1.339</S_alpha >

<S_2>1.339</S_2>

<S_3>1.339</S_3>

</equation_of_state >
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�e code is in .../MPM/ConstitutiveModel/PlasticityModels/MieGruneisenEOS.cc.
It is worth noting that this approach to calculating energy and temperature is not necessarily consistent
with existing implementations. In fact, it does not appear that there is a standard approach, many shock
codes have unique implementations. In particular, it appears that the elastic stored energy term is o�en
neglected, as well as the isentropic temperature change.

It is worth noting that the approach outlined above is consistent with that taken fairly recently byWilkins
([18]). Wilkins expands the pressure and energy as polynomials in η and uses Hugoniot data (and a linear
Us, Up relationship) to determine the coe�cients. Using the additional thermodynamic relationship

de = −pdv + TdS (5.56)

and substituting for TdS from 5.53, assuming Cv constant and ρΓ = ρ0Γ0 (as in Wilkins), the following
relationship may be derived

e = −∫
v

v0
(p − ρ0Γ0CvT)dv + Cv(T − T0) (5.57)

Since the integral is for dS = 0, it may be integrated to give an alternate form of 5.54,

Tisentropic = T0 exp(Γ0(1 −
ρ0
ρ
)) (5.58)

which may be substituted into 5.57 along with the expansion for p(η) (here for s2 = s3 = 0)

p = ρ0Γ0e + ρ0C2
0(η + (2sα −

Γ0
2
)η2 + sα(3sα − Γ0)η3) + O(η4) (5.59)

to give the equation

e+∫
v

v0
ρ0Γ0edv = Cv(T−T0)+ρ0Γ0CvT0∫

v

v0
exp(Γ0η)dv−ρ0Γ0∫

v

v0
(η+(2sα−

Γ0
2
)η2+sα(3sα−Γ0)η3)dv

(5.60)

Finally, using

e = e0(η) + ∫
T

T0
CvdT (5.61)

with a polynomial expansion for e(η) in powers of η, 5.60 can be integrated to determine the coe�cients
in the expansion. Determining the coe�cients this way gives exactly the same expansion for energy as
derived in Wilkins, using a di�erent approach. �e advantages of the approach outlined above are it’s
relative simplicity, and generality – no assumption of constant speci�c heat is needed.
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5.4.5 Deviatoric Stress Models

�e elastic-plastic stress update assumes that the deviatoric part of the Cauchy stress can be calculated
independently of the equation of state. �ere are two deviatoric stress models that are implemented in
Uintah. �ese are

1. A default hypoelastic deviatoric stress.
2. A linear hypoviscooelastic deviatoric stress.

Default Hypoelastic Deviatoric Stress

In this case the stress rate is given by

ṡ = 2µ(η − ηp) (5.62)

where µ is the shear modulus. �is model is invoked using
<deviatoric_stress_model type="hypoElastic">

</deviatoric_stress_model >

If a deviatoric stress model is not speci�ed then this model is the default.

Linear Hypoviscoelastic Deviatoric Stress

�is model is a three–dimensional version of a Generalized Maxwell model, as presented in [19]. It is
speci�cally implemented to be combined with the ZA for Polymers Flow Stress Model described previ-
ously. Together these models combine into a hypoviscoplastic model. �e stress update is given by

ṡ = 2µ(η − ηp) −
N
∑
i=1

si
τi

(5.63)

where µ is the shear modulus and si are maxwell element stresses which are tracked internally. Also

s =
N
∑
i=1

si µ =
N
∑
i=1
µi (5.64)

�is model is invoked using
<deviatoric_stress_model type="hypoViscoElastic">

<mu> [3.0, 5.0, 7.0] </mu>

<tau> [1.67, 10.7, 107.0] </tau>

</deviatoric_stress_model >

where the number of elements in arrays mu and tau must be the same.
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5.4.6 Melting Temperature

Default model

�e default model is to use a constant melting temperature. �is model is invoked using
<melting_temp_model type="constant_Tm">

</melting_temp_model >

Linear melt model

A melting temperature model designed to be linear in pressure can be invoked using
<melting_temp_model type="linear_Tm">

<T_m0> </T_m0>

<a> </a>

<b> </b>

<Gamma_0 > </Gamma_0 >

<K_T> </K_T>

</melting_temp_model >

where T m0 is required, and either a or Gamma 0 along with K T, or b. T m0 is the initial melting
temperature in Kelvin, a is the Kraut-Kennedy coe�cient, Gamma 0 is the Gruniesen Gamma, b is the
pressure coe�cient in Kelvin per Pascal, and K T is the isothermal bulk modulus in Pascals. �e pressure
is calculated using either

Tm = Tm0 + bP (5.65)

or

Tm = Tm0 (1 + a
ρ0
ρ
) (5.66)

�e constants in these equations are linked together via the following equation

b = aTm0
KT

(5.67)

and a is related to the Gruneisen Gamma by the Lindemann Law [20]:

a = 2(Γ0 −
1
3
) (5.68)

SCGmelt model

Weuse a pressure dependent relation to determine themelting temperature (Tm). �eSteinberg-Cochran-
Guinan (SCG) melt model ([21]) has been used for our simulations of copper. �is model is based on a
modi�ed Lindemann law and has the form

Tm(ρ) = Tm0 exp [2a (1 −
1
η
)] η2(Γ0−a−1/3); η = ρ

ρ0
(5.69)

where Tm0 is the melt temperature at η = 1, a is the coe�cient of the �rst order volume correction to
Grüneisen’s gamma (Γ0).

�is model is invoked with
<melting_temp_model type="scg_Tm">

<T_m0> 2310.0 </T_m0>

<Gamma_0 > 3.0 </Gamma_0 >

<a> 1.67 </a>

</melting_temp_model >
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BPSmelt model

An alternative melting relation that is based on dislocation-mediated phase transitions - the Burakovsky-
Preston-Silbar (BPS) model ([22]) can also be used. �is model has been used to determine the melt
temperature for 4340 steel. �e BPS model has the form

Tm(p) = Tm(0)
⎡⎢⎢⎢⎢⎣

1
η
+

1
η4/3

µ
′

0

µ0
p
⎤⎥⎥⎥⎥⎦
; η =

⎛
⎝
1 +

K
′

0

K0
p
⎞
⎠

1/K′0
(5.70)

Tm(0) =
κλµ0 vWS

8π ln(z − 1) kb
ln(

α2

4 b2ρc(Tm)
) (5.71)

where p is the pressure, η = ρ/ρ0 is the compression, µ0 is the shear modulus at room temperature and
zero pressure, µ′0 = ∂µ/∂p is the derivative of the shearmodulus at zero pressure,K0 is the bulkmodulus at
room temperature and zero pressure, K ′

0 = ∂K/∂p is the derivative of the bulk modulus at zero pressure,
κ is a constant, λ = b3/vWS where b is the magnitude of the Burgers’ vector, vWS is the Wigner-Seitz
volume, z is the coordination number, α is a constant, ρc(Tm) is the critical density of dislocations, and
kb is the Boltzmann constant.

�is model is invoked with
<melting_temp_model type="bps_Tm">

<B0> 137e9 </B0>

<dB_dp0 > 5.48 <dB_dp0 >

<G0> 47.7e9 <G0>

<dG_dp0 > 1.4 <dG_dp0 >

<kappa> 1.25 <kappa >

<z> 12 <z>

<b2rhoTm > 0.64 <b2rhoTm >

<alpha> 2.9 <alpha>

<lambda > 1.41 <lambda >

<a> 3.6147e-9<a>

<v_ws_a3_factor > 1/4 <v_ws_a3_factor >

<Boltzmann_Constant > <Boltzmann_Constant >

</melting_temp_model >
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5.4.7 Shear Modulus

�reemodels for the shear modulus (µ) have been tested in our simulations. �e �rst has been associated
with the Mechanical �reshold Stress (MTS) model and we call it the MTS shear model. �e second is
the model used by Steinberg-Cochran-Guinan and we call it the SCG shear model while the third is a
model developed by Nadal and Le Poac that we call the NP shear model.

Default model

�e default model gives a constant shear modulus. �e model is invoked using

<shear_modulus_model type="constant_shear">

</shear_modulus_model >

MTS Shear Modulus Model

�e simplest model is of the form suggested by [23] ([24])

µ(T) = µ0 −
D

exp(T0/T) − 1
(5.72)

where µ0 is the shear modulus at 0K, and D, T0 are material constants.

�e model is invoked using

<shear_modulus_model type="mts_shear">

<mu_0>28.0e9</mu_0>

<D>4.50e9</D>

<T_0>294</T_0>

</shear_modulus_model >

SCG Shear Modulus Model

�e Steinberg-Cochran-Guinan (SCG) shear modulus model ([13, 21]) is pressure dependent and has the
form

µ(p, T) = µ0 +
∂µ
∂p

p
η1/3

+ ∂µ
∂T

(T − 300); η = ρ/ρ0 (5.73)

where, µ0 is the shear modulus at the reference state(T = 300 K, p = 0, η = 1), p is the pressure, and T is
the temperature. When the temperature is above Tm, the shear modulus is instantaneously set to zero in
this model.

�e model is invoked using

<shear_modulus_model type="scg_shear">

<mu_0> 81.8e9 </mu_0>

<A> 20.6e-12 </A>

<B> 0.16e-3 </B>

</shear_modulus_model >

NP Shear Modulus Model

A modi�ed version of the SCG model has been developed by [25] that attempts to capture the sudden
drop in the shear modulus close to the melting temperature in a smooth manner. �e Nadal-LePoac
(NP) shear modulus model has the form

µ(p, T) = 1
J (T̂)

[(µ0 +
∂µ
∂p

p
η1/3

)(1 − T̂) + ρ
Cm

kb T] ; C ∶=
(6π2)2/3

3
f 2 (5.74)
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where

J (T̂) ∶= 1 + exp [−
1 + 1/ζ

1 + ζ/(1 − T̂)
] for T̂ ∶= T

Tm
∈ [0, 1 + ζ], (5.75)

µ0 is the shear modulus at 0 K and ambient pressure, ζ is a material parameter, kb is the Boltzmann
constant, m is the atomic mass, and f is the Lindemann constant.

�e model is invoked using
<shear_modulus_model type="np_shear">

<mu_0>26.5e9</mu_0>

<zeta>0.04</zeta>

<slope_mu_p_over_mu0 >65.0e-12</slope_mu_p_over_mu0 >

<C> 0.047 </C>

<m> 26.98 </m>

</shear_modulus_model >

PTW Shear model

�e PTW shear model is a simpli�ed version of the SCG shear model. �e inputs can be found in
.../MPM/ConstitutiveModel/PlasticityModel/PTWShear.h.
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5.4.8 Yield conditions

When failure is to be simulated we can use the Gurson-Tvergaard-Needleman yield condition instead of
the von Mises condition.

The vonMises yield condition

�e von Mises yield condition is the default. It speci�es a yield condition of the form

Φ =
√
3J2 − σy (5.76)

where J2 is the second invariant of the deviatoric stress tensor (J2 = 1
2s ∶ s) and σy is the ow stress.

Currently the return algorithms are restricted to plastic ow in the direction of the deviatoric stress (Eqn.
5.12). See the discussion in the Radial Return algorithm description for details. �e von Mises yield
condition is invoked using the tags

<yield_condition type="vonMises">

</yield_condition >

The Gurson-Tvergaard-Needleman (GTN) yield condition

�eGurson-Tvergaard-Needleman (GTN) yield condition [26, 27] depends on porosity.�is model is for
experts only!!! Here are some caveats: Formally, you can replace the ow stress in Gurson�s model with
the ow stresses of Johnson-Cook, ZA, etc., but the internal variable updates would have to be modi�ed
extensively. For example, the JC yield stress depends on the equivalent plastic strain, but this needs to
be the equivalent plastic strain of the matrix material, which is very di�erent from the equivalent plastic
strain of the porous composite. For example, under pure hydrostatic compression at the macroscale, the
matrix material will su�er massive amounts of plastic SHEAR strains at the microscale (even though, for
hydrostatic loading, it has zero plastic shear strain at the macroscale) and thus would need to harden.
While the models should run, they are unlikely to give realistic results.

�eGTN yield condition is a fairly good bound in compression but a TERRIBLE bound in tension (in fact
using it in tension can produce non-physical predictions of negative plastic work tantamount to tension
causing pore COLLAPSE; very fewGurson implementations catch this problem because very few of them
include run-time checks of solution quality, including this one).

�e GTN yield condition will not work with Radial Return. An error will be generated in this case.
Presently it only runswith themodi�edNemat-Nasser/Maudlin return algorithm. Plastic ow is assumed
to be in the direction of deviatoric stress. Hence this is nonassociated ow for this pressure dependent
yield condition.

�e GTN yield condition can be written as

Φ = (
σeq
σ f

)
2

+ 2q1 f∗ cosh(q2
Tr(σ)
2σ f

) − (1 + q3 f 2∗) = 0 (5.77)

where q1, q2, q3 are material constants and f∗ is the porosity (damage) function given by

f ∗ =
⎧⎪⎪⎨⎪⎪⎩

f for f ≤ fc ,
fc + k( f − fc) for f > fc

(5.78)

where k is a constant and f is the porosity (void volume fraction). �e ow stress in the matrix material
is computed using either of the two plasticity models discussed earlier. Note that the ow stress in the
matrix material also remains on the undamaged matrix yield surface and uses an associated ow rule.

�is yield condition is invoked using
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<yield_condition type="gurson">

<q1> 1.5 </q1>

<q2> 1.0 </q2>

<q3> 2.25 </q3>

<k> 4.0 </k>

<f_c> 0.05 </f_c>

</yield_condition >

Porosity model

�e evolution of porosity is calculated as the sum of the rate of growth and the rate of nucleation [28].
�e rate of growth of porosity and the void nucleation rate are given by the following equations [29]

ḟ = ḟnucl + ḟgrow (5.79)

ḟgrow = (1 − f )Tr(Dp) (5.80)

ḟnucl =
fn

(sn
√
2π)

exp [− 1
2
(єp − єn)2

s2n
] є̇p (5.81)

where Dp is the rate of plastic deformation tensor, fn is the volume fraction of void nucleating particles ,
єn is themean of the distribution of nucleation strains, and sn is the standard deviation of the distribution.

�e inputs tags for porosity are of the form
<evolve_porosity > true </evolve_porosity >

<initial_mean_porosity > 0.005 </initial_mean_porosity >

<initial_std_porosity > 0.001 </initial_std_porosity >

<critical_porosity > 0.3 </critical_porosity >

<frac_nucleation > 0.1 </frac_nucleation >

<meanstrain_nucleation > 0.3 </meanstrain_nucleation >

<stddevstrain_nucleation > 0.1 </stddevstrain_nucleation >

<initial_porosity_distrib > gauss </initial_porosity_distrib >
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5.4.9 Flow Stress

We have explored seven temperature and strain rate dependent models that can be used to compute the
ow stress. Some of these are also pressure dependent (note that plastic ow does is non-associative for
pressure dependent models):

1. the Isotropic Hardening model
2. the Johnson-Cook (JC) model
3. the Steinberg-Cochran-Guinan-Lund (SCG) model.
4. the Zerilli-Armstrong (ZA) model.
5. the Zerilli-Armstrong for polymers model.
6. the Mechanical �reshold Stress (MTS) model.
7. the Preston-Tonks-Wallace (PTW) model.

Isotropic Hardening Flow Stress Model

�e Isotropic Hardening model is a simple linear relationship for the ow stress

σy(εeqp ) = σy + K(εeqp ) (5.82)

where εeqp is the equivalent plastic strain, σy and k are material constants.

�e inputs for this model are
<flow_model type="isotropic_hardening">

<sigma_Y >792.0e6</sigma_y >

<K>510.0 e6</K>

</flow_model >

JC Flow Stress Model

�e Johnson-Cook (JC)model ([30]) is purely empirical and gives the following relation for the ow stress
(σy)

σy(εeqp , ε̇p , T) = [A+ B(εeqp )n] [1 + C ln(ε̇∗p)] [1 − (T∗)m] (5.83)

where εeqp is the equivalent plastic strain, ε̇p is the plastic strain rate, A, B, C, n, m are material constants,

ε̇∗p =
ε̇p
ε̇p0

; T∗ =
(T − T0)
(Tm − T0)

, (5.84)

ε̇p0 is a user de�ned plastic strain rate, T0 is a reference temperature, and Tm is the melt temperature. For
conditions where T∗ < 0, we assume that m = 1.
�e inputs for this model are

<flow_model type="johnson_cook">

<A>792.0 e6</A>

<B>510.0 e6</B>

<C>0.014 </C>

<n>0.26</n>

<m>1.03</m>

<T_r>298.0</T_r>

<T_m>1793.0 </T_m>

<epdot_0 >1.0</epdot_0 >

</flow_model >

SCG Flow Stress Model

�eSteinberg-Cochran-Guinan-Lund (SCG)model is a semi-empirical model that was developed by [21]
for high strain rate situations and extended to low strain rates and bcc materials by [31]. �e ow stress
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in this model is given by

σy(εeqp , ε̇p , T) = [σa f (εeqp ) + σt(ε̇p , T)]
µ(p, T)
µ0

(5.85)

where σa is the athermal component of the ow stress, f (εeqp ) is a function that represents strain hard-
ening, σt is the thermally activated component of the ow stress, µ(p, T) is the shear modulus, and µ0 is
the shear modulus at standard temperature and pressure. �e strain hardening function has the form

f (εeqp ) = [1 + β(εeqp + εpi)]n; σa f (εeqp ) ≤ σmax (5.86)

where β, n are work hardening parameters, and εpi is the initial equivalent plastic strain. �e thermal
component σt is computed using a bisection algorithm from the following equation (based on the work
of [32])

ε̇p = [ 1
C1

exp [ 2Uk

kb T
(1 − σt

σp
)
2

] + C2
σt

]
−1
; σt ≤ σp (5.87)

where 2Uk is the energy to form a kink-pair in a dislocation segment of length Ld , kb is the Boltzmann
constant, σp is the Peierls stress. �e constants C1,C2 are given by the relations

C1 ∶=
ρdLdab2ν

2w2 ; C2 ∶=
D
ρdb2

(5.88)

where ρd is the dislocation density, Ld is the length of a dislocation segment, a is the distance between
Peierls valleys, b is the magnitude of the Burgers’ vector, ν is the Debye frequency,w is the width of a kink
loop, and D is the drag coe�cient.

�e inputs for this model are of the form
<flow_model type="steinberg_cochran_guinan">

<mu_0> 81.8e9 </mu_0>

<sigma_0 > 1.15e9 </sigma_0 >

<Y_max> 0.25e9 </Y_max>

<beta> 2.0 </beta>

<n> 0.50 </n>

<A> 20.6e-12 </A>

<B> 0.16e-3 </B>

<T_m0> 2310.0 </T_m0>

<Gamma_0 > 3.0 </Gamma_0 >

<a> 1.67 </a>

<epsilon_p0 > 0.0 </epsilon_p0 >

</flow_model >

ZA Flow Stress Model

�e Zerilli-Armstrong (ZA) model ([33–35]) is based on simpli�ed dislocation mechanics. �e general
form of the equation for the ow stress is

σy(εeqp , ε̇p , T) = σa + B exp(−β(ε̇p)T) + B0
√
εeqp exp(−α(ε̇p)T) (5.89)

where σa is the athermal component of the ow stress given by

σa ∶= σg +
kh√
l
+ K(εeqp )n , (5.90)

σg is the contribution due to solutes and initial dislocation density, kh is the microstructural stress inten-
sity, l is the average grain diameter, K is zero for fccmaterials, B, B0 arematerial constants. �e functional
forms of the exponents α and β are

α = α0 − α1 ln(ε̇p); β = β0 − β1 ln(ε̇p); (5.91)
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where α0, α1, β0, β1 are material parameters that depend on the type of material (fcc, bcc, hcp, alloys).
�e Zerilli-Armstrong model has been modi�ed by [36] for better performance at high temperatures.
However, we have not used the modi�ed equations in our computations.

�e inputs for this model are of the form

<flow_model type="zerilli_armstrong">

<sigma_g > 50.0e6 </sigma_g >

<k_H> 5.0e6 </k_H>

<sqrt_l_inv > 5.0 </sqrt_l_inv >

<B> 25.0e6 </B>

<beta_0 > 0.0 </beta_0 >

<beta_1 > 0.0 </beta_1 >

<B_0> 0.0 </B_0>

<alpha_0 > 0.0 </alpha_0 >

<alpha_1 > 0.0 </alpha_1 >

<K> 5.0e9 </K>

<n> 1.0 </n>

</flow_model >

ZA for Polymers Flow Stress Model

�e Zerilli-Armstrong ow stress model for polymers([19]) is a modi�cation to the ZA ow stress model
for metals motivated by considering thermally activated processess appropriate to polymers, in place of
dislocations. �e ZA ow stress function for polymers has three terms. �e �rst term accounts for a
saturation of the ow stress to �nite stress at higher temperatures (Although such stress component is
speci�ed as “athermal” it should follow the generally weaker temperature dependence of the elastic shear
modulus, hence the subscript “g”). �e second gives the yield stress as a function of temperature and
plastic strain rate. �e third gives an increment due to strain hardening, inuenced by the pressure. �e
general form of the equation for the ow stress implemented in Uintah is

σy(εeqp , ε̇p , p, T) = σg + B exp(−β(T − T0)) + B0
√
ωεeqp exp(−α(T − T0)) (5.92)

where it should be noted that the equation is slightly modi�ed from the original to include a reference
temperature T0 and an athermal stress, σg , which is a constant. �e other terms are speci�ed via

B = Bpa(1 + Bpb
√
p)Bpn ; B0 = B0pa(1 + B0pb

√
p)B0pn ; ω = ωa + ωb ln(ε̇p) + ωp

√
p (5.93)

where Bpa, Bpb, Bpn, B0pa, B0pb, B0pn, ωa, ωb, and ωp are material parameters. �e functional forms of
the exponents α and β are (as in the original)

α = α0 − α1 ln(ε̇p); β = β0 − β1 ln(ε̇p); (5.94)

where α0, α1, β0, β1 are material parameters. Note that the pressure is taken to be min(p,0), eliminating
pressure dependence in tension.

�e inputs for this model are of the form

<flow_model type="zerilli_armstrong_polymer">

<sigma_g > 50.0e6 </sigma_g >

<B_pa> 0.0 </B_pa>

<B_pb> 0.0 </B_pb>

<B_pn> 0.0 </B_pn>

<beta_0 > 0.0 </beta_0 >

<beta_1 > 0.0 </beta_1 >

<T_0> 0.0 </T_0>

<B_0pa> 500.0e6 </B_0pa>

<B_0pb> 0.0 </B_0pb>

<B_0pn> 0.0 </B_0pn>

<omega_a > 1.0 </omega_a >

<omega_b > 0.0 </omega_b >
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<omega_p > 0.0 </omega_p >

<alpha_0 > 0.0 </alpha_0 >

<alpha_1 > 0.0 </alpha_1 >

</flow_model >

MTS Flow Stress Model

�eMechanical �reshold Stress (MTS) model ([37–39]) gives the following form for the ow stress

σy(εeqp , ε̇p , T) = σa + (Siσi + Seσe)
µ(p, T)
µ0

(5.95)

where σa is the athermal component of mechanical threshold stress, µ0 is the shear modulus at 0 K and
ambient pressure, σi is the component of the ow stress due to intrinsic barriers to thermally activated
dislocation motion and dislocation-dislocation interactions, σe is the component of the ow stress due to
microstructural evolution with increasing deformation (strain hardening), (Si , Se) are temperature and
strain rate dependent scaling factors. �e scaling factors take the Arrhenius form

Si =
⎡⎢⎢⎢⎢⎣
1 − ( kb T

g0ib3µ(p, T)
ln
ε̇p0i
ε̇p

)
1/q i⎤⎥⎥⎥⎥⎦

1/p i

(5.96)

Se =
⎡⎢⎢⎢⎢⎣
1 − ( kb T

g0eb3µ(p, T)
ln
ε̇p0e
ε̇p

)
1/qe⎤⎥⎥⎥⎥⎦

1/pe

(5.97)

where kb is the Boltzmann constant, b is the magnitude of the Burgers’ vector, (g0i , g0e) are normalized
activation energies, (ε̇p0i , ε̇p0e) are constant reference strain rates, and (qi , pi , qe , pe) are constants. �e
strain hardening component of the mechanical threshold stress (σe) is given by a modi�ed Voce law

dσe
dεeqp

= θ(σe) (5.98)

where

θ(σe) = θ0[1 − F(σe)] + θIVF(σe) (5.99)

θ0 = a0 + a1 ln ε̇p + a2
√
ε̇p − a3T (5.100)

F(σe) =
tanh(α

σe
σes

)

tanh(α)
(5.101)

ln(
σes
σ0es

) = ( kT
g0esb3µ(p, T)

) ln(
ε̇p
ε̇p0es

) (5.102)

and θ0 is the hardening due to dislocation accumulation, θIV is the contribution due to stage-IV hard-
ening, (a0, a1, a2, a3, α) are constants, σes is the stress at zero strain hardening rate, σ0es is the saturation
threshold stress for deformation at 0 K, g0es is a constant, and ε̇p0es is the maximum strain rate. Note that
the maximum strain rate is usually limited to about 107/s.

�e inputs for this model are of the form
<flow_model type="mts_model">

<sigma_a >363.7e6</sigma_a >

<mu_0>28.0e9</mu_0>

<D>4.50e9</D>

<T_0>294</T_0>

<koverbcubed >0.823e6</koverbcubed >

<g_0i>0.0</g_0i>

<g_0e>0.71</g_0e>
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<edot_0i >0.0</edot_0i >

<edot_0e >2.79e9</edot_0e >

<p_i>0.0</p_i>

<q_i>0.0</q_i>

<p_e>1.0</p_e>

<q_e>2.0</q_e>

<sigma_i >0.0</sigma_i >

<a_0>211.8e6</a_0>

<a_1>0.0</a_1>

<a_2>0.0</a_2>

<a_3>0.0</a_3>

<theta_IV >0.0</theta_IV >

<alpha>2</alpha>

<edot_es0 >3.42e8</edot_es0 >

<g_0es>0.15</g_0es>

<sigma_es0 >1679.3 e6</sigma_es0 >

</flow_model >

PTW Flow Stress Model

�e Preston-Tonks-Wallace (PTW) model ([40]) attempts to provide a model for the ow stress for ex-
treme strain rates (up to 1011/s) and temperatures up to melt. �e ow stress is given by

σy(εeqp , ε̇p , T) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2
⎡⎢⎢⎢⎢⎣
τs + α ln

⎡⎢⎢⎢⎢⎣
1 − φ exp

⎛
⎝
−β −

θεeqp
αφ

⎞
⎠

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
µ(p, T) thermal regime

2τsµ(p, T) shock regime
(5.103)

with

α ∶=
s0 − τy
d

; β ∶=
τs − τy
α

; φ ∶= exp(β) − 1 (5.104)

where τs is a normalized work-hardening saturation stress, s0 is the value of τs at 0K, τy is a normalized
yield stress, θ is the hardening constant in the Voce hardening law, and d is a dimensionless material
parameter that modi�es the Voce hardening law. �e saturation stress and the yield stress are given by

τs = max
⎧⎪⎪⎨⎪⎪⎩
s0 − (s0 − s∞)erf

⎡⎢⎢⎢⎢⎣
κT̂ ln

⎛
⎝
γξ̇
ε̇p

⎞
⎠

⎤⎥⎥⎥⎥⎦
, s0 (

ε̇p
γξ̇

)
s1⎫⎪⎪⎬⎪⎪⎭

(5.105)

τy = max
⎧⎪⎪⎨⎪⎪⎩
y0 − (y0 − y∞)erf

⎡⎢⎢⎢⎢⎣
κT̂ ln

⎛
⎝
γξ̇
ε̇p

⎞
⎠

⎤⎥⎥⎥⎥⎦
,min

⎧⎪⎪⎨⎪⎪⎩
y1 (

ε̇p
γξ̇

)
y2

, s0 (
ε̇p
γξ̇

)
s1⎫⎪⎪⎬⎪⎪⎭

⎫⎪⎪⎬⎪⎪⎭
(5.106)

where s∞ is the value of τs close to the melt temperature, (y0, y∞) are the values of τy at 0K and close
to melt, respectively, (κ, γ) are material constants, T̂ = T/Tm, (s1, y1, y2) are material parameters for the
high strain rate regime, and

ξ̇ = 1
2
(
4πρ
3M

)
1/3

(
µ(p, T)

ρ
)
1/2

(5.107)

where ρ is the density, andM is the atomic mass.

�e inputs for this model are of the form
<flow_model type="preston_tonks_wallace">

<theta> 0.025 </theta>

<p> 2.0 </p>

<s0> 0.0085 </s0>

<sinf> 0.00055 </sinf>

<kappa> 0.11 </kappa>

<gamma> 0.00001 </gamma >

<y0> 0.0001 </y0>
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<yinf> 0.0001 </yinf>

<y1> 0.094 </y1>

<y2> 0.575 </y2>

<beta> 0.25 </beta>

<M> 63.54 </M>

<G0> 518e8 </G0>

<alpha> 0.20 </alpha>

<alphap > 0.20 </alphap >

</flow_model >
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5.4.10 DamageModels and Failure

Only the Johnson-Cook damage evolution rule has been added to the DamageModelFactory so far. �e
damage model framework is designed to be similar to the plasticity model framework. New models can
be added using the approach described later in this section.

A particle is tagged as “failed” when its temperature is greater than themelting point of the material at the
applied pressure. An additional condition for failure is when the porosity of a particle increases beyond
a critical limit and the strain exceeds the fracture strain of the material. Another condition for failure is
when a material bifurcation condition such as the Drucker stability postulate is satis�ed. Upon failure, a
particle is either removed from the computation by setting the stress to zero or is converted into amaterial
with a di�erent velocity �eld which interacts with the remaining particles via contact. Either approach
leads to the simulation of a newly created surface. More details of the approach can be found in [41–43].

Damagemodel

A�er the stress state has been determined on the basis of the yield condition and the associated ow rule,
a scalar damage state in each material point can be calculated using the Johnson-Cook model [44]. �e
Johnson-Cook model has an explicit dependence on temperature, plastic strain, ans strain rate.

�e damage evolution rule for the Johnson-Cook damage model can be written as

Ḋ =
є̇p
є fp
; є fp = [D1 + D2 exp(

D3

3
σ∗)] [1 + D4 ln(є̇p∗)] [1 + D5T∗] ; σ∗ =

Tr(σ)
σeq

; (5.108)

where D is the damage variable which has a value of 0 for virgin material and a value of 1 at fracture,
є fp is the fracture strain, D1,D2,D3,D4,D5 are constants, σ is the Cauchy stress, and T∗ is the scaled
temperature as in the Johnson-Cook plasticity model.

�e input tags for the damage model are :
<damage_model type="johnson_cook">

<D1>0.05</D1>

<D2>3.44</D2>

<D3> -2.12</D3>

<D4>0.002</D4>

<D5>0.61</D5>

</damage_model >

An initial damage distribution can be created using the following tags
<evolve_damage > true </evolve_damage >

<initial_mean_scalar_damage > 0.005 </initial_mean_scalar_damage >

<initial_std_scalar_damage > 0.001 </initial_std_scalar_damage >

<critical_scalar_damage > 1.0 </critical_scalar_damage >

<initial_scalar_damage_distrib > gauss </initial_scalar_damage_distrib >

Erosion algorithm

Under normal conditions, the heat generated at a material point is conducted away at the end of a time
step using the heat equation. If special adiabatic conditions apply (such as in impact problems), the heat is
accumulated at a material point and is not conducted to the surrounding particles. �is localized heating
can be used to determine whether a material point has melted.

�e determination of whether a particle has failed can bemade on the basis of either or all of the following
conditions:

• �e particle temperature exceeds the melting temperature.
• �e TEPLA-F fracture condition [45] is satis�ed. �is condition can be written as

( f / fc)2 + (єp/є fp)2 = 1 (5.109)



108 MPMConstitutive Models

where f is the current porosity, fc is the maximum allowable porosity, єp is the current plastic
strain, and є fp is the plastic strain at fracture.

• An alternative to ad-hoc damage criteria is to use the concept of bifurcation to determine whether
a particle has failed or not. Two stability criteria have been explored in this paper - the Drucker
stability postulate [46] and the loss of hyperbolicity criterion (using the determinant of the acoustic
tensor) [47, 48].

�e simplest criterion that can be used is the Drucker stability postulate [46] which states that time rate
of change of the rate of work done by a material cannot be negative. �erefore, the material is assumed
to become unstable (and a particle fails) when

σ̇ ∶ Dp ≤ 0 (5.110)

Another stability criterion that is less restrictive is the acoustic tensor criterion which states that the ma-
terial loses stability if the determinant of the acoustic tensor changes sign [47, 48]. Determination of the
acoustic tensor requires a search for a normal vector around the material point and is therefore com-
putationally expensive. A simpli�cation of this criterion is a check which assumes that the direction of
instability lies in the plane of the maximum and minimum principal stress [49]. In this approach, we
assume that the strain is localized in a band with normal n, and the magnitude of the velocity di�erence
across the band is g. �en the bifurcation condition leads to the relation

Ri jg j = 0 ; Ri j = Mik jlnknl +Mi l k jnknl − σikn jnk (5.111)

whereMi jkl are the components of the co-rotational tangent modulus tensor and σi j are the components
of the co-rotational stress tensor. If det(Ri j) ≤ 0, then g j can be arbitrary and there is a possibility of
strain localization. If this condition for loss of hyperbolicity is met, then a particle deforms in an unstable
manner and failure can be assumed to have occurred at that particle. We use a combination of these
criteria to simulate failure.

Since the material in the container may unload locally a�er fracture, the hypoelastic-plastic stress update
may not work accurately under certain circumstances. An improvement would be to use a hyperelastic-
plastic stress update algorithm. Also, the plasticity models are temperature dependent. Hence there is
the issue of severe mesh dependence due to change of the governing equations from hyperbolic to el-
liptic in the so�ening regime [50–52]. Viscoplastic stress update models or nonlocal/gradient plasticity
models [53, 54] can be used to eliminate some of these e�ects and are currently under investigation.

�e tags used to control the erosion algorithm are in two places. In the < MPM >< /MPM > section the
following ags can be set

<erosion algorithm = "ZeroStress"/>

<create_new_particles > false </create_new_particles >

<manual_new_material > false </manual_new_material >

If the erosion algorithm is "none" then no particle failure is done.

In the < constitutivemodeltype = "elasticplastic" > section, the following ags can be set
<evolve_porosity > true </evolve_porosity >

<evolve_damage > true </evolve_damage >

<do_melting > true </do_melting >

<useModifiedEOS > true </useModifiedEOS >

<check_TEPLA_failure_criterion > true </check_TEPLA_failure_criterion >

<check_max_stress_failure > false </check_max_stress_failure >

<critical_stress > 12.0e9 </critical_stress >
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5.5 Kayenta

�is is the model formerly known as the Sandia Geomodel. Use is limited to licensees, see Rebecca Bran-
non for details. It also requires an obscene number of input parameters which are best covered in the
users guide for this model. For a simple list, see the source code in Kayenta.cc.
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5.6 Arenisca

�is is a simpli�ed model which has the basic features needed for geomaterials. �e yield function of
this model is a two-surface plasticity model which includes a linear Drucker-Prager part and a cap yield
function. �e �cap� part reects the fact that plastic deformations can occur even under purely hydro-
static compression as a consequence of void collapse. It means that the simpli�ed geomodel considers
the presence of both microscale aws such as porosity and networks of microcracks. �is mdel uses a
multi-stage return algorithm proposed in [55]. Usage is as follows:

<constitutive_model type="Arenisca">

<B0>10000</B0>

<G0>3750</G0>

<hardening_modulus >0.0</hardening_modulus >

<FSLOPE > 0.057735026919 </FSLOPE >

<FSLOPE_p > 0.057735026919 </FSLOPE_p >

<PEAKI1 > 612.3724356953976 </PEAKI1 >

<CR> 6.0 </CR>

<p0_crush_curve > -1837.0724 </p0_crush_curve >

<p1_crush_curve > 6.666666666666666e-4 </p1_crush_curve >

<p3_crush_curve > 0.5 </p3_crush_curve >

<p4_fluid_effect > 0.2 </p4_fluid_effect >

<fluid_B0 > 0.0 </fluid_B0 >

<fluid_pressur_initial > 0.0 </fluid_pressur_initial >

<kinematic_hardening_constant > 0.0 </kinematic_hardening_constant >

</constitutive_model >

where <B0> and <G0> are the bulk and shear moduli of the material, <FSLOPE> is the tangent of the
friction angle of theDrucker-Prager part, <FSLOPE p> is the tangent of the dilation angle of theDrucker-
Prager part, <hardening modulus> is the ensemble hardening modulus, and <PEAKI1> is the initial
tensile limit of the �rst stress invariant, I1. �e Drucker-Prager yield criterion is given as

√
J2 + FSLOPE × (I1 − PEAKI1) = 0, (5.112)

<CR> is a shape parameter that allows porosity to a�ect shear strength which equals the eccentricity
(width divided by height) of the elliptical cap function, <p0 crush curve> , <p1 crush curve> , and
<p3 crush curve> are the constants in the �tted post yielding part of the crush curve

p3 − єpv = p3 exp−3p1(p − p0) (5.113)

in which p is the pressure.

In pure kinematic hardening the center of the yield surface changes with its size and shape remaining un-
changed. Generally, kinematic hardening is modeled by introducing the back stress tensor, and de�ning
an appropriate evolution rule for it. In the Arenisca model, linear Ziegler�s rule is used:

α̇i j = µ̇(σ i j − αi j) (5.114)

in which αi j is the back stress tensor, α̇i j is time derivative of the back stress tensor, and

µ̇ = c ξ̇p (5.115)

where ξ̇p is the deviatoric invariant of the rate of plastic strain and c is a constant de�ned yb the user as
<kinematic hardening constant> .

Based on the research work done byM. Homel at the University of Utah, the following equations are used
in the Arenisca model to consider the uid-�lled porous e�ects:

∂X
∂εpv

= 1
p1p3

exp (−p1X − p0) −
3K f (exp(p3 + p4) − 1) exp(p3 + p4 + ε

p
v )

(exp(p3 + p4 + εpv ) − 1)
2

+
3K f (exp(p3 + p4) − 1) exp(p3 + ε

p
v )

(exp(p3 + εpv ) − 1)
2 (5.116)
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in which X is the value of the �rst stress invariant at the intersection of the cap yield surface and the
mean pressure axis, K f is the uid bulk modulus, which is de�ned by the user as <fluid B0>, εpv is the
volumetric part of the plastic strain, and p4 is a constant de�ned by the user as <p4 fluid effect>. �e
isotropic part of the back stress tensor is updated using the following equation

αison+1 = αison +
3K f exp(p3) (exp(p4) − exp(ε

p
v ))

(exp(p3 + εpv ) − 1)
ε̇pv∆t 1 (5.117)

in which 1 is the second-order identity tensor. Also, the e�ective bulk modulus is calculated as

Ke = B0 +
K f (exp(p3 + p4) − 1) exp(p3 + p4 + εev + ε

p
v )

(exp(p3 + p4 + εev + ε
p
v ) − 1)

2 (5.118)

in which εev is the volumetric part of the elastic strain.
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5.7 Arena: Partially Saturated Soils

�e Arena soil model is designed to be used to simulate high strain-rate compression and shear of par-
tially saturated soils. For a detailed description, please see the manual in the TheoryManual/ArenaSoil
directory.

5.7.1 A typical input �le

�e inputs for the Arena soil model are typically speci�ed as follows.
<?xml version =’1.0’ encoding=’ISO -8859-1’ ?>

<Uintah_specification >

<Meta>

<title>Uniaxial_Strain_Compression fully saturated </title >

</Meta>

<SimulationComponent type="mpm" />

<Time>

<maxTime > 1.0 </maxTime >

<initTime > 0.0 </initTime >

<delt_min > 1.0e-6 </delt_min >

<delt_max > 0.01 </delt_max >

<timestep_multiplier > 0.3 </timestep_multiplier >

</Time>

<DataArchiver >

<filebase >UniaxialStrainSaturated.uda</filebase >

<outputInterval >0.04</outputInterval >

<save label = "p.x"/>

<save label = "p.color"/>

<save label = "p.temperature"/>

<save label = "p.velocity"/>

<save label = "p.particleID"/>

<save label = "p.stress"/>

<save label = "g.mass"/>

<save label = "p.deformationMeasure"/>

<save label = "g.acceleration"/>

<save label = "p.capX"/>

<save label = "p.plasticStrain"/>

<save label = "p.plasticCumEqStrain"/>

<save label = "p.plasticVolStrain"/>

<save label = "p.p3"/>

<save label = "p.porePressure"/>

<save label = "p.ArenaPEAKI1"/>

<save label = "p.ArenaFSLOPE"/>

<save label = "p.ArenaSTREN"/>

<save label = "p.ArenaYSLOPE"/>

<save label = "p.ArenaBETA"/>

<save label = "p.ArenaCR"/>

<save label = "p.ArenaT1"/>

<save label = "p.ArenaT2"/>

<save label = "p.porosity"/>

<save label = "p.saturation"/>

<save label = "p.elasticVolStrain"/>

<save label = "p.stressQS"/>

<save label = "p.COHER"/>

<save label = "p.TGROW"/>

<checkpoint cycle = "2" timestepInterval = "4000"/>

</DataArchiver >

<MPM>

<time_integrator > explicit </time_integrator >

<interpolator > linear </interpolator >

<use_load_curves > false </use_load_curves >

<minimum_particle_mass > 1.0e-15 </minimum_particle_mass >

<minimum_mass_for_acc > 1.0e-15 </minimum_mass_for_acc >

<maximum_particle_velocity > 1.0e5 </maximum_particle_velocity >

<artificial_damping_coeff > 0.0 </artificial_damping_coeff >
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<artificial_viscosity > true </artificial_viscosity >

<artificial_viscosity_heating > false </artificial_viscosity_heating >

<do_contact_friction_heating > false </do_contact_friction_heating >

<create_new_particles > false </create_new_particles >

<UseMomentumForm > false </UseMomentumForm >

<withColor > true </withColor >

<UsePrescribedDeformation > true </UsePrescribedDeformation >

<PrescribedDeformationFile > UniaxialStrain_PrescribedDeformation.inp </

PrescribedDeformationFile >

<minimum_subcycles_for_F > -2 </minimum_subcycles_for_F >

<erosion algorithm = "none"/>

</MPM>

<PhysicalConstants >

<gravity >[0,0,0]</gravity >

</PhysicalConstants >

<MaterialProperties >

<MPM>

<material name="MasonSand">

<density >1800</density >

<melt_temp >3695.0 </melt_temp >

<room_temp >294.0</room_temp >

<thermal_conductivity >174.0e-7</thermal_conductivity >

<specific_heat >134.0e-8</specific_heat >

<constitutive_model type="arena">

<reference_porosity > 0.42 </reference_porosity >

<initial_porosity > 0.40 </initial_porosity >

<initial_saturation > 0.5 </initial_saturation >

<initial_fluid_pressure > 0.0 </initial_fluid_pressure >

<p0> 0.1e4 </p0>

<p1> 482.68 e6 </p1>

<p1_sat > 1.0 </p1_sat >

<p1_density_scale_fac > 5.0 </p1_density_scale_fac >

<p2> 0.719 </p2>

<p3> 0.448 </p3>

<elastic_moduli_model type="arena">

<b0> 0.0029 </b0>

<b1> 0.4731 </b1>

<b2> 1.5057 </b2>

<b3> 2.5728 </b3>

<b4> 2.0799 </b4>

<G0> 7.0e8 </G0>

<nu1> 0.35 </nu1>

<nu2> -0.05 </nu2>

</elastic_moduli_model >

<plastic_yield_condition type="arena">

<PEAKI1 > 1.0e3 </PEAKI1 >

<weibullDist_PEAKI1 > weibull , 1.0e3, 4, 0.001 , 1 </weibullDist_PEAKI1 >

<FSLOPE > 0.453 </FSLOPE >

<weibullDist_FSLOPE > weibull , 0.453, 4, 0.001 , 1 </weibullDist_FSLOPE >

<STREN> 1.0e7 </STREN >

<weibullDist_STREN > weibull , 1.0e7, 4, 0.001, 1 </weibullDist_STREN >

<YSLOPE > 0.31 </YSLOPE >

<weibullDist_YSLOPE > weibull , 0.31, 4, 0.001, 1 </weibullDist_YSLOPE >

<BETA> 1.0 </BETA>

<CR> 0.5 </CR>

<T1> 5.0e-5 </T1>

<T2> 0.5 </T2>

</plastic_yield_condition >

<use_disaggregation_algorithm > false </use_disaggregation_algorithm >

<subcycling_characteristic_number >256</subcycling_characteristic_number >

<consistency_bisection_tolerance >0.0001 </consistency_bisection_tolerance >

<yield_surface_radius_scaling_factor > 1000.0 </

yield_surface_radius_scaling_factor >

<do_damage > true </do_damage >
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<fspeed > 7 </fspeed >

<time_at_failure > 800.0e-6 </time_at_failure >

</constitutive_model >

<geom_object >

<box label = "Plate1">

<min>[0.0 ,0.0 ,0.0]</min>

<max>[1.0 ,1.0 ,1.0]</max>

</box>

<res>[1,1,1]</res>

<velocity >[0.0 ,0.0 ,0.0]</velocity >

<temperature >294</temperature >

<color>0</color>

</geom_object >

</material >

<contact >

<type>null</type>

<materials >[0]</materials >

<mu>0.1</mu>

</contact >

</MPM>

</MaterialProperties >

<Grid>

<BoundaryConditions >

......

</BoundaryConditions >

<Level>

<Box label = "Domain">

<lower>[-2.0, -2.0, -2.0]</lower>

<upper>[3.0, 3.0, 3.0]</upper>

<resolution >[5,5,5]</resolution >

<extraCells >[0,0,0]</extraCells >

<patches >[1,1,1]</patches >

</Box>

</Level>

</Grid>

</Uintah_specification >

5.7.2 Model components

�e convention used in Vaango is that tension is positive and compression is negative. To keep the nota-
tion simple we de�ne, for any x,

x ∶= −x , ẋ ∶= ∂x
∂t

. (5.119)
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Summary 5.7.1 Bulkmodulusmodel

Drained soil:
�e equation of state of the drained soil is

Kd =
[Ks]2

[Ks − nspe�]

⎡⎢⎢⎢⎢⎣
b0 +

b1b3b4(εev)b4−1

[b2(εev)b4 + b3]
2

⎤⎥⎥⎥⎥⎦
, εev ≈ [ b3pe�

b1Ks − b2pe�
]
1/b4

.

Partially saturated soil:
�e bulk modulus model is

K = Kd +
(1 −

Kd
Ks

)
2

1
Ks

(1 −
Kd
Ks

) + ϕ (
Sw
Kw

+
1 − Sw
Ka

−
1
Ks

)

where

Ks(p) = Ks0 + ns (p − ps0) , Kw(p) = Kw0 + nw (p − pw0) , Ka(p) = γ (p + pr)

Summary 5.7.2 Shearmodulusmodel

�e shear modulus is either a constant (G0) or determined using a variable Poisson’s ratio (ν)

ν = ν1 + ν2 exp
⎡⎢⎢⎢⎢⎣
−Kd(p

e�, εpv , ϕ, Sw)
Ks(pe�)

⎤⎥⎥⎥⎥⎦

G(pe�, εpv , ϕ, Sw) =
3Kd(pe�, ε

p
v , ϕ, Sw)(1 − 2ν)
2(1 + ν)

.

Summary 5.7.3 Yield function

�e Arena yield function is

f =
√
J2 − F f (I1, ζ) Fc(I1, ζ , X , κ) =

√
J2 − F f (pe�) Fc(pe�, X , κ) (5.120)

where

F f (pe�) = a1 − a3 exp[−3a2pe�)] + 3a4pe� (5.121)

and

Fc(pe�, X , κ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 for 3pe� ≤ κ¿
ÁÁÁÀ1 −

⎛
⎝
3pe� − κ
X − κ

⎞
⎠

2

for 3pe� > κ .
(5.122)

Non-associativity is modeled using a parameter β that modi�es
√
J2.
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Summary 5.7.4 Hydrostatic strengthmodel

Drained soil:

Xd(ε
p
v ) − p0 = p1

⎡⎢⎢⎢⎢⎣

1 − exp(−p3)

1 − exp(−p3 + εpv )
− 1

⎤⎥⎥⎥⎥⎦

1/p2

, p3 = − ln(1 − ϕ0) .

Partially saturated soil:

X(εpv ) = 3K(I1, εpv , ϕ, Sw) ε
e ,yield
v (εpv )

where

εe ,yieldv (εpv ) =
Xd(ε

p
v )

3Kd
⎛
⎜
⎝

Xd(ε
p
v )

6
, εpv

⎞
⎟
⎠

Summary 5.7.5 Pore pressuremodel

Solve g(ζ , εpv ) = 0 for ζ.

g(ζ , εpv ) = − exp(−ε
p
v )+ϕ0 (1−S0) exp [−

1
γ
ln( ζ

pr
+ 1)]+ϕ0 S0 exp(−

ζ − p0
Kw

)+(1−ϕ0) exp(−
ζ
Ks

) .

Alternatively, integrate

ζ = ∫
dζ

dεpv
dεpv .

where

dζ

dεpv
= exp(−εpv )

B
,

and

B ∶= [ϕ0 (1 − S0)
γ(pr + ζ)

] exp [− 1
γ
ln( ζ

pr
+ 1)] + ϕ0 S0

Kw
exp( p0 − ζ

Kw
) + 1 − ϕ0

Ks
exp(− ζ

Ks
) .
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Summary 5.7.6 Saturation and porosity evolution

Saturation:

Sw(εv) =
C(εv)

1 + C(εv)
, C(εv) ∶= ( S0

1 − S0
) exp(εwv ) exp(−εav) .

where ϕ0, S0 are the initial porosity and saturation, and

εwv (εv) = −
p(εv) − p0

Kw
, εav(εv) = −

1
γ
ln [1 + p(εv)

pr
] , εsv(εv) = −

p(εv)
Ks

.

Porosity:

ϕ(εv) = ϕ0 (
1 − S0

1 − Sw(εv)
) [exp(ε

a
v)

exp(εv)
] . (5.123)

Note that

exp(εv) = (1 − S0)ϕ0 exp(εav) + S0ϕ0 exp(εwv ) + (1 − ϕ0) exp(εsv)
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5.8 Tabular plasticity

�e tabular plasticity model is designed to simulate hypoelastic-plasticity using tabulated data for elastic
moduli and the yield function for J2 and J2 − I1 models of perfect plasticity.
�e model has been designed with the high-rate deformation of soils in mind but can also be used for
non-hardeningmetals. Sample input �les for linear elasticmaterials and vonMises plasticity can be found
in src/StandAlone/inputs/MPM/TabularModels/TabularPlasticity.

5.8.1 An input �le

�e inputs for the tabular plasticity model are typically speci�ed as follows.

<?xml version =’1.0’ encoding=’ISO -8859-1’ ?>

<Uintah_specification >

<Meta>

<title>Tabular_Verification_Test_05_Uniaxial_Strain_Compression_DP_with_LoadUnload

</title >

</Meta>

<SimulationComponent type="mpm" />

<Time>

<maxTime > 8.0 </maxTime >

<initTime > 0.0 </initTime >

<delt_min > 1.0e-8 </delt_min >

<delt_max > 0.01 </delt_max >

<timestep_multiplier > 0.3 </timestep_multiplier >

</Time>

<DataArchiver >

<filebase >TabularTest_05_UniaxialStrainLoadUnloadNonLinDPNonLin.uda</filebase >

<outputInterval >1.0e-3</outputInterval >

<outputInitTimestep/>

<save label = "p.x"/>

<save label = "p.color"/>

<save label = "p.temperature"/>

<save label = "p.velocity"/>

<save label = "p.particleID"/>

<save label = "p.stress"/>

<save label = "g.mass"/>

<save label = "p.deformationGradient"/>

<save label = "g.acceleration"/>

<save label = "p.plasticVolStrain"/>

<save label = "p.elasticVolStrain"/>

<checkpoint cycle = "2" timestepInterval = "2000"/>

</DataArchiver >

<MPM>

<time_integrator > explicit </time_integrator >

<interpolator > linear </interpolator >

<use_load_curves > false </use_load_curves >

<minimum_particle_mass > 1.0e-15 </minimum_particle_mass >

<minimum_mass_for_acc > 1.0e-15 </minimum_mass_for_acc >

<maximum_particle_velocity > 1.0e5 </maximum_particle_velocity >

<artificial_damping_coeff > 0.0 </artificial_damping_coeff >

<artificial_viscosity > true </artificial_viscosity >

<artificial_viscosity_heating > false </artificial_viscosity_heating >

<do_contact_friction_heating > false </do_contact_friction_heating >

<create_new_particles > false </create_new_particles >

<use_momentum_form > false </use_momentum_form >

<with_color > true </with_color >

<use_prescribed_deformation > true </use_prescribed_deformation >

<prescribed_deformation_file > TabularTest_05_PrescribedDeformation.inp </

prescribed_deformation_file >

<erosion algorithm = "none"/>

</MPM>
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<PhysicalConstants >

<gravity >[0,0,0]</gravity >

</PhysicalConstants >

<MaterialProperties >

<MPM>

<material name="TabularPlastic">

<density >1050</density >

<melt_temp >3695.0 </melt_temp >

<room_temp >294.0</room_temp >

<thermal_conductivity >174.0e-7</thermal_conductivity >

<specific_heat >134.0e-8</specific_heat >

<constitutive_model type="tabular_plasticity">

<elastic_moduli_model type="tabular">

<filename >TabularTest_05_Elastic.json</filename >

<independent_variables >PlasticStrainVol , TotalStrainVol </

independent_variables >

<dependent_variables >Pressure </dependent_variables >

<interpolation type="linear"/>

<G0>3500</G0>

<nu>0.35</nu>

</elastic_moduli_model >

<plastic_yield_condition type="tabular">

<filename >TabularTest_05_Yield.json</filename >

<independent_variables >Pressure </independent_variables >

<dependent_variables >SqrtJ2 </dependent_variables >

<interpolation type="linear"/>

</plastic_yield_condition >

</constitutive_model >

<geom_object >

<box label = "Plate1">

<min>[0.0 ,0.0 ,0.0]</min>

<max>[1.0 ,1.0 ,1.0]</max>

</box>

<res>[1,1,1]</res>

<velocity >[0.0 ,0.0 ,0.0]</velocity >

<temperature >294</temperature >

<color>0</color>

</geom_object >

</material >

<contact >

<type>null</type>

<materials >[0]</materials >

<mu>0.1</mu>

</contact >

</MPM>

</MaterialProperties >

<Grid>

<BoundaryConditions >

</BoundaryConditions >

<Level>

<Box label = "1">

<lower>[-2.0, -2.0, -2.0]</lower >

<upper>[3.0, 3.0, 3.0]</upper>

<resolution >[5,5,5]</resolution >

<extraCells >[0,0,0]</extraCells >

<patches >[1,1,1]</patches >

</Box>

</Level>

</Grid>

</Uintah_specification >

The prescribed deformation �le

�e input �le listed above is for a single particle driven by a prescribed deformation gradient. �e defor-
mation �le is TabularTest 05 PrescribedDeformation.inp which contains the following:
0 1.0 0 0 0 1 0 0 0 1 0 0 0 0

1 3.0 0 0 0 1 0 0 0 1 0 0 0 0

3 1.0 0 0 0 1 0 0 0 1 0 0 0 0
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5 0.5 0 0 0 1 0 0 0 1 0 0 0 0

7 1.0 0 0 0 1 0 0 0 1 0 0 0 0

8 1.02 0 0 0 1 0 0 0 1 0 0 0 0

�e �rst column is the time (seconds), the second column is deformation gradient Fxx . �is deformation
represents uniaxial strain in the x-direction.

The bulk-modulus model

�e bulk modulus model is non-linear (tanh) and in input as JSON �le containing data that covers the
range expected during a simulation. A sample �le (TabularTest 05 Elastic.json) is shown below:

1 {"Vaango_tabular_data": {
2 "Meta" : {
3 "title" : "Nonlinear elastic data"

4 },
5 "Data" : {
6 "PlasticStrainVol" : [-2.5, 2.5],

7 "Data" : [{
8 "TotalStrainVol" : [-15.000000, -14.310345, -13.620690, -12.931034, -12.241379, -1

1.551724, -10.862069, -10.172414, -9.482759, -8.793103, -8.103448, -7.413793,

-6.724138, -6.034483, -5.344828, -4.655172, -3.965517, -3.275862, -2.586207, -

1.896552, -1.206897, -0.517241, 0.172414, 0.862069, 1.551724, 2.241379, 2.9310

34, 3.620690, 4.310345, 5.000000],

9 "Pressure" : [-2959.842894, -2943.464146, -2920.494168, -2888.366995, -2843.600634

, -2781.548344, -2696.156593, -2579.811517, -2423.426002, -2217.004505, -1950.

975669, -1618.496214, -1218.556435, -759.014896, -257.981931, 257.981931, 759.

014896, 1218.556435, 1618.496214, 1950.975669, 2217.004505, 2423.426002, 2579.

811517, 2696.156593, 2781.548344, 2843.600634, 2888.366995, 2920.494168, 2943.

464146, 2959.842894]

10 }, {
11 "TotalStrainVol" : [-5.000000, -4.310345, -3.620690, -2.931034, -2.241379, -1.5517

24, -0.862069, -0.172414, 0.517241, 1.206897, 1.896552, 2.586207, 3.275862, 3.

965517, 4.655172, 5.344828, 6.034483, 6.724138, 7.413793, 8.103448, 8.793103,

9.482759, 10.172414, 10.862069, 11.551724, 12.241379, 12.931034, 13.620690, 14

.310345, 15.000000],

12 "Pressure" : [-2959.842894, -2943.464146, -2920.494168, -2888.366995, -2843.600634

, -2781.548344, -2696.156593, -2579.811517, -2423.426002, -2217.004505, -1950.

975669, -1618.496214, -1218.556435, -759.014896, -257.981931, 257.981931, 759.

014896, 1218.556435, 1618.496214, 1950.975669, 2217.004505, 2423.426002, 2579.

811517, 2696.156593, 2781.548344, 2843.600634, 2888.366995, 2920.494168, 2943.

464146, 2959.842894]

13 }]
14 }
15 }}

The yield function

�eyield function in this example is a nonlinearDrucker-Pragermodel. �e input �le (TabularTest 05 Yield.json)
is shown below:

1 {"Vaango_tabular_data": {
2 "Meta" : {
3 "title" : "Quadratic Drucker -Prager yield data"

4 },
5 "Data" : {
6 "Pressure" : [-333.333333, -298.850575, -264.367816, -229.885057, -195.402299, -160.

919540, -126.436782, -91.954023, -57.471264, -22.988506, 11.494253, 45.977011, 8

0.459770, 114.942529, 149.425287, 183.908046, 218.390805, 252.873563, 287.356322

, 321.839080, 356.321839, 390.804598, 425.287356, 459.770115, 494.252874, 528.73

5632, 563.218391, 597.701149, 632.183908, 666.666667],

7 "SqrtJ2" : [0.000000, 45.485883, 64.326752, 78.783860, 90.971765, 101.709526, 111.

417203, 120.344334, 128.653504, 136.457648, 143.838990, 150.859606, 157.567719,

164.001682, 170.192589, 176.166066,181.943530, 187.543098, 192.980256, 198.26836

6, 203.419051, 208.442500, 213.347701, 218.142630, 222.834406, 227.429413, 231.9

33403, 236.351579, 240.688667, 244.948974]

8 }
9 }}
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5.8.2 Model components

Since the tabular plasticity model was designed for materials that have almost no tensile strength, the
inputs are expected in the compression positive convention. Note that the general convention used in
the Vaango code is that tension is positive and compression is negative. Conversions are done internally
in the code to make sure that signs are consistent.

Summary 5.8.1 Shearmodulusmodel

�e shear modulus is either a constant (G0) or determined using a Poisson’s ratio (ν) from the
tabular bulk modulus, K(p), using a linear elastic model:

G = 3K(1 − 2ν)
2(1 + ν)

(5.124)

�is relation is activated if ν ∈ [−1.0, 0.5), otherwise the constant shear modulus is used.

Summary 5.8.2 Bulkmodulusmodel

�e bulk modulus is determined from a table of unloading curves. Each unloading curve is asso-
ciated with a Hencky plastic volumetric strain (εpv ). �ese strains are associated in the JSON �le
with the key PlasticStrainVol and added as the �rst independent variable in the Vaango ups input
�le.
For each plastic strain value, the JSON �le has to contain an associated data set of TotalStrainVol
(the total Hencky volumetric strain, εv) and the Pressure (the mean stress, p).
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Summary 5.8.3 Yield function

�e tabular yield condition is

f =
√
J2 − g(p) = 0 (5.125)

�e function g(p) is provided in tabular form. Only one such function is allowed. �e indepen-
dent variable in the associated JSON �le will have the name Pressurewhile the dependent variable
will have the name SqrtJ2.

5.8.3 Examples

Several examples of input �les for exercising various features of the TabularPlasticity model can be found
in the directory StandAlone/inputs/MPM/TabularModels/TabularPlasticity .

vonMises plasticity with linear elasticity compression with rotation

�e input �le is TabularTest 01 UniaxialStrainRotateJ2Lin.ups . For this problem, g(p) = σy and K ,G
are constant. �e input JSON �le for the bulk modulus model is

1 {"Vaango_tabular_data": {
2 "Meta" : {
3 "title" : "Test linear elastic data"

4 },
5 "Data" : {
6 "PlasticStrainVol" : [-10.0, 10.0],

7 "Data" : [{
8 "TotalStrainVol" : [-20.0, 20.0],

9 "Pressure" : [-1.0e5, 1.0e5]

10 }, {
11 "TotalStrainVol" : [-20.0, 20.0],

12 "Pressure" : [-1.0e5, 1.0e5]

13 }]
14 }
15 }}

and that for the yield function is
1 {"Vaango_tabular_data": {
2 "Meta" : {
3 "title" : "Test von Mises yield data"

4 },
5 "Data" : {
6 "Pressure" : [-0.1e10, 0.1e10],

7 "SqrtJ2" : [ 1.0e3, 1.0e3]
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8 }
9 }}

We drive the simulation using uniaxial strain with rotation using the prescribed deformation �le
1 0.0 1.000 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0 0 0 1

2 1.0 0.900 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 360 0 0 1

A�er running the simulation, we get the response shown in Figure 5.2.
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Figure 5.2: Stress evolution for J2 plasticity with linear elasticity under uniaxial strain compression with
rotation.
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vonMises plasticity with linear elasticity loading-unloading

If we change the prescribed deformation to loading-unloading, using the input deformation
1 0 1.0 0 0 0 1 0 0 0 1 0 0 0 0

2 1 1.15 0 0 0 1 0 0 0 1 0 0 0 0

3 3 1.0 0 0 0 1 0 0 0 1 0 0 0 0

4 5 0.85 0 0 0 1 0 0 0 1 0 0 0 0

5 7 1.0 0 0 0 1 0 0 0 1 0 0 0 0

6 8 1.02 0 0 0 1 0 0 0 1 0 0 0 0

we get the response shown in Figure 5.3
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Figure 5.3: Stress evolution for J2 plasticity with linear elasticity under uniaxial strain loading and un-
loading.
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vonMises plasticity with nonlinear elasticity loading-unloading

If we replace the linear elastic model with a nonlinear one:
1 {"Vaango_tabular_data": {
2 "Meta" : {
3 "title" : "Test nonlinear elastic data"

4 },
5 "Data" : {
6 "PlasticStrainVol" : [-0.02, 0.02],

7 "Data" : [{
8 "TotalStrainVol" : [-0.295000, -0.276034, -0.257069, -0.238103, -0.219138, -0.2001

72, -0.181207, -0.162241, -0.143276, -0.124310, -0.105345, -0.086379, -0.06741

4, -0.048448, -0.029483, -0.010517, 0.008448,0.027414, 0.046379, 0.065345, 0.0

84310, 0.103276, 0.122241, 0.141207, 0.160172, 0.179138, 0.198103, 0.217069, 0

.236034, 0.255000],

9 "Pressure" : [-3000.000000, -2982.413871, -2929.861667, -2842.959514, -2722.726259

, -2570.571529, -2388.279197, -2177.986476, -1942.158854, -1683.561196, -1405.

225322, -1110.414466, -802.585016, -485.345990, -162.416726, 162.416726, 485.3

45990, 802.585016, 1110.414466, 1405.225322, 1683.561196, 1942.158854, 2177.98

6476, 2388.279197, 2570.571529, 2722.726259, 2842.959514, 2929.861667, 2982.41

3871, 3000.000000]

10 }, {
11 "TotalStrainVol" : [-0.255000, -0.236034, -0.217069, -0.198103, -0.179138, -0.1601

72, -0.141207, -0.122241, -0.103276, -0.084310, -0.065345, -0.046379, -0.02741

4, -0.008448, 0.010517, 0.029483, 0.048448, 0.067414, 0.086379, 0.105345, 0.12

4310, 0.143276, 0.162241, 0.181207, 0.200172, 0.219138, 0.238103, 0.257069, 0.

276034, 0.295000],

12 "Pressure" : [-3000.000000, -2982.413871, -2929.861667, -2842.959514, -2722.726259

, -2570.571529, -2388.279197, -2177.986476, -1942.158854, -1683.561196, -1405.

225322, -1110.414466, -802.585016, -485.345990, -162.416726, 162.416726, 485.3

45990, 802.585016, 1110.414466, 1405.225322, 1683.561196, 1942.158854, 2177.98

6476, 2388.279197, 2570.571529, 2722.726259, 2842.959514, 2929.861667, 2982.41

3871, 3000.000000]

13 }]
14 }
15 }}

we get the response shown in Figure 5.4
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Figure 5.4: Stress evolution for J2 plasticity with nonlinear elasticity under uniaxial strain loading and
unloading.
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Linear Drucker-Prager plasticity with nonlinear elasticity loading-unloading

If we change the yield function to a linear Drucker-Prager type model:
1 {"Vaango_tabular_data": {
2 "Meta" : {
3 "title" : "Test linear Drucker -Prager yield data"

4 },
5 "Data" : {
6 "Pressure" : [-0.1e3, 0.1e10],

7 "SqrtJ2" : [ 0, 3.0e8]

8 }
9 }}

and use the nonlinear elastic model:
1 {"Vaango_tabular_data": {
2 "Meta" : {
3 "title" : "Test nonlinear elastic data"

4 },
5 "Data" : {
6 "PlasticStrainVol" : [-2.5, 2.5],

7 "Data" : [{
8 "TotalStrainVol" : [-15.000000, -14.310345, -13.620690, -12.931034, -12.241379, -1

1.551724, -10.862069, -10.172414, -9.482759, -8.793103, -8.103448, -7.413793,

-6.724138, -6.034483, -5.344828, -4.655172, -3.965517, -3.275862, -2.586207, -

1.896552, -1.206897, -0.517241, 0.172414, 0.862069, 1.551724, 2.241379, 2.9310

34, 3.620690, 4.310345, 5.000000],

9 "Pressure" : [-2959.842894, -2943.464146, -2920.494168, -2888.366995, -2843.600634

, -2781.548344, -2696.156593, -2579.811517, -2423.426002, -2217.004505, -1950.

975669, -1618.496214, -1218.556435, -759.014896, -257.981931, 257.981931, 759.

014896, 1218.556435, 1618.496214, 1950.975669, 2217.004505, 2423.426002, 2579.

811517, 2696.156593, 2781.548344, 2843.600634, 2888.366995, 2920.494168, 2943.

464146, 2959.842894]

10 }, {
11 "TotalStrainVol" : [-5.000000, -4.310345, -3.620690, -2.931034, -2.241379, -1.5517

24, -0.862069, -0.172414, 0.517241, 1.206897, 1.896552, 2.586207, 3.275862, 3.

965517, 4.655172, 5.344828, 6.034483, 6.724138, 7.413793, 8.103448, 8.793103,

9.482759, 10.172414, 10.862069, 11.551724, 12.241379, 12.931034, 13.620690, 14

.310345, 15.000000],

12 "Pressure" : [-2959.842894, -2943.464146, -2920.494168, -2888.366995, -2843.600634

, -2781.548344, -2696.156593, -2579.811517, -2423.426002, -2217.004505, -1950.

975669, -1618.496214, -1218.556435, -759.014896, -257.981931, 257.981931, 759.

014896, 1218.556435, 1618.496214, 1950.975669, 2217.004505, 2423.426002, 2579.

811517, 2696.156593, 2781.548344, 2843.600634, 2888.366995, 2920.494168, 2943.

464146, 2959.842894]

13 }]
14 }
15 }}

we get the response shown in Figure 5.5
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Figure 5.5: Stress evolution for Drucker-Prager plasticity with nonlinear elasticity under uniaxial strain
loading and unloading.
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Nonlinear Drucker-Prager plasticity with nonlinear elasticity loading-unloading

Finally, if we change the yield function to a nonlinear Drucker-Prager type model:

1 {"Vaango_tabular_data": {
2 "Meta" : {
3 "title" : "Test nonlinear Drucker -Prager yield data"

4 },
5 "Data" : {
6 "Pressure" : [-333.333333, -298.850575, -264.367816, -229.885057, -195.402299, -160.

919540, -126.436782, -91.954023, -57.471264, -22.988506, 11.494253, 45.977011, 8

0.459770, 114.942529, 149.425287, 183.908046, 218.390805, 252.873563, 287.356322

, 321.839080, 356.321839, 390.804598, 425.287356, 459.770115, 494.252874, 528.73

5632, 563.218391, 597.701149, 632.183908, 666.666667],

7 "SqrtJ2" : [0.000000, 45.485883, 64.326752, 78.783860, 90.971765, 101.709526, 111.

417203, 120.344334, 128.653504, 136.457648, 143.838990, 150.859606, 157.567719,

164.001682, 170.192589, 176.166066,181.943530, 187.543098, 192.980256, 198.26836

6, 203.419051, 208.442500, 213.347701, 218.142630, 222.834406, 227.429413, 231.9

33403, 236.351579, 240.688667, 244.948974]

8 }
9 }}

we get the response shown in Figure 5.6
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Figure 5.6: Stress evolution for Drucker-Prager plasticity with nonlinear elasticity under uniaxial strain
loading and unloading.

5.8.4 Python script for converting CSV to JSON

A JSON format is used for the input data in tabular models. �e python script below shows an example
that can bemodi�ed for converting data into the JSON format used byVaango . If the input data are in an
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Excel spreadsheet, they have to be saved as CSV (comma separated values) before they can be translated
into JSON.

1 # Compression is positive

2 import numpy as np

3 import pandas as pd

4 import matplotlib.pyplot as plt

5 import json

6 import PolylineIntersection as pl

7 import imp

8 pl = imp.reload(pl)

9
10 # Load the CSV data into Pandas dataframes

11 hydrostat = pd.read_csv("./ DrySand_Hydrostat.csv", header=0, skiprows=7)

12 data_09 = pd.read_csv("./ DrySand_LoadUnload_09.csv", header=0, skiprows=4)

13 data_18 = pd.read_csv("./ DrySand_LoadUnload_18.csv", header=0, skiprows=4)

14 data_27 = pd.read_csv("./ DrySand_LoadUnload_27.csv", header=0, skiprows=4)

15 data_36 = pd.read_csv("./ DrySand_LoadUnload_36.csv", header=0, skiprows=4)

16 data_45 = pd.read_csv("./ DrySand_LoadUnload_45.csv", header=0, skiprows=4)

17
18 # Rename the columns of each dataframe

19 column_names = ["TotalStrainVol", "Pressure", "", "", "", ""]

20 hydrostat.columns = column_names

21 data_09.columns = column_names

22 data_18.columns = column_names

23 data_27.columns = column_names

24 data_36.columns = column_names

25 data_45.columns = column_names

26
27 # Convert percent into strain , MPa to Pa

28 strain_fac = 0.01

29 pressure_fac = 1.0e6

30 hydrostat.TotalStrainVol *= strain_fac

31 hydrostat.Pressure *= pressure_fac

32 data_09.TotalStrainVol *= strain_fac

33 data_09.Pressure *= pressure_fac

34 data_18.TotalStrainVol *= strain_fac

35 data_18.Pressure *= pressure_fac

36 data_27.TotalStrainVol *= strain_fac

37 data_27.Pressure *= pressure_fac

38 data_36.TotalStrainVol *= strain_fac

39 data_36.Pressure *= pressure_fac

40 data_45.TotalStrainVol *= strain_fac

41 data_45.Pressure *= pressure_fac

42
43 # Find the point at which unloading begins

44 p_max_09 = max(data_09.Pressure)

45 p_max_index_09 = data_09.Pressure.values.tolist ().index(p_max_09)

46 p_max_18 = max(data_18.Pressure)

47 p_max_index_18 = data_18.Pressure.values.tolist ().index(p_max_18)

48 p_max_27 = max(data_27.Pressure)

49 p_max_index_27 = data_27.Pressure.values.tolist ().index(p_max_27)

50 p_max_36 = max(data_36.Pressure)

51 p_max_index_36 = data_36.Pressure.values.tolist ().index(p_max_36)

52 p_max_45 = max(data_45.Pressure)

53 p_max_index_45 = data_45.Pressure.values.tolist ().index(p_max_45)

54 p_max_index_00 = (np.abs(p_max_09 - hydrostat.Pressure.values)).argmin ()

55 p_max_00 = hydrostat.Pressure.values[p_max_index_00]

56
57 # Create separate dataframes for the unload data

58 data_09_unload = data_09[p_max_index_09:].copy()

59 data_18_unload = data_18[p_max_index_18:].copy()

60 data_27_unload = data_27[p_max_index_27:].copy()

61 data_36_unload = data_36[p_max_index_36:].copy()

62 data_45_unload = data_45[p_max_index_45:].copy()

63
64 # Find plastic strains by intersecting the unload data with the pressure axis

65 pressure_axis = ((-1, 0),(1, 0))

66 poly_09_unload = list(data_09_unload[[’TotalStrainVol ’, ’Pressure ’]].apply(tuple, axis=1

))

67 line_09_unload = (poly_09_unload[-1], poly_09_unload[-2])

68 plastic_strain_09 = pl.line_intersection(pressure_axis, line_09_unload)[0]

69 poly_18_unload = list(data_18_unload[[’TotalStrainVol ’, ’Pressure ’]].apply(tuple, axis=1
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))

70 line_18_unload = (poly_18_unload[-1], poly_18_unload[-2])

71 plastic_strain_18 = pl.line_intersection(pressure_axis, line_18_unload)[0]

72 poly_27_unload = list(data_27_unload[[’TotalStrainVol ’, ’Pressure ’]].apply(tuple, axis=1

))

73 line_27_unload = (poly_27_unload[-1], poly_27_unload[-2])

74 plastic_strain_27 = pl.line_intersection(pressure_axis, line_27_unload)[0]

75 poly_36_unload = list(data_36_unload[[’TotalStrainVol ’, ’Pressure ’]].apply(tuple, axis=1

))

76 line_36_unload = (poly_36_unload[-1], poly_36_unload[-2])

77 plastic_strain_36 = pl.line_intersection(pressure_axis, line_36_unload)[0]

78 poly_45_unload = list(data_45_unload[[’TotalStrainVol ’, ’Pressure ’]].apply(tuple, axis=1

))

79 line_45_unload = (poly_45_unload[-1], poly_45_unload[-2])

80 plastic_strain_45 = pl.line_intersection(pressure_axis, line_45_unload)[0]

81
82 # Compute the volumetric elastic strains by subtracting plastic strains from total

strains

83 data_09_unload.TotalStrainVol -= plastic_strain_09

84 data_18_unload.TotalStrainVol -= plastic_strain_18

85 data_27_unload.TotalStrainVol -= plastic_strain_27

86 data_36_unload.TotalStrainVol -= plastic_strain_36

87 data_45_unload.TotalStrainVol -= plastic_strain_45

88
89 # Reverse the order of the unload data to create elastic loading curves

90 data_00_load = hydrostat[:p_max_index_00]

91 data_09_load = data_09_unload.sort_index(ascending=False)

92 data_18_load = data_18_unload.sort_index(ascending=False)

93 data_27_load = data_27_unload.sort_index(ascending=False)

94 data_36_load = data_36_unload.sort_index(ascending=False)

95 data_45_load = data_45_unload.sort_index(ascending=False)

96
97 # Simplify the loading dataframes and remove duplicates (if any)

98 data_00_all = data_00_load[[’TotalStrainVol ’, ’Pressure ’]].copy().drop_duplicates ()

99 data_09_all = data_09_load[[’TotalStrainVol ’, ’Pressure ’]].copy().drop_duplicates ()

100 data_18_all = data_18_load[[’TotalStrainVol ’, ’Pressure ’]].copy().drop_duplicates ()

101 data_27_all = data_27_load[[’TotalStrainVol ’, ’Pressure ’]].copy().drop_duplicates ()

102 data_36_all = data_36_load[[’TotalStrainVol ’, ’Pressure ’]].copy().drop_duplicates ()

103 data_45_all = data_45_load[[’TotalStrainVol ’, ’Pressure ’]].copy().drop_duplicates ()

104
105 # Compute the total volumetric strain

106 data_09_all.TotalStrainVol += plastic_strain_09

107 data_18_all.TotalStrainVol += plastic_strain_18

108 data_27_all.TotalStrainVol += plastic_strain_27

109 data_36_all.TotalStrainVol += plastic_strain_36

110 data_45_all.TotalStrainVol += plastic_strain_45

111
112 # Create an extra data set for tension interpolations

113 data_09_tension_all = data_00_all.copy()

114 data_09_tension_all.TotalStrainVol -= plastic_strain_09

115
116 # Visual check of data set

117 fig = plt.figure(figsize =(6,6))

118 ax = fig.add_subplot(111)

119 plt.plot(data_09_tension_all.TotalStrainVol, data_09_tension_all.Pressure, ’C7’)

120 plt.plot(data_00_all.TotalStrainVol, data_00_all.Pressure, ’C0’)

121 plt.plot(data_09_all.TotalStrainVol, data_09_all.Pressure, ’C1’)

122 plt.plot(data_18_all.TotalStrainVol, data_18_all.Pressure, ’C2’)

123 plt.plot(data_27_all.TotalStrainVol, data_27_all.Pressure, ’C3’)

124 plt.plot(data_36_all.TotalStrainVol, data_36_all.Pressure, ’C4’)

125 plt.plot(data_45_all.TotalStrainVol, data_45_all.Pressure, ’C5’)

126 plt.grid(True)

127 plt.axis([-0.1, 0.4, 0, 2e9])

128 plt.xlabel(’Engineering volumetric strain ’, fontsize=16)

129 plt.ylabel(’Pressure (Pa)’, fontsize=16)

130 fig.savefig(’Fox_DrySand_ElasticData.png’)

131
132 # Create data that can be written as JSON

133 elastic_data_json_09_t = {}
134 elastic_data_json_09_t["TotalStrainVol"] = data_09_tension_all.TotalStrainVol.values.

tolist ()

135 elastic_data_json_09_t["Pressure"] = data_09_tension_all.Pressure.values.tolist ()

136 #json.dumps(elastic_data_json_09_t)



132 MPMConstitutive Models

137 elastic_data_json_00 = {}
138 elastic_data_json_00["TotalStrainVol"] = data_00_all.TotalStrainVol.values.tolist ()

139 elastic_data_json_00["Pressure"] = data_00_all.Pressure.values.tolist ()

140 #json.dumps(elastic_data_json_00)

141 elastic_data_json_09 = {}
142 elastic_data_json_09["TotalStrainVol"] = data_09_all.TotalStrainVol.values.tolist ()

143 elastic_data_json_09["Pressure"] = data_09_all.Pressure.values.tolist ()

144 #json.dumps(elastic_data_json_09)

145 elastic_data_json_18 = {}
146 elastic_data_json_18["TotalStrainVol"] = data_18_all.TotalStrainVol.values.tolist ()

147 elastic_data_json_18["Pressure"] = data_18_all.Pressure.values.tolist ()

148 #json.dumps(elastic_data_json_18)

149 elastic_data_json_27 = {}
150 elastic_data_json_27["TotalStrainVol"] = data_27_all.TotalStrainVol.values.tolist ()

151 elastic_data_json_27["Pressure"] = data_27_all.Pressure.values.tolist ()

152 #json.dumps(elastic_data_json_27)

153 elastic_data_json_36 = {}
154 elastic_data_json_36["TotalStrainVol"] = data_36_all.TotalStrainVol.values.tolist ()

155 elastic_data_json_36["Pressure"] = data_36_all.Pressure.values.tolist ()

156 #json.dumps(elastic_data_json_36)

157 elastic_data_json_45 = {}
158 elastic_data_json_45["TotalStrainVol"] = data_45_all.TotalStrainVol.values.tolist ()

159 elastic_data_json_45["Pressure"] = data_45_all.Pressure.values.tolist ()

160 #json.dumps(elastic_data_json_45)

161
162 # Set up plastic strain list

163 plastic_strain_data = [-plastic_strain_09, 0, plastic_strain_09, plastic_strain_18,

plastic_strain_27, plastic_strain_36, plastic_strain_45]

164
165 # Set up elastic data list

166 vaango_elastic_data = {}
167 vaango_elastic_data["PlasticStrainVol"] = plastic_strain_data

168 vaango_elastic_data["Data"] = [elastic_data_json_09_t, elastic_data_json_00,

elastic_data_json_09, elastic_data_json_18, elastic_data_json_27, elastic_data_json_

36, elastic_data_json_45]

169
170 # Write JSON

171 meta_data_json = {}
172 meta_data_json["title"] = "Dry sand nonlinear elasticity data"

173
174 vaango_data = {}
175 vaango_data["Meta"] = meta_data_json

176 vaango_data["Data"] = vaango_elastic_data

177 json.dumps(vaango_data)

178
179 vaango_input_data = {}
180 vaango_input_data["Vaango_tabular_data"] = vaango_data

181 json.dumps(vaango_input_data, sort_keys=True)

182
183 with open(’DrySand_ElasticData.json’, ’w’) as outputFile:

184 json.dump(vaango_input_data, outputFile, sort_keys=True, indent=2)

�e above script uses an intersection algorithm called ”PolylineIntersection.py” which is listed below.
1 def line_intersection(line1, line2):

2 xdiff = (line1[0][0] - line1[1][0], line2[0][0] - line2[1][0])

3 ydiff = (line1[0][1] - line1[1][1], line2[0][1] - line2[1][1])

4
5 def det(a, b):

6 return a[0] * b[1] - a[1] * b[0]

7
8 div = det(xdiff, ydiff)

9 if div == 0:

10 return None

11
12 d = (det(*line1), det(*line2))

13 x = det(d, xdiff) / div

14 y = det(d, ydiff) / div

15 return (x, y)

16
17 def poly_intersection(poly1, poly2):

18
19 for i, p1_first_point in enumerate(poly1[:-1]):
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20 p1_second_point = poly1[i + 1]

21
22 for j, p2_first_point in enumerate(poly2[:-1]):

23 p2_second_point = poly2[j + 1]

24
25 pt = line_intersection ((p1_first_point, p1_second_point), (p2_first_point, p

2_second_point))

26 t = (p2_second_point[0] - pt[0])/(p2_second_point[0] - p2_first_point[0])

27 print(j, p1_first_point, p2_first_point, p2_second_point, pt, t)

28 if pt and t >= 0 and t <= 1:

29 return [True, pt]

30
31 return False
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�e theory of the ICE-CFD approach can be found in the Vaango�eory Manual.

6.1 Uintah Speci�cation

6.1.1 Basic Inputs

Each Uintah component is invoked using a single executable called sus , which chooses the type of simu-
lation to execute based on the SimulationComponent tag in the input �le. In the case of ICE simulations,
this looks like:

1 <SimulationComponent type="ice" />

near the top of the input�le. �e system of unitsmust be consistent (mks, cgs) and the majority of input
�les will be in Meter-Kilogram-Sec system. For small length scale simulations, it is advantageous to use
”bomb units”, which are a consistent set of units for microgrammass scales, centimeter length scales and
micosecond timescales. A conversion table of relevant physical quantities from mks to bomb units can
be found in Appendix A.

6.1.2 Semi-Implicit Pressure Solve

�e equation for the change in the pressure �eld ∆P during a given timestep is given by

dP
dt

=

N
∑
m=1

ṁ
Vρom

−
N
∑
m=1

∇ ⋅ θ̂mU⃗m
∗ f

N
∑
m=1

θm
ρom c2m

(6.1)

which can be written in matrix form Ax = b and solved with a linear solver. Details on the notation,
discretization of Eq. 6.1 and the formation of A and b can be found in

1 src/CCA/Components/ICE/Docs/implicitPressSolve.pdf

�e linear system Ax = b can be solved using the default Uintah:conjugate gradient solver (cg) (slow) or
one of the many that are available through the scalable linear solvers and preconditioner package hypre
[56]. Experience has shown that the most e�cient hypre preconditioner and solver are the pfmg and cg
respectively. Below are typical values for both the Uintah:cg and hypre:cg solver
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1 <ImplicitSolver >

2 <max_outer_iterations > 20 </max_outer_iterations >

3 <outer_iteration_tolerance > 1e-8 </outer_iteration_tolerance >

4 <iters_before_timestep_restart > 5 </iters_before_timestep_restart >

5 <Parameters variable =" implicitPressure">

6
7 <tolerance > 1.e-10 </tolerance >

8
9 <!-- CGSolver options -->

10 <norm > LInfinity </norm >

11 <criteria > Absolute </criteria >

12
13 <!-- Hypre options -->

14 <solver > cg </solver >

15 <preconditioner > pfmg </preconditioner >

16 <maxiterations > 7500 </maxiterations >

17 <npre > 1 </npre >

18 <npost > 1 </npost >

19 <skip > 0 </skip >

20 <jump > 0 </jump >

21 </Parameters >

22 </ImplicitSolver >

If the user is interested in altering the tolerance to which the equations are solved they should look at
1 <tolerance > and <outer_iteration_tolerance >

XML tag Description
max outer iterations maximum number of iterations in the outer loop of the pressure

solve.
outer iteration tolerance tolerance XXXXDX
iters before timestep restart number of outer iterations before a timestep is restarted
tolerance XXXX

6.1.3 Physical Constants

�e gravitational constant and a reference pressure are speci�ed in:
1 <PhysicalConstants >

2 <gravity > [0,0,0] </gravity >

3 <reference_pressure > 101325.0 </reference_pressure >

4 </PhysicalConstants >

6.1.4 Material Properties

For each ICE material the thermodynamic and transport properties must be speci�ed, in addition to the
initial conditions of the uid inside of each geom object. Below is the an example of how to specify an
invisid ideal gas over square region with dimensions 6mX6mX6m. �e initial conditions of the gas in
that region are T = 300, ρ = 1.179, vx = 1, vy = 2, vz = 3 (Note, the pressure XML tag is not used as
an initial condition and is simply there to make the user aware of what the pressure would be at that
thermodynamic state.)

1 <MaterialProperties >

2 <ICE >

3 <material >

4 <EOS type = "ideal_gas"> </EOS >

5 <dynamic_viscosity > 0.0 </dynamic_viscosity >

6 <thermal_conductivity >0.0 </thermal_conductivity >

7 <specific_heat > 716.0 </specific_heat >

8 <gamma > 1.4 </gamma >

9 <geom_object >

10 <box label=" wholeDomain">

11 <min > [ 0.0, 0.0, 0.0 ] </min >

12 <max > [ 6.0, 6.0, 6.0 ] </max >
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13 </box >

14 <res > [2,2,2] </res >

15 <velocity > [1.,2.,3.] </velocity >

16 <density > 1.1792946927374306 </density >

17 <pressure > 101325.0 </pressure >

18 <temperature > 300.0 </temperature >

19 </geom_object >

20 </material >

21 </ICE >

22 </MaterialProperties >

6.1.5 Equation of State

Below is a list of the various equations of state, along with the user de�ned constants, that are available.
�e reader should consult the literature for the theoretical development and applicability of the equations
of state to the problem being solved. �e most commonly used EOS is the ideal gas law

p = (γ − 1)cvρT (6.2)

and is speci�ed in the input �le with:
1 <EOS type=" ideal_gas"/>

�e�omsen Hartka EOS for cold liquid water (1-100 atm pressure range) is speci�ed with [57, 58]
1 <EOS type=" Thomsen_Hartka_water">

2 <a> 2.0e-7 </a> <!-- (K/Pa) -->

3 <b> 2.6 </b> <!-- (J/kg K^2) -->

4 <co> 4205.7 </co> <!-- (J/Kg K) -->

5 <ko> 5.0e-10 </ko> <!-- (1/Pa) -->

6 <To> 277.0 </To > <!-- (K) -->

7 <L> 8.0e-6 </L> <!-- (1/K^2) -->

8 <vo> 1.00008e-3 </vo> <!-- (m^3/kg) -->

9 </EOS >

�e input speci�cation for the “JWLC”, “JWL++” and “Murnaghan” equations of state from [59] are:
1 <EOS type = "JWLC">

2 <A> 2.9867e11 </A>

3 <B> 4.11706e9 </B>

4 <C> 7.206147e8 </C>

5 <R1> 4.95 </R1>

6 <R2> 1.15 </R2>

7 <om> 0.35 </om>

8 <rho0> 1160.0 </rho0>

9 </EOS >

1 <EOS type = "JWL">

2 <A> 1.6689e12 </A>

3 <B> 5.969e10 </B>

4 <R1> 5.9 </R1>

5 <R2> 2.1 </R2>

6 <om> 0.45 </om>

7 <rho0> 1835.0 </rho0>

8 </EOS >

1 <EOS type = "Murnaghan">

2 <n> 7.4 </n>

3 <K> 39.0e-11 </K>

4 <rho0> 1160.0 </rho0>

5 <P0> 101325.0 </P0>

6 </EOS >

1 <EOS type = "BirchMurnaghan">

2 <n> 7.4 </n>

3 <K> 39.0e-11 </K>
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4 <rho0> 1160.0 </rho0>

5 <P0> 101325.0 </P0>

6 </EOS >

�e “hard sphere” or “Abel” equation of state for dense gases is

p(v − b) = RT (6.3)

where b corresponds to the volume occupied by the molecules themselves [60]. Input parameters are
speci�ed using:

1 <EOS type=" hard_sphere_gas">

2 <b> 1.4e-3 </b>

3 </EOS >

Non-idea gas equation of state used in HMX combustion simulations the Twu-Sim-Tassone(TST) EOS is

p = (γ − 1)cvT
v − b

− a
(v + 3.0b)(v − 0.5b)

(6.4)

Input parameters are speci�ed using:
1 <EOS type="TST">

2 <a> -260.1385968 </a>

3 <b> 7.955153678e-4 </b>

4 <u> -0.5 </u>

5 <w> 3.0 </w>

6 <Gamma > 1.63 </Gamma >

7 </EOS >

�e input parameters for the Tillotson equation of state [61] for soils :
1 <EOS type = "Tillotson">

2 <a> .5 </a>

3 <b> 1.3 </b>

4 <A> 4.5e9 </A>

5 <B> 3.0e9 </B>

6 <E0> 6.e6 </E0>

7 <Es> 3.2e6 </Es >

8 <Esp > 18.0e6 </Esp >

9 <alpha > 5.0 </alpha >

10 <beta > 5.0 </beta >

11 <rho0> 1700.0 </rho0>

12 </EOS >

6.1.6 Speci�c Heat Models

In Uintah, temperature dependent speci�c heat models are available for ICE materials. �ree models
currently exist including the Debye model, a common gas component model, and a generalized polyno-
mial model. NOTE: Not all of these models are energy conservative, most notably the component based
model. �e input speci�cation belongs in the material de�nition and the input �le and takes the form:

1 <SpecificHeatModel type ="..." >

2 ...

3 </SpecificHeatModel >

�eDebye speci�c heat model follows the Debye equation for temperature dependence in a solid latice:

Cv(T) = 9NkB ( T
TD

)
3
∫

TD
T

0
x4ex

(ex−1)2

where kB is the Boltzmann constant. �e input parameters are the number of atoms N and the Debye
temperature TD in Kelvin. these are speci�ed in the input �le as:



6.1 Uintah Speci�cation 139

1 <SpecificHeatModel type="Debye">

2 <Atoms > 3 </Atoms >

3 <DebyeTemperature > 290 </DebyeTemperature >

4 </SepcificHeatModel >

�eComponentmodel is designed to allow the speci�cation of themole fraction of a number gas species,
and the mixture speci�c heat will be calculated. Gas species supported include CO2, H2O, CO, H2, O2,
N2, OH, NO, O and H. Data comes from NASA’s thermochemical code and includes �ts that run from
300K to 5000K. Outside of these ranges the speci�c heat is clamped to these endpoints. �e input �le
speci�cation is:

1 <SpecificHeatModel type=" Component">

2 <XCO2> 0.5 <XCO2>

3 <XH2O> 0.4 <XH2O>

4 <XCO > 0.0 <XCO >

5 <XH2> 0.0 <XH2>

6 <XO2> 0.0 <XO2>

7 <XN2> 0.0 <XN2>

8 <XOH > 0.1 <XOH >

9 <XNO > 0.0 <XNO >

10 <XO> 0.0 <XO>

11 <XH> 0.0 <XH>

12 </SepcificHeatModel >

�e Polynomial model is designed to be a general polynomial that limits towards an upper asymptote.
�e form of the equation is:

Cv(T) = Tn
n
∑
i=0

a i∗T i

where n is the maximum order of the polynomial and ai are the �tting coe�cients. �ere must be n + 1
coe�cients speci�ed as well as a maximum order of the polynomial. Optionally, a minimum and maxi-
mum temperature may be assigned that will clamp the speci�c heat at each end. �ese default to 0K and
1,000,000K. �e input �le speci�cation is:

1 <SpecificHeatModel type=" Polynomial">

2 <MaxOrder > 7 </MaxOrder >

3 <Tmin > 250 </Tmin >

4 <Tmax > 1e6 </Tmax >

5 <coefficient > [1.2, 3.0, 4.0, 5.3, 6.7, 2.2, 4.1, 4.9] </cofficient >

6 </SepcificHeatModel >

6.1.7 Exchange Properties

�e heat and momentum exchange coe�cients Krs and Hrs, which determine the rate at which momen-
tum and heat are transferred between materials, and are speci�ed in the following format.

1 0->1, 0->2, 0->3

2 1->2, 1->3

3 2->3

For a three material problem the coe�cients would be:

1 <exchange_properties >

2 <exchange_coefficients >

3 <momentum > [0, 1e15, 1e15 ] </momentum >

4 <heat > [0, 1e10, 1e10 ] </heat >

5 </exchange_coefficients >

6 </exchange_properties >
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6.1.8 BoundaryConditions

Boundary conditionsmust be speci�ed on each face of the computational domain (x−, x+, y−, y+, z−, z+)
for the variables P, u,T, ρ, v for each material. �e three main types of numerical boundary conditions
that can be applied are “Neumann”, “Dirichlet” and “Symmetric”. A Neumann boundary condition is
used to set the gradient or ∂q

∂n ∣sur f ace = value at the boundary. �e value of the primative variable in the
boundary cell is given by,

q[boundary cell] = q[interior cell] − value ∗ dn; (6.5)

if we use a �rst order upwind discretization of the gradient. Dirichlet boundary conditions set the value
of primative variable in the boundary cell using

q[boundary cell] = value; (6.6)

1 <Grid >

2 <BoundaryConditions >

3 <Face side = "x-">

4 <BCType id = "0" label = "Pressure" var = "Neumann">

5 <value > 0. </value >

6 </BCType >

7 <BCType id = "all" label = "Velocity" var = "Neumann">

8 <value > [0.,0.,0.] </value >

9 </BCType >

10 <BCType id = "all" label = "Temperature" var = "Neumann">

11 <value > 0.0 </value >

12 </BCType >

13 <BCType id = "all" label = "Density" var = "Neumann">

14 <value > 0.0 </value >

15 </BCType >

16 <BCType id = "all" label = "SpecificVol" var = "computeFromDensity">

17 <value > 0.0 </value >

18 </BCType >

19 </Face >

20 .

21 [other faces]

22 .

23 </BoundaryConditions >

24 </Grid >

�ere is also the �eld tag id = "all". In principal, one could set di�erent boundary condition types for
di�erent materials. In practice, this is rarely used, so the usage illustrated here should be used. Note that
pressure �eld id is always 0. Symmetric boundary conditions are set using:

1 <Face side = "y-">

2 <BCType id = "all" label = "Symmetric" var = "symmetry"> </BCType >

3 </Face >

In addition to “Dirichlet”, “Neumann”, and “Symmetric” type boundary conditions ICEhas several custom
or experimental boundary conditions the user can access. �e “Sine” boundary condition was designed
to impose a pulsating pressure wave in the boundary cells by applying

p = pre f erence + Asin(ωt) (6.7)

�e input �le parameters that control the frequency and magnitude of the wave are:
1 <SINE_BC >

2 <omega > 1000 </omega >

3 <A> 800 </A>

4 </SINE_BC >

and to specify them add
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1 <BCType id = "0" label = "Pressure" var = "Sine">

2 <value > 0.0 </value >

3 </BCType >

4 <BCType id = "0" label = "Temperature" var = "Sine">

5 <value > 0.0 </value >

6 </BCType >

to the input �le. For non-reective boundary conditions the user should specify the “LODI” or locally
one-dimensional invisid type [62]

1 <LODI >

2 <press_infinity > 1.0132500000010138e+05 </press_infinity >

3 <sigma > 0.27 </sigma >

4 <ice_material_index > 0 </ice_material_index >

5 </LODI >

and

1 <Face side = "x+">

2 <BCType id = "0" label = "Pressure" var = "LODI">

3 <value > 0. </value >

4 </BCType >

5 <BCType id = "0" label = "Velocity" var = "LODI">

6 <value > [0.,0.,0.] </value >

7 </BCType >

8 <BCType id = "0" label = "Temperature" var = "LODI">

9 <value > 0.0 </value >

10 </BCType >

11 <BCType id = "0" label = "Density" var = "LODI">

12 <value > 0.0 </value >

13 </BCType >

14 <BCType id = ’0’ label = "SpecificVol" var = "computeFromDensity">

15 <value > 0.0 </value >

16 </BCType >

17 </Face >

�is boundary condition is designed to suppress all the unwanted e�ects of an arti�cal boundary. �is
BC is computationally expensive, not entirely e�ective and should be used with caution. In ow �elds
where there are no passing through the outlet of the domain it reduces the reected pressure waves sig-
ni�cantly.

6.1.9 Variable Volume Fraction

An arbitrary number of materials may be layered on one another to generate mixtures in a cell. Each
geometry object may have a speci�ed fraction of the cell in the range (0,1]. A volume fraction may be
speci�ed as:

1 <geom\_object >

2 ...

3 <volumeFraction > 0.5 </volumeFraction >

4 </geom\_object >

If the volume fraction is spci�ed for one geometry object it MUST be speci�ed for all geometry objects,
even if they constitute a volume fraction equal to 1 in the given volume. Similarly, each cell must have
a total of 1 for the summation of all volume fractions of materials in that cell. Failure of either of these
criteria will result in a crashed simulation during the problem setup phase.

MPMICE also has the ability to use the variable volume fraction convention, however pure MPM does
not.
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6.1.10 Output Variable Names

�ere are numerous variables that can be saved during a simulation. �e table below is a list of the most
commonly saved variables. To see the entire list ICE spec�c variables available to the user run

1 inputs/labelNames ice

Dimensions are given in mass (M), length (L), time (t) and tempertare (T). Bold face label names signify
vectors quantities. �e location of the variable on the grid is denoted by (CC) for the cell-centered or
(FC) for face-centered. Conserved quantities that are summed over all cells, every timestep, and written
to a “dat” �le inside of the uda directory are denoted with (dat).
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LabelName Description
delP Dilatate M/Lt2 change in pressure during the, (CC).
delP MassX M/Lt2 change in pressure due to mass addition, (CC).
eng adv ML2/t2 energy of a material a�er the advection task, (CC).
eng exch error ML2/t2 ∑AllCells

i=1 Internal Energy A�er Exchange Process−
∑AllCells

i=1 Internal Energy Before Exchange Process, (dat).
eng L ME CC ML2/t2 Energy of a material a�er the exchange task and just before the advection task, (CC).
imp delP M/Lt2 (CC).

KineticEnergy ML2/t2 ∑AllCells
i=1 (0.5m(⃗v)2)i , (dat).

mach Mach number, (CC).
mag div vel CC Magnitude of the divergence of the velocity, (CC).
mag grad press CC Magnitude of the gradient of the pressure, (CC).
mag grad rho CC Magnitude of the gradient of the density, (CC).
mag grad temp CC Magnitude of the gradient of the temperature, (CC).
mag grad vol frac CC Magnitude of the gradient of the volume fraction, (CC).
mass adv M Mass of a material a�er the advection task, (CC).
mass L CC M Mass of a material just before the advection task, (CC).
modelEng src ML2/t2 Energy source term, computed from a reaction model, (CC).
modelMass src M Mass source term, computed from a reaction model, (CC).
modelMom src ML/t Momentum source term, computed from a reaction model, (CC).
modelVol src Volume source term, computed from a reaction model, (CC).
mom exch error ML/t ∑AllCells

i=1 Momemtum A�er Exchange Process−
∑AllCells

i=1 Momentum Before Exchange Process, (dat).
mom L CC ML/t Momemtum before momentum exchange task, (CC).
mom L ME CC ML/t Momentum a�er momentum exchange task, (CC).
mom source CC ML/t All sources of momentum,(CC).
press CC M/Lt2 Pressure P = Pequilibration + ∆P, (CC).
press equil CC M/Lt2 Pressure a�er the compute equilibration task, (CC).
pressX FC M/Lt2 Pressure on the x−,+ cell faces, (FC).
pressY FC M/Lt2 Pressure on the y−,+ cell faces, (FC).
pressZ FC M/Lt2 Pressure on the z−,+ cell faces, (FC).
rho CC M/L3 Density of each material, (CC).
speci�c heat L2/t2T Constant Speci�c Heat, (CC).
speedSound CC L/t Speed of sound of each material, (CC).
sp vol adv
sp vol CC L3/M Speci�c volume of each material, (CC).
temp CC T Temperature of each material, (CC).
TempX FC T temperature on the x−,+ cell faces, (FC).
TempY FC T temperature on the y−,+ cell faces, (FC).
TempZ FC T temperature on the z−,+ cell faces, (FC).
thermalCond ML/t3T �ermal conductivity, (CC).
TotalIntEng ML2/t2 ∑AllCells

i=1 (mcvT)i , (dat).
TotalMass M ∑AllCells

i=1 m i , (dat).
TotalMomentum ML/t ∑AllCells

i=1 (mv⃗)i , (dat).
uvel FC L/t x-component of velocity, before momentum exchange, (FC).
uvel FCME L/t x-component of velocity, a�er momentum exchange task, (FC).
vel CC L/t Velocity at the end of a timestep, (CC).
viscosity M/Lt Dynamic viscosity, (CC).
vol frac CC Volume fraction of each material, (CC).
vol fracX FC Volume fraction on the x−,+ cell faces, (FC).
vol fracY FC Volume fraction on the y−,+ cell faces, (FC).
vol fracZ FC Volume fraction on the z−,+ cell faces, (FC).
vvel FC L/t y-component of velocity, before momentum exchange task, (FC).
vvel FCME L/t y-component of velocity, a�er momentum exchange task, (FC).
wvel FC L/t z-component of velocity, before momentum exchange, (FC).
wvel FCME L/t z-component of velocity, a�er momentum exchange task, (FC).

�evariables, mag div vel CC, mag grad press CC, mag grad rho CC, mag grad temp CC, mag grad vol frac CC,
are the magnitude of the gradient or divergence of the respective primative variable. If the user visual To
are large and based on this information the adaptive mesh cell re�nement criteria can be set.
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Below is a list of the XML tags pertaining speci�cally to ICE problems.

6.1.11 XML tag description

XML tag Type Dimensions Description
c double Courant Number.
gravity Vector [L/t2] gravitational acceleration, g⃗.

global material properties
dynamic viscosity double [M/Lt] viscosity, µ.
thermal conditucivity double [ML/t3T] thermal conductivity, k
speci�c heat double [L2/t2T] cp
gamma double ratio of speci�c heats, γ.

geometry object related
res vector resolution used for de�ning geometry objects.
velocity vector [L/t] initial velocity, u⃗.
density double [M/L3] initial density, ρ.
temperature double [T] initial temperature, T .
pressure double Not used.

AMR Parameters
orderOfInterpolation integer Order of interpolation at the coarse/�ne interfaces.
do Reuxing boolean on/o� switch for correcting the ux of mass, momentum, and energy at

the course/�ne interfaces.
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6.2 Examples

Below are several example problems that illustrate the wide range of problems that can be solved using
the ICE algorithm. Where possible simulation results are compared to exact solutions or high �delity
numerical results. Note in order to run the post processing scripts the user should have a recent version
of Octave installed. To visualize the results the visualization package VisIT should be used. VisIT session
�les are included.

Poiseuille Flow

ProblemDescription

�e Poiseuille ow problem is classical viscous ow problem in which ow is driven through two parallel
plates from �xed pressure gradient. �e pressure gradient is balanced by the di�usion x momentum in
the y direction.

Simulation Speci�cs

Component used: ICE
Input �le name: CouettePoiseuille.ups

Edit this �le and set the boundary condition for the velocity on the y+ = 0.0. Change:

1 <BCType id = "0" label = "Velocity" var = "Dirichlet">

2 <value > [1.25,0.,0.] </value >

3 [to]

4 <BCType id = "0" label = "Velocity" var = "Dirichlet">

5 <value > [0,0.,0.] </value >

Command used to run input �le:
mpirun − np1sus − solverhypreinputs/UintahRelease/ICE/CouettePoiseuille.ups

Postprocessing command:
inputs/UintahRelease/ICE/compare CouettePoiseuille.m − udaCouette − Poiseuille.uda
You must edit compare CouettePoiseuille.m and set wallVel = 0. �is will generate a postscript �le Couette-
Poiseuille.ps

Simulation Domain: 1 x .01 x .01 m
Cell Spacing:

10 x 5 x 10 mm (Level 0)
Example Runtimes:

8ish minutes (1 processor, 2.66 GHz Xeon)
Physical time simulated: 15 sec.

Results

Figure 6.1 shows a comparison of the exact and simulated u velocity at time t = 15sec, 5 cells from the end
of the domain. �e lower plot shows the di�erence of the velocity ∥u − uexact∥.
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Figure 6.1: Comparison of u velocity t = 15sec

Combined Couette-Poiseuille Flow

ProblemDescription

�e combined Couette-Poiseuille ow problem is another classical viscous ow problem in which ow is
driven through a channel by a pressure gradient and a wall moving. �e reduced x momentum equation
di�erential is

µ
d2u
dy2

= dp
dx

= constant (6.8)

subject to the no slip boundary condition u(±h) = wall velocity, where h is half the height of the channel
[63].

Simulation Speci�cs

Component used: ICE
Input �le name: CouettePoiseuille.ups
Command used to run input �le:

mpirun − np1sus − solverhypreinputs/UintahRelease/ICE/CouettePoiseuille.ups
Postprocessing command:

inputs/UintahRelease/ICE/compare CouettePoiseuille.m − udaCouette − Poiseuille.uda
�is Octave script will generate a postscript �le CouettePoiseuille.ps

Simulation Domain: 1 x .01 x .01 m
Cell Spacing:

10 x 5 x 10 mm (Level 0)
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Figure 6.2: Comparison of u velocity t = 15sec

Example Runtimes:
8ish minutes (1 processor, 2.66 GHz Xeon)

Physical time simulated: 15 sec.

Results

Figure 6.2 shows a comparison of the exact and simulated u velocity at time t = 15sec, 5 cells from the end
of the domain. �e lower plot shows the di�erence of the velocity ∥u − uexact∥.
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Shock Tube

ProblemDescription

�e shock tube problem is a standard 1D compressible ow problem that has been used by many as a
validation test case [64–66]. At time t = 0 the computational domain is divided into two separate regions
of space by a diaphram, with each region at a di�erent density and pressure. �e separated regions are at
rest with a uniform temperature = 300K. �e initial pressure ratio is PRPL = 10 and density ratio is

ρR
ρL

= 0.1
�e diaphram is instantly removed and a traveling shockwave, discontinutity and expansion fan form.
�e expansion fan moves towards the le� while the shockwave and contact discontinutity move to the
right. �is problem tests the algorithm’s ability to capture steep gradients and solve Eulers equations.

Simulation Speci�cs

Component used: ICE
Input �le name: rieman sm.ups
Command used to run input �le: susinputs/UintahRelease/ICE/shockTube.ups
Postprocessing command:

scripts/ICE/plot shockTube 1LshockTube.uday
�is Octave script will generate a postscript �le shockTube.ps

Simulation Domain: 1 x .001 x .001 m
Cell Spacing:

1 x 1 x 1 mm (Level 0)
Example Runtimes:

1 minute (1 processor, 2.66 GHz Xeon)
Physical time simulated: 0.005 sec.

Results

Figure 6.3 shows a comparison of the exact versus simulated results at time t = 5msec.
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5

Figure 6.3: Shock tube results at time t = 5msec

Shock Tube with Adaptive Mesh Re�nement

Simulation Speci�cs

Component used: ICE
Input �le name: shockTube AMR.ups
Command used to run input �le:

susinputs/UintahRelease/ICE/shockTube AMR.ups
Postprocessing command:

../../src/scripts/ICE/plot shockTube AMRshockTube AMR.uday
�is Octave script will generate a postscript �le shockTube AMR.ps

Simulation Domain: 1 x .001 x .001 m
Cell Spacing:

10 x 1 x 1 mm (Level 0)
2.5 x 1 x1 mm (Level 1)
0.625 x1 x1 mm (Level 2)

Example Runtimes:
2ish minutes (1 processor, 2.66 GHz Xeon)

Physical time simulated: 0.0005 sec.

Results

Figure 6.4 shows a comparison of the exact versus simulated results at time t = 5msec.
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Figure 6.4: Shock tube results at time t = 5msec

2D Riemann Problemwith Adaptive Mesh Re�nement

ProblemDescription

In two-dimensional Riemann problems there 15 di�erent solutions that combine rarefaction waves, shock
waves and a slip line or contact discontinuities [67, 68]. Here we simulate 4 slip lines that form a sym-
metrical single vortex turning counter clockwise. At time t = 0 the computational domain is divided into
four quadrants by the lines x = 1/2, y = 1/2�e initial condition for V = (p, ρ, u, v) in the four quadrants
are Vl l = (1, 1,−0.75, 0.5),Vlr = (1, 3,−0.75,−0.5),Vul = (1, 2, 0.75, 0.5),Vur = (1, 1, 0.75,−0.5) where, p
is pressure, ρ is the density of the polytropic gas, u and v are the x and y component of velocity.

Simulation Speci�cs

Component used: ICE
Input �le name: riemann2D AMR.ups
Command used to run input �le:

mpirun − np5susinputs/UintahRelease/ICE/riemann2D AMR.ups
VisIT session �le: inputs/UintahRelease/ICE/riemann2D.session
Simulation Domain: 0.96 x 0.96m x 0.1 m
Cell Spacing:

40 x 40 x 1 mm (Level 0)
10 x 10 x 1 mm (Level 1)
2.5 x 2.5 x 1 mm (Level 2)

Example Runtimes:
5ish minutes (5 processors, 2.66 GHz Xeon)

Physical time simulated: 0.3 sec.



6.2 Examples 151

Figure 6.5: Contour plot of density for the 2D Riemann problem at time t = 0.3sec. Bottom plot shows
the outline of the patches on the 3 levels.

Results

Figure 6.5 shows a ood and line contour plot(s) of the density of the gas at 0.03sec.
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Explosion 2D

ProblemDescription

For the multidimensional blast wave orexplosion test is a standard compressible ow problem that has
been used by many as a validation test case. At time t = 0 there is a circular region of gas at the center of
the domain at a relatively high pressure and density. �e expansion of high pressure gas forms a circular
shock wave and contact surface that expands into surrounding atmosphere. At the same time a circular
rarefaction travels towards the origin. As the shockwave and contact surfacemove outwards they become
weaker and at some point the contact reverses direction and travels inward. �e rarefraction reects from
the center and forms an overexpanded region, creating a shock that travels inward [66]. At time t = 0 the
computational domain is divided into two region, circular high pressure region with a radius R = 0.4 and
the surrounding box 2x2x0.1. �e initial condition inside of the circular region were (p = 1, ρ = 1, u =
0, v = 0) and outside (p = 0.1, ρ = 0.125, u = 0, v = 0).�e uid was an ideal, inviscid, polytropic gas.

Simulation Speci�cs

Component used: ICE
Input �le name: explosion.ups
Command used to run input �le:

mpirun − np4susinputs/UintahRelease/ICE/explosion.ups
Visualization net �le: inputs/UintahRelease/ICE/Explosion.session

Postprocessing command:
scripts/ICE/plot explosion AMR Explosion AMR.uda y

�is Octave script will generate a postscript �le explosion AMR.ps
Simulation Domain: 2 x 2 x .1
Cell Spacing:

62.5 x 62.5 x 10 (Level 0)
15.625 x 15.625 x 10 (Level 1)
3.9 x 3.9 x 10 (Level 2)

Example Runtimes:
20 minutes (4 processor, 2.66 GHz Xeon)

Physical time simulated: 0.25 (non-dimensional).

Results

Figures 6.6 and 6.7 shows surface plots of the pressure and density at t = 0.25. Since this test is symetrical
we can use results from the equivalent 1 dimensional problem to compare against
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Figure 6.6: Pressure �eld at t = 0.25

Figure 6.7: Density �eld at time t = 0.25
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Figure 6.8: t = 0.25

ANFO Rate Stick

ProblemDescription

A cylindrical stick (r = 8mm) of AmmoniumNitrate Fuel Oil (ANFO) given an initial velocity of 90m/s.
As it strikes the domain boundary, pressure is generated su�cient to reach the initial pressure required
to activate the JWL++ [59] detonation model. �is empirically based model results in a steady state det-
onation that traverses the stick, consuming the solid explosive and generating high pressure gas. �e
experimentally observed curvature is generated at the detonation front, a feature that will not develop
in programmed burn models. By running this simulation at a variety of cylinder radii, one can observe
the ”size e�ect”, namely that cylinders of larger radii will reach a higher steady state detonation velocity,
due to the increased e�ective con�nement. An in�nite radius case can be simulated by shrinking the
computational domain to one cell in each of the transverse directions.

Simulation Speci�cs

Component used: ICE
Input �le name: JWLpp8mmRS.ups
Command used to run input �le:

mpirun − np4susinputs/UintahRelease/ICE/JWLpp8mmRS.ups
Visualization net �le: inputs/UintahRelease/ICE/RateStick.session

Simulation Domain: 0.1 m x 0.015 m x 0.015 m
Cell Spacing:
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Figure 6.9: Density of reactant material.

0.0005 x 0.0005 x 0.0005 (Level 0)

Example Runtimes:
1.5 hours (4 processor, 3.16 GHz Xeon)

Physical time simulated: 20.0 µseconds

Results

Figure 6.9 shows a volume rendering of the density of the reactant. Note the curvature of the reaction
zone.
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7.1 Introduction

MPMICE is a marriage of the multi-material ICE method, described in Section 6 and MPM, described
in Section 4. �e equations of motion solved for both uid and solid are essentially the same, although
the physical behavior of these two states of matter di�er, largely due to their constitutive relationships.
MPM is used to track the evolution of solid materials in a Lagrangian frame of reference, while uids are
evolved in the Eulerian frame.

7.2 Theory - AlgorithmDescription

At this time, the reader is directed to the manuscript by Guilkey, Harman and Banerjee [69] for the the-
oretical and algorithmic description of the method.

7.3 Solid State Kinetic Models

A generalized reaction model for solid state kinetics based on the assumption that the temperature de-
pendence of the rate can be separated from the reaction model as embodied by the equation:

dα
dt

= k(T) f (α) (7.1)

is implemented in Uintah and named SolidReactionModel. To use the SolidReactionModel one must
specify both a temperature dependent rate constant model and a rate model. �e model is a grid based
model, so should work with both MPM and ICE materials. In the case where an MPM material is used
as the reactant or product, the thermodynamic quantities that are interpolated to the grid are used to
calculate reaction rates.

Additional rate constant and rate models may be added by either subclassing RateConstantModel or
RateModel. Examples of this can be found in the src/CCA/Components/Models/SolidReactionModel
directory. Two models currently exist for the rate constant k(T), Arrhenius and Modi�ed Arrhenius.
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�ese two models have the forms:

k(T) = Ae
−Ea
RT (7.2)

and:

k(T) = ATbe
−Ea
RT (7.3)

Various rate models of di�erent classes exist for use. �ese classes include reaction-order models, dif-
fusion models, geometrical contraction models and nucleation models. �e following table shows the
various models available. Models were taken from [70] and [71].
Model f (α) Uintah ’type’

Reaction-order Models
Nth Order (1 − α)n NthOrder

Di�usion Models
1-D Di�usion 1/2α Di�usion
2-D Di�usion −1/ln(1 − α) Di�usion
3-D Di�usion 3/2(1 − α)2/3(1 − (1 − α)1/3) Di�usion
4-D Di�usion 3/2(1/α1/3 − 1) Di�usion

Geometrical Contraction Models
Contracting Cylinder 2

√
1 − α ContractingCylinder

Contracting Sphere 3(1 − α)2/3 ContractingSphere
Nucleation Models

Power aαb Power
Avarami-Erofe’ev a(1 − α)(−ln(1 − α))b AvaramiErofeev

�e input �le speci�cation is as follows:
1 <Models >

2 <Model type=" SolidReactionModel">

3 <RateConstantModel type="type">

4 ....

5 </RateConstantModel >

6 <RateModel type="type">

7 ....

8 </RateModel >

9 </Model >

10 <Models >

Here, the type attribute for RateConstantModel should be either Arrhenius or Modi�edArrhenius
which both take an activation energy Ea, and frequency factor A. In addition, the modi�ed Arrhenius
model takes a temperature dependence exponent, b.

�e speci�cation of type attribute for RateModel should be one of those listed in the previous table. �e
NthOrdermodelmust have a positive integral value for the reaction ordern. �eDi�usion basedmodels
require a dimension value that should be 1, 2, 3 or 4 depending on the dimensionality of the desired rate
model. Both geometric contraction models take no additional input parameters. Both nucleation based
models, Power and AvaramiErofeev, take both an a and a b input parameter.

7.4 HE ReactionModels

�ree models exist for reaction of high explosive materials. Each simulation using one of these models
utilizeMPMICE’smaterial interactions as its foundation. �e componentswork by taking severalmaterial
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speci�c constants as well as a reactant and product material from the model input section of the .ups �le.
Following are brief descriptions of each model, as well as their input parameters.

7.4.1 Simple Burn

Simple Burn, as the name implies, is a simple model of combustion of HMX based on the rate equation:

ṁ = AP0.778 (7.4)

Where ṁ is the mass ux, P is the pressure and n is the pressure dependence coe�cient. �e pressure
coe�cient in Equation (7.4) is that of HMX.�emodels input section for a Simple Burn simulation takes
the form:

1 <Models >

2 <Model type=" Simple_Burn">

3 <fromMaterial > reactant </fromMaterial >

4 <toMaterial > product </toMaterial >

5 <Active > true </Active >

6 <ThresholdTemp > 450.0 </ThresholdTemp >

7 <ThresholdPressure > 50000.0 </ThresholdPressure >

8 <Enthalpy > 2000000.0 </Enthalpy >

9 <BurnCoeff > 75.3 </BurnCoeff >

10 <refPressure > 101325.0 </refPressure >

11 </Model >

12 </Models >

�e �rst two tags take names of materials previously de�ned in the input �le, de�ning both reactant and
product used by the model. See Section 6.1.4 and 4.2.4 for in depth description for de�ning materials.
<Active> is a debugging parameter that takes a boolean value indicating whether the model is on (i.e.
the actual computations take place during the timestep). True is the value to set for <Active> in most
situations. Each of the other parameters take double values. �reshold temperature and pressure tags
de�ne two criteria the cell must have in order to be agged burning. �e reference pressure is used to
scale the cell centered pressure as well as make it an unitless value. �e burn coe�cient corresponds to A
in the rate equation. Enthalpy is simply the enthalpy value for conversion of reactant to product.
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7.4.2 Steady Burn

Steady Burn is a more accurate model than Simple Burn. It is based on WSB model of combustion de-
veloped by Ward, Son and Brewster in [72]. WSB is based on a simpli�ed two-step chemical model with
an initial zero-order, thermally activated (Ec > 0), mildly exothermic, solid-to-gas reaction, modeled as
a thermal decomposition of the solid:

A(sol id)→ B(gas) (7.5)

Intermediate B, in the presence of any gas phase collision partnerM, reacts in a highly exothermic fashion
producing a ame. �is step is modelled as a second-order, gas phase, free radical chain reaction based
on the assumption that Eg = 0:

B(gas) +M(gas)→ C(gas) +M(gas) (7.6)

As such, this second equation represents the reaction in the gas phase that causes heat convection back
to the surface that activate the �rst reaction. In Steady Burn, a solution is found by iteratively solving two
equations: one for mass burning rate ṁ and one for surface temperature Ts. Mass ux is initially solved
with an assumed value Ts (in the model set to 850.0K) using WSB:

ṁ (Ts) =

¿
ÁÁÁÁÁÁÁÀ

κcρcAcRT2s exp(
−Ec
RTs

)

CpEc (Ts − T0 −
Qc

2Cp
)

(7.7)

�e solution to this equation is used to re�ne the surface temperature and vice-versus until a self-consistent
solution for surface temperature and mass ux has been found. �e surface temperature equation takes
the form:

Ts(ṁ, P) = T0 +
Qc

Cp
+

Qg

Cp (1 + xg (ṁ, P)
xcd(ṁ) )

(7.8)

xg in the third term of Equation (7.8) is the ame stando� distance, computed from:

xg (ṁ, P) =
2xcd (ṁ)√

1 + Da (ṁ, P) − 1
(7.9)

where xcd and Da are the convective-di�usive length and Damkohler number, respectively:

xcd (ṁ) =
κg
ṁCp

(7.10)

Da (ṁ, P) =
4BgMCpP2

R2κg
xcd (ṁ)2 (7.11)
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WSBmodel is valid as a 1Dmodel, but needs extension to work in a 3Dmultimaterial CFD environment.
As such, Steady Burn is WSB extended with logic for ignition of energetic materials and computation of
surface area for burning cells. Ignition of a cell is based on three criteria:

• �e cell must contain one particle of energetic solid
• �e cell is near a surface of an energetic solid (e.g. ratio of minimum node-centered mass to max-
imum node-centered mass is less than 0.7)

• One neighboring cell must have at most two particles of energetic material

If a cell is ignited, themodel will be applied andmass will be transferred from reactantmaterial to product
material. Total mass burned is computed using mass ux ṁ, ∆t of the timestep and the calculated surface
area, found using:

A = δxδyδz
δx∣gx ∣ + δy∣gy ∣ + δz∣gz ∣

(7.12)

where δx, δy, and δz are the dimensions of the cell and components of Ð→g are the normalized density
gradients of the particle mass in a cell. A more thorough examination of Steady Burn can be read about
in [73].

�e following table describes the input parameters for Steady Burn. �e �nal column of the table indicates
parameters for combustion of HMX.
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Steady Burn Input Parameters
Tag Type Description HMX Value
<fromMaterial> String ‘Name’ of reactant mate-

rial (mass source)
<toMaterial> String ‘Name’ of product mate-

rial (mass sink)
<IdealGasConst> double Ideal gas constant (R) 8.314J/(K ×mol)
<PreExpCondPh> double Condensed phase pre-

exponential coe�cient
(Ac)

1.637 × 1015s−1

<ActEnergyCondPh> double Condensed phase activa-
tion energy (Ec)

1.76 × 105J/mol

<PreExpGasPh> double Gas phase frequency fac-
tor (Bg)

1.6 × 10−3m3/(kg × s × K)

<CondPhaseHeat> double Condensed phase heat re-
lease per unit mass (Qc)

4.0 × 105J/kg

<GasPhaseHeat> double Gas phase heat release per
unit mass (Qg)

3.018 × 106J/kg

<HeatConductGasPh> double �ermal conductivity of
gas (κg)

0.07W/(m × K)

<HeatConductCondPh> double �ermal conductivity of
condensed phase (κc)

0.02W/(m × K)

<Speci�cHeatBoth> double Speci�c heat at constant
pressure (cp)

1.4 × 103J/(kg × K)

<MoleWeightGasPh> double Molecular weight of gas
(W)

3.42 × 10−2kg/mol

<BoundaryParticles> int Max # of particles a cell
can have and be burning

Resolution dependent

<�resholdPressure> double �reshold pressure cell
must have ≥ to burn mass

50000Pa

<IgnitionTemp> double Temperature cell must
have ≥ to be burning

550K
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7.4.3 Unsteady Burn

Unsteady Burn is a model developed at the University of Utah as an extension of Steady Burn to better
represent mass burning rates when pressure at the burning surface uctuates. A pressure-coupled re-
sponse is accounted for in the model such that, qualitatively a pressure increase causes gas phase reaction
rates to increase as well as move the gas phase reactions closer to the burning surface. Increase of near
surface gas phase reactions increases the rate of thermally activated solid state reactions, ultimately caus-
ing a higher steady burn rate. Unsteady Burn more accurately models the transition from low pressure to
high pressure than Steady Burn by taking into account the initially overshot burn rate at the time when
the pressure increases, and the relaxation period to steady burn rate. Similarly, Unsteady Burn models
undershot pressures during pressure drops.

�emodel is an extension of Steady Burn by partial decoupling of the gas phase and solid state Equations
(7.7) and (7.8). An expression for the temperature gradient of the solid:

β = (Ts − T0)
mcp
κc

(7.13)

is reaarranged for (Ts − T0) and substituted in Equation (7.7) leading to the quadradic equation:

ṁ2 − 2βκc
Qc

ṁ + 2AcRT2s κcρc
EcQC

exp(−Ec
RTs

) = 0 (7.14)

which allows independent tracking of temperature gradient β and surface temperature Ts. �e gas phase
response is computed using a runnning average of Ts as it approaches the steady burning value. A solid
state response is obtained by computing a running average of β as it approaches the steady burning value.
A slow relaxation time for β and a fast relaxation time for Ts models the overshoot or undershoot in burn
rate. Burning criteria for a cell is the same as Steady Burn. For more information on Unsteady Burn see
[73].

�e following table describes the input parameters for Unsteady Burn.
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Unsteady Burn Input Parameters
Tag Type Description
<fromMaterial> String ‘Name’ of reactant material (mass source)
<toMaterial> String ‘Name’ of product material (mass sink)
<IdealGasConst> double Ideal gas constant (R)
<PreExpCondPh> double Condensed phase pre-exponential coe�cient

(Ac)
<ActEnergyCondPh> double Condensed phase activation energy (Ec)
<PreExpGasPh> double Gas phase frequency factor (Bg)
<CondPhaseHeat> double Condensed phase heat release per unit mass

(Qc)
<GasPhaseHeat> double Gas phase heat release per unit mass (Qg)
<HeatConductGasPh> double �ermal conductivity of gas (κg)
<HeatConductCondPh> double �ermal conductivity of condensed phase (κc)
<Speci�cHeatBoth> double Speci�c heat at constant pressure (cp)
<MoleWeightGasPh> double Molecular weight of gas (W)
<BoundaryParticles> int Max # of particles a cell can have and be burn-

ing
<BurnrateModCoef> double if ≠1.0, scale unsteady rate with steady rate as

ṁu = ṁs ( ṁu
ṁs

)
Bm

<CondUnsteadyCoef> double Coe�cient for condensed phase pressure re-
sponse relaxation

<GasUnsteadyCoef> double Coe�cient for gas phase pressure response re-
laxation

<�resholdPressure> double �reshold pressure cellmust be≥ to burnmass
<IgnitionTemp> double Temperature cell must be at ≥ to be burning
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7.4.4 Ignition & Growth

�e Ignition & Growth model created by Lee and Tarver [74] to simulate shock-to-detonation transitions
in condensed explosives. �e rate equation takes the form:

dF
dt

= I(1 − F)b ( ρ
ρ0

− 1 − a)
x

+G1(1 − F)cFdPy +G2(1 − F)eF gPz (7.15)

where F is the extent of reaction in a cell, P is the pressure, ρ and ρ0 are the current and initial density
of the explosive and I, G1, G2, a, b, c, d, e, g, x, y and z are constant �t parameters. �e three terms are
the ignition, growth and completion terms respectively. �e ignition term is used to emulate hot-spot
formation and strengthening and runs over 0 < F < Figmax where Figmax is a constant. �e growth term
is used as a fast term for growth of the shock front and runs over 0 < F < FG1max where FG1max is a
constant. �e completion term is a slow term used to model the precipitation of solid carbon at the end
of reaction and runs over FG2min < F < 1 where FG2min is a constant. �e model input parameters are
detailed in the following table.

Ignition & Growth Input Parameters
Tag Type Description
<fromMaterial> String ‘Name’ of reactant material (mass source)
<toMaterial> String ‘Name’ of product material (mass sink)
<I> double Ignition rate constant (hot-spot frequency)
<G1> double Growth rate constant
<G2> double Completion rate constant
<a> double Ignition constant
<b> double Ignition exponent
<c> double Growth exponent
<d> double Growth exponent
<e> double Completion exponent
<g> double Completion exponent
<x> double Ignition density exponent
<y> double Growth pressure exponent
<z> double Completion pressure exponent
<Figmax> double Maximum reaction extent for hot-spot (igni-

tion) term
<FG1max> double Maximum reaction extent for fast (growth)

term
<FG2min> double Minimum reaction extent for slow (comple-

tion) term
<rho0> double �e initial density of the explosive
<E0> double �e energy of detonation
<�resholdPressure> double Reaction is allowed to occur above this pres-

sure
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7.4.5 JWL++

�e JWL++ model by Souers et al. [59] is related to the Ignition and Growth model (see Section 7.4.4),
but much simpli�ed in its form for ease of rate constant �t. �e rate is described by:

dF
dt

= G(1 − F)Pb (7.16)

where F is the extent of reaction, P is the pressure andG and b are �t constants. Several other forms of the
JWL++ model have been formulated, however this is the only one that is currently supported in Uintah.
Input paramters are shown in the follwoing table.

Ignition & Growth Input Parameters
Tag Type Description
<fromMaterial> String ‘Name’ of reactant material (mass source)
<toMaterial> String ‘Name’ of product material (mass sink)
<G> double Growth rate constant
<b> double Completion rate constant
<rho0> double �e initial density of the explosive
<E0> double �e energy of detonation
<�resholdPressure> double Reaction is allowed to occur above this pres-

sure
<�resholdVolFrac> double (Optional; default 0.01) Minimum volume of

explosive in a cell for reaction
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7.4.6 DDT0

Deagration-to-detonation model 0 (DDT0) was the �rst incarnation of a model that contains two rate
models to represent three di�erent reaction modes. �e model is capable of surface burning, convective
burning and detonation. Burning is accomplished using the same model as Simple Burn (see Section
7.4.1). Detonation is accounted for by the JWL++ model (see Section 7.4.5) presented by P. Clark Souers
[59]. �e simple threshold pressure separates detonation and deagration regimes. In addition, a crack-
size dependent model may be optionally used to allow convective burning to occur in the bulk material.
�e crack-size threshold is computed via an expression �t by Berghout et al. [75] �e parameters are
presented in the following table.

DDT0 Input Parameters
Tag Type Description
<fromMaterial> String ‘Name’ of reactant material (mass source)
<toMaterial> String ‘Name’ of product material (mass sink)
<G> double Rate constant for detonation (JWL++ model)
<b> double Pressure exponent for detonation (JWL++

model)
<E0> double Energy of reaction for detonation (JWL++

model)
<�resholdPressureJWL> double �reshold pressure for onset of detonation
<�resholdVolFrac> double (Optional; default 0.01) Minimum volume

fraction of reactant for detonation to occur in
a cell

<Enthalpy> double Energy of reaction for deagration (Simple
Burn model)

<BurnCoe�> double Rate constant for deagration (Simple Burn
model)

<refPressure> double Reference pressure for deagration (Simple
Burn model)

<�resholdTemp> double �reshold temperature for combustion (Sim-
ple Burn model)

<TresholdPressureSB> double �reshold pressure required for combustion
(Simple Burn model)

<useCrackModel> boolean (Optional; default false) Switch that allows
convective burning

<Gcrack> double (Required for ’useCrackModel’) Rate constant
for convective deagration

<CrackVol�reshold> double (Optional; default 1e-14) Volume fraction of
reactant above temperature needed for con-
vective deagration

<nCrack> double (Required for ’useCrackModel’) Pressure ex-
ponent for convective deagration
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7.4.7 DDT1

Deagration-to-detonation model 1 (DDT1) [76] was the second incarnation of a model that contains
two rate models to represent three di�erent reaction modes. �e model is capable of surface burning,
convective burning and detonation. Burning is accomplished using the same model as Steady Burn (see
Section 7.4.2). Detonation is accounted for by the JWL++ model (see Section 7.4.5) presented by P. Clark
Souers [59]. �e simple threshold pressure separates detonation and deagration regimes. In addition,
a crack-size dependent model may be optionally used to allow convective burning to occur in the bulk
material. �e crack-size threshold is computed via an expression �t by Berghout et al. [75]�e parameters
are presented in the following table.

DDT1 Input Parameters
Tag Type Description
<fromMaterial> String ‘Name’ of reactant material (mass source)
<toMaterial> String ‘Name’ of product material (mass sink)
<burnMaterial> String (Optional; default ‘toMaterial’) ‘Name’ of

product material for deagration
<G> double Rate constant for detonation (JWL++ model)
<b> double Pressure exponent for detonation (JWL++

model)
<E0> double Energy of reaction for detonation (JWL++

model)
<�resholdPressureJWL> double �reshold pressure for detonation
<�resholdVolFrac> double (Optional; default 0.01) Minimum volume

fraction of reactant for detonation to occur in
a cell

<IdealGasConst> double Ideal gas constant (R)
<PreExpCondPh> double Condensed phase pre-exponential coe�cient

(Ac)
<ActEnergyCondPh> double Condensed phase activation energy (Ec)
<PreExpGasPh> double Gas phase frequency factor (Bg)
<CondPhaseHeat> double Condensed phase heat release per unit mass

(Qc)
<GasPhaseHeat> double Gas phase heat release per unit mass (Qg)
<HeatConductGasPh> double �ermal conductivity of gas (κg)
<HeatConductCondPh> double �ermal conductivity of condensed phase (κc)
<Speci�cHeatBoth> double Speci�c heat at constant pressure (cp)
<MoleWeightGasPh> double Molecular weight of gas (W)
<BoundaryParticles> int Max # of particles a cell can have and be burn-

ing
<�resholdPressure> double �reshold pressure cell must have ≥ to burn

mass
<IgnitionTemp> double Temperature cell must have ≥ to be burning
<TresholdPressureSB> double �reshold pressure required for combustion
<useCrackModel> boolean (Optional; default false) Switch that allows

convective burning
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Dynamic Output Intervals

�edynamic output intervals section is used to change how frequently the output interval and check point
interval are saved. �e intervals can be changed when the pressure is a cell with reactant is greater than
the set pressure threshold and/or when detonation is detected. �is only works when using the DDT1
reaction model.

Dynamic Output Intervals Input Parameters
Tag Type Description
<Pressure�reshold> double Pressure threshold to switch output interval

(Pa)
<newOutputInterval> double Output interval a�er switch is reached
<newCheckPointInterval> double Check point interval a�er switch is reached
<remainingTimesteps> double Number of timesteps a�er detonation when

the simulation will shut down

�e input �le speci�cation is as follows:
1 <Models >

2 ....

3 <adjust_IO_intervals >

4 <PressureSwitch >

5 <PressureThreshold > 4.0e9 </PressureThreshold >

6 <newOutputInterval > 1e-7 </newOutputInterval >

7 <newCheckPointInterval > 1e-7 </newCheckPointInterval >

8 </PressureSwitch >

9
10 <DetonationDetected >

11 <remainingTimesteps > 20 </remainingTimesteps >

12 <newOutputInterval > 1e-6 </newOutputInterval >

13 <newCheckPointInterval > 1e-6 </newCheckPointInterval >

14 </DetonationDetected >

15 </adjust_IO_intervals >

16 ....

17 </Models >
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Induction Time

To accurately represent the propagation of deagration an ”induction” period, or wait time was intro-
duced. �is induction period is the time a cell must wait before reactant mass would be converted to
product gas using the WSB burn model [72]. �e induction time is dependent on the surrounding pres-
sure and the size of the cell. �e induction time model is based o� experimentally determined ame
propagation on a surface as seen in equation 7.17 [77], where P is the dimensionless pressure (p/p0) and
S f is the ame propagation in cm/s. Equation 7.17 is used in determining the induction time as seen by
equation 7.18 where x is the size of the cell and A is a constant used to speed up or slow down the prop-
agation of convective deagration. A varies depending on the length of the cell but should be used to
give the correct propagation of convective deagration only. �e model determines which direction the
ame is coming from in turn adjusting A according to the angle of penetration. For instance if the ame
is propagating along a surface but not into the solid A = 1 but if the ame is propagating directly into the
surface A equals the value set in the input �le.

S f = 0.259P0.538 (7.17)

τ = ∆xA
S f

(7.18)

Dynamic Output Intervals Input Parameters
Tag Type Description
<useIndcutionTime> boolean (Optional; default false) Switch that slows

down deagration propagation
<IgnitionConst> double Constant used to speed up or slow down the

convective deagration propagation
<PressureShi�> double Pressure used to make dimensionless pressure

(p0)
<ExponentialConst> double Exponential constant used in ame propaga-

tion equation
<PreexopConst> double Pre-exponential constant used in ame prop-

agation equation

�e input �le speci�cation is as follows:
1 <Models >

2 ....

3 <useInductionTime > true </useInductionTime >

4 <IgnitionConst > 0.00009 </IgnitionConst >

5 <PressureShift > 1.0e5 </PressureShift >

6 <ExponentialConst > 0.538 </ExponentialConst >

7 <PreexpoConst > 0.00259 </PreexpoConst >

8 ....

9 </Models >

�e pressure shi�, exponential and pre-exponential constants presented above are given by Son et al. [77]
for experimentally determined values for the explosive PBX9501.
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7.5 Examples

Mach 2Wedge

ProblemDescription

�is is a simulation of a symmetric 20o wedge traveling through initially quiescent air at Mach 2.0. A
shock forms at the leading edge of the wedge and an expansion fan over its top. Consultation of oblique
shock tables, e.g. [78] (pp.308-309) reveals that the angle of the leading shock compares quite well with
the expected value. In addition, this simulation demonstrates a few other useful features of the uid-
structure interaction capability. In this case, the structure is rigid, and as such, essentially provides a
boundary condition to the compressible ow calculation. Furthermore, the geometry of the wedge is
described via a triangulated surface, rather than the geometric primitives usually used. �is allows the
user to study ow around arbitrarily complex objects, without the di�culty of generating a body �tted
mesh around that object.

Simulation Speci�cs

Component used: rmpmice (Rigid MPM-ICE)
Input �le name: Mach2wedge.ups
Command used to run input �le: sus inputs/UintahRelease/MPMICE/Mach2wedge.ups (Note: �e

�les wedge40.pts and wedge40.tri must also be copied to the same directory as sus.)
Simulation Domain: 0.25 x 0.0375 x 0.001 m
Cell Spacing:

.0005 x .0005 x .001 m (Level 0)
Example Runtimes:

20 minutes (1 processor, 3.16 GHz Xeon)

Physical time simulated: 0.3 milliseconds
Associated visit session: M2wedge.session
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Figure 7.1: 20o wedge moving at Mach 2.0 through initially stationary air. Contour plot depicts pressure.

Results

Figure 7.1 shows a snapshot of the simulation. Contour plot depicts pressure and reects the presence of
a leading shock and an expansion fan.
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Figure 7.2: Flow over a stationary cylinder, Re = 700, a passive scalar is used as a ow marker

Cylinder in a Crossow

ProblemDescription

In this example the domain is initially �lled with air moving at a uniform velocity of 0.03m/s A ridgid
cylinder O .D. = 0.02m is placed 0.1m from the inlet and a passive scalar is injected into the domain
through a 0.002m hole on in the inlet boundary of the domain. A velocity perturbation is placed upstream
of the cylinder to produce an instablity that will help trigger the onset of the Kármán vortex street.

Simulation Speci�cs

Component used: rmpmice (Rigid MPM-ICE)
Input �le name: cylinderCrossFlow.ups
Command used to run input �le:

mpirun − np6susinputs/UintahRelease/MPMICE/cylinderCrossFlow.ups
Simulation Domain: 0.3 x 0.15 x 0.001 m
Cell Spacing:

.00015 x .001 x .001 m (Level 0)
Example Runtimes:

7ish hrs (6 processor, 3.16 GHz Xeon)

Physical time simulated: 60 seconds
Associated visit session: cyl crossFlow.session

Results

Figure 7.2 shows a snapshot of the simulation at time t = 60sec. �e contour plot of the passive scalar
shows the Kármán vortex street behind the cylinder at Re = 700. A movie of the results is located at

1 movies/cyl_crossFlow.mpg
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Copper Clad Rate Stick (aka “Cylinder Test”)

ProblemDescription

�is is a two-dimensional version of the “cylinder test” which is used to characterize equations of state for
explosive products. In those tests, a copper tube is �lled with a high explosive and a detonation is initiated
at one end. Various means are used to measure the velocity of the tube as the high pressure product gases
expand inside of it.

Here, a cylinder (r = 2.54cm) of QM100 is jacketed with a copper cylinder that has a wall thickness of
0.52cm. Detonation is initiated by giving a thin layer of the explosive a high initial velocity in the axial
direction which generates a pressure that is su�ciently high to reach trigger the detonation model. As
the detonation proceeds, the copper is pushed out of the domain by the expanding product gases.

Note that in this example, to make run times brief, the domain is very short in the axial direction, and is
probably not su�cient for the detonation to reach steady state. Additionally, the domain has been reduced
to two dimensions, as symmetry is assumed in the Z-plane. Finally, the spatial resolution of 1.0mm is a
bit coarse to achieve convergent results. �e full three dimensional result can quickly be obtained by
commenting out the symmetry condition on the z+ plane and uncommenting the Neumann conditions,
as well as changing the spatial extents and resolution in the Z direction to match those in the Y direction.

Simulation Speci�cs

Component used: mpmice (MPM-ICE)
Input �le name: QM100CuRS.ups
Command used to run input �le:

susinputs/UintahRelease/MPMICE/QM100CuRS.ups
Simulation Domain: 0.055 x 0.032 x 0.0005 m
Cell Spacing:

1.0 mm x 1.0 mm x 1.0 mm (Level 0)
Example Runtimes:

20 minutes (1 processor, 3.16 GHz Xeon)

Physical time simulated: 30 µseconds
Associated visit session: QM100.session

Results

Figure 7.3 shows a snapshot of the simulation at time t = 60sec. Particles are colored by velocity magni-
tude, contours reect the density of explosive, note the highly compressed region near the shock front.
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Figure 7.3: Detonation in a copper cylinder (2-D). Particles are colored by velocity magnitude, contours
indicate density of unreacted explosive.

Cylinder Pressurization Using Simple Burn

ProblemDescription

�is example demonstrates use of the Simple Burn algorithm in an explosive scenario. �e exact situation
consists of a cylinder of PBX encased in steel. For simplicity it is set up as a 2D simulation. It demonstrates
Symmetric boundaries as a useful construct for simplifying the computational requirements of a problem.
�e end result is the pressurization of a quarter of a cylinder by combustion of PBX 9501. Damage and
failure models simulate cylinder failure in a detonation scenario. �e simulation as it stands falls far short
of the required physical time simulated for actual detonation, but demonstrates how Simple Burn can be
used to pressurize a cylinder. For description of Simple Burn see 7.4.1.

Simulation Speci�cs

Component used: mpmice (MPM-ICE)
Input �le name: guni2dRT.ups
Preprocessing on input �le:

1) Comment out or remove <max Timesteps> on line 21
2) Comment out <outputTimestepInterval> on line 96
3) add <outputInterval>5e-5<outputInterval> on line 97

Command used to run input �le: mpirun -np 4 sus inputs/UintahRelease/MPMICE/guni2dRT.ups
Simulation Domain: 8.636 x 8.636 x 0.16933 cm
Example Runtimes:

2 minutes (1 processor, 2.8 GHz Xeon)

Physical time simulated: 8 microseconds

Associated visit session: SimpleBurn.session
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(a) Receding PBX9501 leads to
pressure increase in cylindrical
steel shell

(b) Pressure increase causes cylin-
der to respond

(c) �e le� half of the image rep-
resents particles as spheres colored
according to mass and pressure
as background color. Top-right
shows delP Dilatate and bottom-
right shows delP MassX

Figure 7.4

Results

With the recession of mass comes a pressure increase that causes the case to expand outward. A snapshot
of pressure a�er the 0.4 milliseconds can be seen in Figure 7.4a. At this time pressure has increased to
three-fold its initial value. A later snapshot Figure 7.4b shows the response of the steel cylinder to increased
pressure. Note that mass ux will scale according to 7.4. Another interesting view of the simulation can be
seen in Figure 7.4c. On the le� is the normal particle and pseudocolor map representing solid mass and
pressure respectively. On the top right, change in pressure during the timestep can be seen (delP Dilatate).
�e bottom shows change in pressure due to mass exchange (del MassX). See table 6.1.10 for description
of these variables.
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Exploding Cylinder Using Steady Burn

ProblemDescription

�is problem consistes of a cylinder initially at 600 K causing burning. Steady Burn acts as the model for
burning of HE material. More information on Steady Burn can be found in 7.4.2. �e cylinder is build
from an outer shell of steel covering a hollow bored cylinder of PBX9501. �e simulation demonstrates the
violence of explosions when large voids allow rapid expansion of surface area due to collapse of explosive
material into the bore. Information on the violence of explosions with solid and hollow cores can be
attained in [73].

Simulation Speci�cs

Component used: mpmice (MPM-ICE)
Input �le name: SteadyBurn 2dRT.ups
Preprocessing on input �le:

1) Comment out or remove <max Timesteps>
2) Comment out <outputTimestepInterval> and uncomment <outputInterval> around line 101

Command used to run input �le: mpirun -np 4 sus
inputs/UintahRelease/MPMICE/SteadyBurn 2dRT.ups

Simulation Domain: 9 x 9 x 0.1 cm
Example Runtimes:

5 hours (1 processor, 2.8 GHz Xeon)
Physical time simulated: 3 milliseconds

Associated visit session: SteadyBurn.session
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(a) Collapse of PBX into hollow
bore of explosive device

(b) Expansion of steel casing as ex-
plosion occurs–response to pres-
sure build-up

(c) Burning Cells denoted by red
squares

Figure 7.5

Results

Figure 7.5a shows a nice view of the cylinder as the PBXparticles within is collapsing into the void, creating
more burnable surface area resulting in more violent explosion. Figure 7.5b shows a view of the cylinder
as the steel container begins to expand outward. Arrows represent the speed at which the particles in the
steel case are expanding outward. Figure 7.5c shows cell agged as burning by Steady Burn.
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T-Burner Example Using Unsteady Burn

ProblemDescription

�eT-Burner problemwas inspired by an article by Jerry Finlinson, Richard Stalnaker andFredBlomshield
in which a T-Burner apparatus was pressurized to a given pressure and ignited [79]. �e T-Burner com-
posed of a cylinder with HMX on each circular ends, and a pressure inlet halfway between the HMX caps
pumps pressure into the vessel parallel to those walls. Finlinson, et. al. measured pressure oscillations
in the chamber and this simulation mimics the behavior found of Finlinson’s 500 psi experiment. For
simplicity and resource minimization, the simulation is set up as a 2D T-Burner. �e graphs below shows
the pressure oscillations over time compared with that from [79]. �is simulation demonstrates the utility
of Unsteady Burn in simulations where pressure oscillations occur in small places. For more information
on Unsteady Burn see 7.4.3.

Simulation Speci�cs

Component used: mpmice (MPM-ICE)
Input �le name: TBurner 2dRT.ups
Command used to run input �le: mpirun -np 4 sus TBurner 2dRT.ups
Simulation Domain: 0.822 x 0.138 x 0.003 m
Example Runtimes:

25 minutes (1 processor, 2.8 GHz Xeon)

Physical time simulated: 0.46 milliseconds
0.46 milliseconds of simulation equates ag <max Timesteps>410< /max Timesteps>
Notes:
1)Remove line from input �le to allow simulation to run full 0.25 seconds
2)Comment out <outputTimestepInterval> and uncomment <outputInterval> to make output ∆t
constant

Associated visit session: TBurner.session
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Results

Figure 7.6a, 7.6b and 7.6c show successive snapshots of the simulation. Contour plot depicts pressure
and represents the wave front as it oscillates between two sheets of burning PBX 9501. Figure 7.6d shows
velocities of gas cells.

(a) Time 1: Oscillatory be-
havior in the form of a pres-
sure wave in a T-Burner.
Contour plot depicts pres-
sure

(b) Time 2: Oscillatory be-
havior in the form of a pres-
sure wave in a T-Burner.
Contour plot depicts pres-
sure

(c) Time 3: Oscillatory be-
havior in the form of a pres-
sure wave in a T-Burner.
Contour plot depicts pres-
sure

(d) Velocity vectors of cell
material. Shows how the
pressure causes gas to move

Figure 7.6

Figure 7.6d shows a snapshot of the simulation at the same instant as the previous �gure. �e contour
plot depicts pressure. �e arrows are vectors depicting the importance
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Pinwheel

ProblemDescription

�is simulation provides an example of uid-solid interaction through driving a pinwheel via a supersonic
jet of air. A 500 m/s jet of air is directed at the face of one of four �ns attached to a hollowed cylinder
surrounding a pin. �is continuous jet of air spins the wheel around the stationary pin creating an easily
visually veri�able uid-solid interaction model.

Simulation Speci�cs

Component used: mpmice (MPM-ICE)
Input �le name: pinWheel.ups
Command used to run input �le: mpirun -np 6 sus inputs/UintahRelease/MPMICE/pinWheel.ups
Simulation Domain: 4.5 x 3.0 x 4.5 m
Example Runtimes:

10 hours (6 processors, 2.66 GHz Xeon)

Physical time simulated: 1 second

Associated visit session: pinWheel.session
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Figure 7.7: Pinwheel driven by a jet of air

Results

Figure 7.7 shows a visualization of the pinwheel alongside the air jet represented by the velocity vectors.
�e air jet contacts a �n on the wheel causing it to continuously rotate counterclockwise as seen by the
colored velocity of the boxes.



8—Using adaptive re�nement

Whether working with an adaptive or a static grid, adaptive mesh re�nement (AMR) AMR problems
follow the same cycle. �ere are 3 main AMR operations

• Coarsen -�is occurs a�er each execution of a �ner level, if the time of the �ner level lines up with
the time of the coarser level (see the ”W-cycle” diagram). Its data are coarsened to the coarser level
so that the coarse level has a representation of the data at the �nest resolution. Also as part of this
operation is the ”reux” operations, which to makes the uxes across the face of the coarse-�ne
boundary consistent across levels.

• Re�ne the coarse-�ne interface - �is occurs a�er the execution of each level and a�er an asso-
ciated coarsen (if applicable). �e cells of the boundary of the �ner level are interpolated with the
nearest cells on the coarser level (so the �ner level stays in sync with the coarser levels).

• Re�ne - �is occurs for new patches created by the regrid operation. Variables that are necesary
will be created on those patches by interpolation from the coarser level.

A�er an entire cycle, we check to see if we need to regrid. If the ags haven’t changed such that patches
would form, the grid will remain the same.

Figure 8.1 illustrates theW-cycle approach for a time re�nement ratio of 2. Figure 8.2 illustrates a lockstep-
cycle .

8.1 AMR inputs

In general, the adaptive mesh re�nement (AMR) input for CFD problems in the .ups �le looks like the
following:

1 <AMR>

2 <ICE>

3 <do_Refluxing > false </do_Refluxing >

4 <orderOfInterpolation > 1 </orderOfInterpolation >

5 <Refinement_Criteria_Thresholds >

6 <Variable name = "press_CC" value = "1e6" matl = "0" />

7 </Refinement_Criteria_Thresholds >

8 </ICE>

9 <MPM>

10 <min_grid_level > -1 </min_grid_level >

11 <max_grid_level > -1 </max_grid_level >

12 </MPM>

13 <useLockStep >true</useLockStep >

14 <Regridder type="BNR">
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Figure 8.1: AMR Cycle W

Figure 8.2: AMR Cycle Lock

15 <!--to use hierarchical regridder set the type to "Hierarchical",

16 to use the tiled regridder set the type to "Tiled" -->

17 <type> BNR </type>

18
19 <!--General Regridder Settings -->

20 <max_levels > 2 </max_levels >

21 <cell_refinement_ratio > [[2,2,1]] </cell_refinement_ratio >

22 <cell_stability_dilation > [2,2,0] </cell_stability_dilation >

23 <cell_regrid_dilation > [1,1,0] </cell_regrid_dilation >

24 <min_boundary_cells > [1,1,0] </min_boundary_cells >

25
26 <!--Hierarchical Specific Settings -->

27 <lattice_refinement_ratio > [[4,4,1],[2,2,1]] </lattice_refinement_ratio >

28
29 <!--Berger -Rigoutsos Specific Settings -->

30 <min_patch_size > [[8,8,1]] </min_patch_size >

31 <patch_ratio_to_target > 0.2 </patch_ratio_to_target >

32
33 <!--Tiled Specific Settings -->

34 <min_patch_size > [[8 ,8 ,1]] </min_patch_size >

35 <patches_per_level_per_proc > 8 </patches_per_level_per_proc >

36 </Regridder >

37 </AMR>

If you run an ICE simulation, then you must specify the ICE section.
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• do reuxing - speci�es whether or not to perform reuxing, which equalizes the face values of
coarse/�ne boundaries between levels.

• orderOfInterpolation - speci�es how many coarse cells to use when re�ning the coarse-�ne inter-
face (see below).

• the Re�nement Criteria Thresholds section speci�es the variables whose value will determine
where to mark re�nement ags, see below. Variables need only be speci�ed on adaptive problems.

• min grid level (optional) - coarsest level to run ICE on (default = 0).
• max grid level (optional) - �nest level to run ICE on (default = max-level -1).

If you run anMPMsimulation, youmust specify theMPMsection, and setmin grid level andmax grid level
to the �nest level of the simulation, 0-based (i.e., if there are 2 levels, the level needs to be set to 1). A short-
cut to this is to set min- andmax grid level to -1.

• useLockStep - Some simulations require a lock step cycle (mpmice and implicit ice), as there has to
be inter-level communication in the middle of a timestep. SeeW-cycle diagram below. Otherwise
the time re�nement ratio will be computed from the cell re�nement ratio.

�e presence of the Regridder section speci�es you want to run an adaptive problem.

• type (optional) - sets the Regridder type. �e options are Tiled , BNR (Berger-Rigoutsos), Hierar-
chical (default). Only the Tiled regridder can be used with ICE and MPM problems.

• max levels - maximum number of levels to create in the grid.
• cell re�nement ratio - How much to re�ne a cell in each dimension. �is can be speci�ed in a
comma-separated list, as in the example for lattice re�nement ratio , and for each level not in-
cluded in the list, it will be set to the last value speci�ed.

• cell stability dilation - How much to pad the re�nement ags in each dimension for stability rea-
sons.

• cell regrid dilation - Howmuch to pad the re�nement ags in each dimension in order to reduce
regridding frequency.

• min boundary cells -�eminimumnumber of cells that needs to exist between one level’s coarser
level and its �ner level (i.e., between level 0 and 2).

Hierarchical Speci�c Settings

• lattice re�nement ratio - Speci�c to Hierarchical Regridder. Determines how many patches to
potentially divide a coarser patch into on the �ner level. See Regridding section below.

Berger-Rigoutsos Speci�c Settings

• min patch size - sets the minimum patch size created by the regridder per level. �is size must
divide evenly into the resolution and must be divisible by the cell re�nement ratio.

• patch ratio to target - sets the maximum patch size to the average work load per processor times
this value. �eoretical load imbalance should be close to one half of this value. Setting this value
too small will create an excess number of patches and cause excessive overhead. .2 seems to be a
reasonable value.

Tiled Speci�c Settings

• min patch size - sets the minimum patch size created by the regridder per level. �is size must
divide evenly into the resolution and must be divisible by the cell re�nement ratio.

• patches per level per proc - sets the number of patches per level per processor that the load bal-
ancer attempts to achieve. If the number of patches is signi�cantly more than the number speci�ed
the tiled regridder will increase the tile size by a factor of two in order to reduce the number of
patches.

If you are using the Berger-Rigoutsos regridder you should also include a LoadBalancer (see Section 9).
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8.2 AMR Grids

�ere are two ways to run with mesh-re�nement, either adaptive or non-adaptive (static). Adaptive grids
are created based on the existence of re�nement ags that are created during the simulation. A regridder
will take the ags, and, wherever there are re�nement ags, patches are constructed around them on a
�ner level. grids are constructed from the set of levels in the input �le.

8.2.1 Regridding approaches

For an adaptive problem, specify the Regridder section in the input �le.

Hierarchical regridder

�e Hierarchical regridder works as follows:

Divide each patch into subpatches according to the lattice re�nement ratio . E.g., with a ratio of [2,2,2],
it will create 8 subpatches. �en, if there are re�nement ags within the region of that subpatch, then a
patch (with resolution increased by the cell re�nement ratio ) will be added with the subpatch’s range
on the next �ner level. �is regridder is ine�cient and has been superseded by the Tiled regridder.

Berger-Rigoutsos regridder

�e Berger-Rigoutsos regridder works as follows:

Tiles of the size of theminimumpatch size are laid across the next �ner level. �e re�nement ags are then
used to give each of these tiles a single ag indicting if a ag exists within them. �e Berger-Rigoutsos
algorithm is then used to create an initial patch set. Next a post processing phase splits patches in order to
meet alignment constraints. Finally another post process phase splits the largest patches further depend-
ing on the patch ratio to target input �le speci�cation. �e Berger-Rigoutsos regridder should produce
patch sets with a much smaller number of patches than the Hierarchical Regridder causing less overhead
allowing decreasing AMR overhead. Unfortunately the cost of the running the BNR algorithm can be
substantial at large numbers of processors and the patch sets produced by this regridder are di�cult to
load balance. Because of this the Tiled regridder should be used.

Tiled regridder

�e Tiled regridder works as follows:

Tiles of the size of the minimum patch size are laid across the next �ner level. Re�nement ags are then
used to determine which of those tiles are in the patch set. If the number of tiles is more than twice the
target number of patches then the tiles size is doubled in the shortest dimension. If the number of tiles is
less than the target number of patches then the tile size is halved in the longest dimension. �e tile size
will never get smaller than theminimum speci�ed tile size. �is regridder produces regular patch sets that
are easy to load balance. �is regridder will eventually obsolete the Berger-Rigoutsos and Hierarchical
regridders.

8.2.2 Regridding theory

�e following is some general regridding information:

If there was a patch on a �ne level during one timestep, and then there are no re�nement ags in its region
on the coarser level, then it will be removed during the regridding process.

A�er patches are added, data are stored on them�en data will be initialized for those new patches, and
the next timestep, those patches will be included in the regridding process.

A constraint of the Regridder, is that any patch that shares a boundary with a patch on a di�erent level
must be within level. See (E) and (F) below.
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At initialization time, the regridder can be executed and then the problem reinitialized so the problem
can be initialized with allmax levels of re�nement.

Figure 8.3: AMR Regridding

In the diagram above, image (A) show 4 coarse patches with some marked error ags. (B) Shows the
subpatches for the next level and has the error ags dilated. (C) Shows the coarse level together with the
�ne level you end up with.

(D) During the next regrid, the next level can create error ags as well. �ese are some example error
ags that are dilated, with the subpatches for the next level. (E) shows the reulting level with the other
levels. However there are some patch boundaries that span more than one level. So (F) we must expand
out the middle level to compensate.

Note that if you you de�ne multiple levels in the input �le, all but the coarsest level will be recycled, and
levels will be added where the Regridder wants to put them.

Static Grids

Static grids can be de�ned (but make sure to not include a Regridder section) in the input �le. See the
multiple level example in Grid 2.10.

8.2.3 Regridder inputs

�e regridder creates a multilevel grid from the re�nement ags. Each level will completely cover the
re�nement ags from the coarser level. �e primary regridder used inVaango is the Tiled regridder. �e
tiled regridder creates a set of evenly sized tiles across the domain that will become patches if re�nement
is required in the tiles region.

�e following is an example of this regridder.
1 <Regridder type="Tiled">

2 <max_levels >2</max_levels >

3 <cell_refinement_ratio > [[2,2,1]] </cell_refinement_ratio >

4 <cell_stability_dilation > [2,2,0] </cell_stability_dilation >

5 <min_boundary_cells > [1,1,0] </min_boundary_cells >

6 <min_patch_size > [[8,8,1]] </min_patch_size >

7 </Regridder >

�emax levels tag speci�es the maximum number of levels to be created. �e cell re�nement ratio tag
speci�es the re�nement ratio between the levels. �is can be speci�ed on a per level basis as follows:

1 <cell_refinement_ratio > [[2,2,1],[4,4,1]] </cell_refinement_ratio >
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�e cell stability dilation tag speci�es how many cells around the re�nement ags are also guaranteed
to be re�ned. �emin boundary cells tag speci�es the size of the boundary layers. �e size of the tiles
is speci�ed using themin patch size tag and can also be speci�ed on a per level basis.
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Vaango has a few load balancing options which may be useful for increasing performance by decreasing
the load imbalance. �e following describes the loadbalancer section of an input �le and what e�ects it
has on the load balancer.

If no load balancer is speci�ed then a simple load balancing method which assigns an equal number of
patches to processors. �is is not ideal in most cases and should be avoided.

9.1 Input File Specs

1 <LoadBalancer type="DLB">

2 <!-- DLB specific flags -->

3 <costAlgorithm >ModelLS </costAlgorithm >

4 <hasParticles >true</hasParticles >

5
6 <!-- DLB/PLB flags -->

7 <timestepInterval >25</timestepInterval >

8 <gainThreshold >0.15</gainThreshold >

9 <outputNthProc >1</outputNthProc >

10 <doSpaceCurve >true</doSpaceCurve >

11 </LoadBalancer >

�ere are two main load balancers used in Vaango . �e �rst is the DLB load balancer . �is is a robust
load balancer that is good for many problems. In addition, this load balancer can utilize pro�ling in order
to tune itself during the runtime in order to achieve better results.

To use this load balancer the user must specify the type as DLB . It is also suggested that the user specify a
costAlgorithm which can beModel ,ModelLS ,Memory , or Kalman with the default beingModelLS . If
hasParticles is set to true then these cost algorithms will take the number of particles into account when
determining the cost.

�is algorithm �rst orders the patches linearly. If doSpaceCurve is set to true then this ordering is done
according to a Hilbert Space-Filling curve, which will likely provide better clusterings. Once the patches
are ordered linearly, costs are assigned to each patch and the patches are distributed onto processors so
that the costs on each processor are even.

�e PLB load balancer is an alterantive to the DLB load balancer which is likely more e�cent for par-
ticle based calculations. �is load balancer divides the patches into two sets (cell dominate and particle
domintate), which is determined using the particleCost and cellCost parameters. �e particle dominate
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patches are then assigned to processors while trying to equalize the number of particles on each processor.
Finally the cell dominate patches are assigned to patches in order to equalize the number of cells while
accounting for the number of cells already assigned during the particle assignment phase. �is method
can also utilize a space-�lling curve.

�e following list describes other ags utilized by these load balancers:

• timestepInterval - how many timesteps must pass before reevaluating the load balance.
• gainThreshold - the predicted percent improvement that is required to reload balance.
• outputNthProc - output data on only every Nth processor (experimental).
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�e UDA is a �le/directory structure used to save Vaango simulation data. For the most part, the user
need not concern himself with the UDA layout, but it is a good idea to have a general feeling for how the
data is stored on disk.

Every time a simulation (vaango ) is run, a new UDA is created. Vaango uses the <�lebase> tag in the
simulation input �le to name the UDA directory (appending a version number). If an UDA of that name
already exists, the next version number is used. Additionally, a symbolic link named ¡�lename¿.uda is
updated and will point to the newest version of this simulations UDA. For example,

1 disks.uda.000

2 disks.uda.001

3 disks.uda.001 <- disks.uda

Each UDA consists of a number of top level �les, a checkpoints subdirectory, and subdirectories for each
saved timestep. �ese �les include:

• .dat �les contain global information about the simulation (each line in the .dat �les contains: sim-
ulation time value).

• checkpoints directory contains a limited number of time step data subdirectories that contain a
complete snapshot of the simulation (allowing for the simulation to be restarted from that time).

• input.xml contains the original problem speci�cation (the .ups �le).
• index.xml contains information on the actual simulation run.
• t0000# contains data saved for that speci�c time step. �e data saved is speci�ed in .ups �le and
may be a very limited subset of the full simulation data.

�e validateUda script in src/Packages/Uintah/scripts/ can be used to test the integrity of a UDA di-
rectory. It does not interrogate the data for correctness, but performs 5 basic tests on each uda:

1 Usage validateUda <udas >

2 Test 0: Does index.xml exist? true or false

3 Test 1: Does each timestep in index.xml exist? true or false

4 Test 2: Do all timesteps.xml files exist? true or false

5 Test 3: Do all the level directories exist: true or false

6 Test 4: Do all of the pxxxx.xml files exist and have size >0: true or false

7 Test 5: Do all of the pxxxx.data files exist and have size > 0: true or false

If any of the tests fail then the corrupt output timestep should be removed from the index.xml �le.

See Section 2.6 for a description of how to specify what data are saved and how frequently.
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11.1 Introduction

Visualization of Vaango data is currently performed using VisIt . �e VisIt package from LLNL is gen-
eral purpose visualization so�ware that o�ers all of the usual capabilities for rendering scienti�c data. It
is developed and maintained by LLNL sta�, and its interface to Vaango data is supported by the Uin-
tah team. �e latest VisIt version that Vaango has been tested on is VisIt 3.1.1. �e UDA reader plugin
is currently incorporated directly into VisIt and does not have to be installed separately.

You can install VisIt by downloading one of the pre-built executables from https://wci.llnl.gov/

simulation/computer-codes/visit/executables. Alternatively, you can build your own version
from source using instructions given in the VisItweb page.

11.2 Particle data visualization

To visualize particle information, run VisIt . To open a UDA, select
Open File from the File menu (Figure 11.1). Browse into the UDA you
want to load (Figure 11.2) and select the index.xml �le (Figure 11.3). �en
hit on OK and a list of timesteps should now appear on the gui (Figure
11.4).

Figure 11.2: VisIt �le open dialog.

Now a window indicating an active source is created with an Add but-
ton. Click on this button and select Pseudocolor and the particle vari-
able p.volume (or any other quantity that is available in the UDA) as

Figure 11.1: VisIt control win-
dow.

https://wci.llnl.gov/simulation/computer-codes/visit/executables
https://wci.llnl.gov/simulation/computer-codes/visit/executables


194 Data visualization with VisIt

Figure 11.3: Selecting a UDA to load.

shown in Figure 11.5. �is allows you to plot scalar quantities that are
associated with the MPM particles. �e variable to be plotted is high-
lighted in green. Click on the Draw button (Figure 11.6) to visualize the
data.

Figure 11.5: Selecting the scalar particle variable to plot.

A plot of the data shows up on the display window as seen in Figure 11.7.

Figure 11.7: Plot of the particle data in the UDA �le.

Figure 11.4: Selecting the in-
dex.xml �le.

Figure 11.6: Clicking on the
Draw button.

Figure 11.8: Selecting pseudo-
color plot attributes.
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�e particles are too small in this plot because they are represented as
points. We can increase the size by changing the particle type into spheres.
To do that select PlotAtts as shown in Figure 11.8. If you then choose the
Pseudocolor item from the list, a window pops up that allows you to
modify the appearance of the particles (Figure 11.9). Change the button
for Point Type from Point tp Sphere (Figure 11.10).

Figure 11.10: Switching from point to sphere respresentation.

Figure 11.11 shows the updated view of theMPM particles. However, the
color is still too dark. If you want a lighter color, you will have to change
the color map (Figure 11.12. Select any one of the options that pops up
when you select Color table and you will get a set of particles colored
di�erently from the default as seen in Figure 11.13.

Figure 11.13: Changing the appearance of particles.

Figure 11.9: Changing the ap-
pearance of particles.

Figure 11.11: Particles drawn as
spheres.

Figure 11.12: Changing the
color map.
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11.3 Volumetric data plots
VisIt displays data as plots. A plot might render a speci�c vari-
able or it might render the structure of the mesh. Figure 11.14
illustrates this. Note thatVisIt attempts to analyze the variables
and associate themwith the appropriate plots. As shown in Fig-
ure 11.14, only vector variables are available for the vector plot.
�e most commonly used plots for visualizing UDA’s are Pseu-
docolor, Volume and the Vector plot. �e Subset plot can be
used to visualize the structure of patches in an AMR dataset.

Figure 11.14: Various plots in VisIt

Once you have a plot, you change plot attributes by clicking on
the PlotAtts menu and selecting the plot of you choice. Alter-
natively, you may double click on the plot itself in Active plots
window. For example, if you have a Volume plot and you want
to change its attributes, the window shown in Figure 11.15 pops
up.
As seen in Figure 11.15, you can change the color map, opacity
curve, rendering method, no. of samples, lighting options, etc.
in this window.

Figure 11.15: Volume plot attributes
in VisIt

11.4 Operators

Figure 11.16: Unchecking ”selection to all plots”
A wide variety of operators can be applied to the
plots, as mentioned earlier. �ese modify the in-
coming datasets in some way (eg., a slice formats
a 3D dataset into a 2D slice), which can then be plotted. However, you will �rst need to select a plot and
then only you can apply an operator to it (though the order of operation is opposite). An important thing
to keep in mind is that when you select an operator, by default it gets applied to all the plots in the Active
plots window. You will need to uncheck the Apply operators checkbox, in case you just want to apply the
operator to a single plot as shown in Figure 11.16.

�e entire list of operators thatVisIt supports can be seen by clicking on the Operators menu. Also, once
you have applied an operator, you can change its attributes by clicking on the OpAtts menu and then
clicking on the desired operator. Figures 11.17a and 11.17b illustrate how you can apply a Slice operator to
a Pseudocolor plot and then change the operator attributes. First, apply the Pseudocolor plot to a desired
variable, and then select the Slice operator from the Operators menu.

At this point in time, you should have an ordering similar to that in Figure 11.18a. Once you have this
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(a) Applying the Pseudocolor plot to a variable (b) Applying an operator to a plot

Figure 11.17: Pseudocolors and applying operators.

order, select Slice from the OpAtts menu. �is will pop up the Slice operator attributes window, as shown
in Figure 11.18b.

(a) Ordering of an operator and a plot (b) Slice plot attributes in VisIt

Figure 11.18: Ordering and slicing.

You can now play up with the various attributes (eg., selecting normal plane) to obtain the desired visu-
alization. �e checkbox ”Project to 2D” should be unchecked is you want to have the slice in 3D space.

11.5 Vectors

By default, VisIt reduces the number of vectors plotted (to 400) and this needs to be manually changed
to the original number or something greater, only if required. �is can be accomplished by changing the
attributes of the Vector plot. In Figure 11.19, the number of vectors has been increased to 2000. Also if you
would like all the vectors to be visible, you would need to switch o� both the options, Scale bymagnitude
and Auto scale under the Scale tab in the same window as shown in �gure 11.20 describes this.
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(a) Clicking on this icon opens the Subsetwin-
dow (b) �e Subset window in VisIt

Figure 11.21: Visualizing AMR data

Figure 11.19: Increasing the number of Vectors Figure 11.20: Increasing the scale of Vectors

11.6 AMR datasets

AMR datasets are read the same way as single level datasets. Once you have it read, you can apply an
plot/ operator on it. Since the dataset is organized as levels and patches, you now have the exibility of
visualizing each of them independently or as in a group. To achieve this (assuming that you have already
selected a plot), click on the Subset button either on the Active Plots window in the gui or on the same
option in the Controls menu. �is is illustrated in Figures 11.21a and 11.21b.

11.7 Examples

11.7.1 Volume visualization

1. Read in the uda by selecting the index.xml �le. A list of timesteps should now appear on the gui.
2. �e �rst timestep (cycle 0000) should be preselected. In case you are interested in plotting a dif-
ferent timestep, just double click on it. Alternatively you can type it in the small rectangular box
(Figure 11.22a), just below the list of timesteps. �is can also be done at a later period in time, when
you are done plotting the variable associated with a speci�c timestep and want to traverse through
the others.

3. Next we select a variable to plotted. We click on the Plots menu, select the Volume plot and then
select the variable tempIN as shown in the Figure 11.22b. �e number ’1’ refers to the material
associated with the variable.

4. �e variable tempIN/1 now appears on the Active plots window (Figure 11.22c). Select the variable
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and click Draw.

(a) �e window on the gui lists all
the timesteps

(b) Selecting a volume plot and an
associated variable/ material

(c) �e list of plots in the Active
plots window

Figure 11.22

5. A visualization now appears on theViewer window, as shown in Figure 11.23a. You can interact with
the visualization in terms of rotating it (holding the le� mouse button and dragging it), zooming
in/ out (scrolling the roller on the mouse and/ or selecting the magni�er at the top of the Viewer
window) etc.

6. Once you have this basic volume visualization, you can change its attributes by double clicking on
the Volume - tempIN/1 plot in the Active plots window. �is pops up the Volume plot attributes
window (Figure 11.23b and �gure 11.23c).

(a) Visualization of a volume on
the viewer window

(b) Volume visualization at-
tributes window

(c) Volume visualization attributes
window

Figure 11.23

�e tabColor speci�es the color table and the various options associatedwith it. �e user can add/ remove
control points by clicking on the + and - buttons. �ese can then be equally spaced by pressing the Align
button.

A di�erent color table can be selected by clicking on the Default button and then selecting an appropriate
color table. �e color(s) associated with the control points can be changed by right-clicking on the them
and then selecting an appropriate color.

�e user also has the option of specifying a Min and Max on the scalar value range by checking on the
associated box(s) and entering in the values.

Figure 11.24: �e opacity transfer function in the at-
tributes window

�e second tab Opacity lets you specify a trans-
fer function for the color table. Clicking on the
check box Show Colors copies the colors from the
color table onto this graph. Selecting the Interac-
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tion Mode as Gaussian lets you draw curves and
specify a more accurate color table (Figure 11.24).

You can add in as many curves on the graph by
clicking on the le�mouse button and then placing
them accordingly. To delete an unwanted curve,
just right click on it.

A�er specifying an opacity transfer function, one
can select an appropriate renderingmethod, Splat-
ting being the default. �e related �elds therea�er become active/ inactive as andwhendi�erent rendering
methods are selected.

11.7.2 Particle visualization

1. To add particles, we select the Molecule plot and then click on the variable p.temperature as shown
in the Figure 11.25a. �e asterisk ’*’ refers to all the materials associated with the variable.

2. �e variable p.temperature/* now appears on the Active plots list. Select the variable and hit Draw.
A container in the form of particles now appears on the Viewer window.

3. Now double click on the variable name in Active plots list. �is brings up the Molecule plot at-
tributes window as shown in Figure 11.25b.

(a) Selecting a molecule plot and
an associated variable/ material

(b) Selecting a molecule plot and
an associated variable/ material

(c) Selecting a molecule plot and
an associated variable/ material

Figure 11.25

We choose to visualize the particles as Sphere Impostors (doesn’t runs the GPU out of memory, drawing
as Spheres does). We also choose to scale the sphere radius by a Scalar Variable and specify that variable
to be p.temperature/* itself (therefore the * appears). Since the temperature values are too high, we scale
them all by a factor of 5.e-05 (on the basis of trial and error). Finally in Colors tab, we set the Color
map for scalars as orangehot. Combined with volume visualization, we get a visualization as shown in
Figure 11.25c.

11.7.3 Visualizing patch boundaries

In order to visualize patch boundaries, we use the Subset plot. As with other variables, we select the
Subset plot and an associated variable. �e variables have a pre�x ’level/ patch’. �ere is a level/ patch
variable associated with every kind of variable (Cell Centered, Node Centered, Face Centered) present
in the dataset. In the Figure 11.26a, we select one such variable. Next, we hit Draw. �is produces a
visualization as shown in Figure 11.26b.
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(a) A patch/ level variable, associated with ev-
ery kind of variable (b) �e default visualization of patches

Figure 11.26

To generate a wire-framemodel, we double click on the Subset plot in the Active plots window. �is pops
up the Subset plot attributes window, where we check the Wireframe mode as shown in Figure‘11.27a.
�is would produce a visualization, similar to one shown in Figure 11.27b.

(a) Enabling the ’Wireframe’ mode for visual-
izing patch boundaries

(b) �e patch boundaries a�er enabling the
wireframe mode

Figure 11.27

11.7.4 Iso-surfaces

Figure 11.28: Selecting the ’Contour’ plot on a regular
3D scalar variable

�e easiest way to draw iso-surfaces is to use the
’Contour’ Plot. As with other plots demonstrated
above, the contour plot is selected on a regular 3D
scalar variable. Figure 11.28 illustrates this.

Once the plot is selected, we hit ’Draw’. �is would
produce a visualization, similar to one shown in
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Figure 11.29a. You can then modify the plot at-
tributes by double clicking on the plot in the ’Ac-
tive plots’ window. �is would pop up the ’Con-
tour plot attributes window’, as shown in Fig-
ure 11.29b.

�e ’Select by’ option can be changed to ’Value(s)’ and ’Percent(s)’. When specifyingmultiple values, they
should be separated by a space.

(a) Iso-surface visualization (b) �e attributes window for the ’Contour’ plot

Figure 11.29
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11.7.5 Streamlines

Figure 11.30: Selecting the ’Streamlines’ plot on a vec-
tor variable

As shown in Figure 11.30we select the ’Streamlines’
plot on a vector variable. We then double click on
the plot itself, which pops up the ’Streamlines at-
tributes window’.

We set the ’Distance’ parameter such that it cov-
ers the entire computational domain. We set the
’Streamline direction’ as forward. In the ’Source’
tab, Figure 11.31a, we de�ne the ’Source type’ as
’Line’. We can select other options too, notably
’Single Point’, ’Sphere’ etc. We now de�ne the line ’Start’ and ’End’ coordinates. In this speci�c case,
we de�ne them as [-0.1 -0.05 0] and [-0.1 0.05 0] respectively. �is choice ensures that we cover the entire
y axis and start at the le�most corner of the computational domain.

To ensure that our stream lines are smooth, we change the ’Maximum step length’ in the in the ’Advanced’
tab. In this case, we change it to 1.e-05. �e thing to keep in mind is that this length should be order of
magnitude smaller than the length of the computational domain. �is is shown in Figure 11.31b.

Once these parameters are set, we hit ’Apply’ and then click on the ’Draw’ button on the gui. �is produces
a visualization similar to one shown in Figure 11.31c.

(a) Setting the ’Source’ tab param-
eters

(b) Setting the ’Advanced’ tab pa-
rameters (c) Streamlines visualization

Figure 11.31

11.7.6 Visualizing extra cells

For visualizing extra cells we use the ’Inverse Ghost Zone’ operator 11.32a in conjunction with the ’Pseu-
docolor’ plot. Since the plugin reads in extra cells as ghost cells, the usage of this operator make sense in
this scenario.

A�er the operator is applied to the ’Pseudocolor’ plot, we double click on the operator to change its at-
tributes. We switch to ’Both ghost zones and real zones’ in this window 11.32b and hit ’Apply’.

We then hit ’Draw’. When combined with the ’Mesh’ plot we get a visualization similar to the one shown
in Figure 11.32c. �e pick operations on the viewer can then be used to investigate the value(s) in these
extra cells.
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(a) Selecting the Inverse Ghost
Zone operator

(b) �e attributes window for the
’Inverse Ghost Zone’ operator

(c) Extra cells together with the
’Mesh’ plot

Figure 11.32

11.7.7 Picking on particles

Figure 11.33: �e ’Node pick mode’ on the visualiza-
tion window

�e ’Node pickmode’ on the visualizationwindow
can be used to pick particles and investigate parti-
cles attributes. A�er plotting particles using the
’Molecule’ plot, the user can then select the ’Node
pick mode’ 11.33 and select particles (by clicking on them) of interest.

Figure 11.34: �e ’Pick’ window

Once a particle is picked, the ’Pick’ window pops
up with the particle attributes. By default only
the variable plotted is queried, if the user wants to
query more variables per pick - they can be added
by selecting additional variables from the ’Vari-
ables’ menu and as shown in the Figure 11.34.

11.7.8 Selectively visualizing vectors

�e expression editor can be used to de�ne a vec-
tor variable with magnitude greater or lesser than
a certain extent. An example of this is shown be-
low,

1 if(gt(magnitude(<vel_CC/1 >), 0.0), <vel_CC/1>, {0, 0, 0})

Put into words, if magnitude of vel_CC/1 is greater than 0.0, display it, else display a zeromagnitude vector.
To use the ’lesser than’ parameter, replace ’gt’ with ’lt’.
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Vaango o�ers a number of tools for accessing simulation output data stored in UDA archives. �e user
can use these tools in combination with Python, R, or Octave scripts to examine and plot the simulation
data.

12.1 puda

�e command line extraction utility puda (short for “parse UDA”) has a number of uses. For example, it
may be used to extract a subset of particle data from a UDA.

Once the extraction tools have been compiled, the puda executable will be located in
<build dir>/StandAlone/tools/puda/. If the executable is run with no additional command line argu-
ments, the following usage information will be displayed:

1 Usage: puda [options] <archive file >

2 Valid options are:

3 -h[elp]

4 -timesteps

5 -gridstats

6 -listvariables

7 -varsummary

8 -jim1

9 -jim2

10 -partvar <variable name >

11 -asci

12 -tecplot <variable name >

13 -no_extra_cells (Excludes extra cells when iterating over cells.

14 Default is to include extra cells .)

15 -cell_stresses

16 -rtdata <output directory >

17 -PTvar

18 -ptonly (prints out only the point location

19 -patch (outputs patch id with data)

20 -material (outputs material number with data)

21 -NCvar <double | float | point | vector >

22 -CCvar <double | float | point | vector >

23 -verbose (prints status of output)

24 -timesteplow <int > (only outputs timestep from int)

25 -timestephigh <int > (only outputs timesteps up to int)

26 -matl,mat <int > (only outputs data for matl)

27 *NOTE* to use -PTvar or -NVvar -rtdata must be used

28 *NOTE* ptonly, patch, material, timesteplow, timestephigh are used in conjunction with -

PTvar.
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As an example of how to use puda, suppose that one wanted to know the locations of all particles at the
last archived timestep for the const test hypo.uda . First one may wish to know how many timesteps
have been archived. �is could be accomplished by:

1 puda -timesteps const_test_hypo.uda

�e resulting terminal output would be:
1 Parsing const_test_hypo.uda/index.xml

2 There are 11 timesteps:

3 1: 1.8257001926347728e-05

4 548: 1.0012914931998474e-02

5 1094: 2.0005930425875382e-02

6 1640: 3.0015616802173569e-02

7 2184: 4.0005272397960444e-02

8 2728: 5.0011587657447343e-02

9 3271: 6.0016178181543284e-02

10 3812: 7.0000536667661845e-02

11 4353: 8.0001537138146825e-02

12 4893: 9.0000702723306208e-02

13 5433: 1.0001655973087024e-01

�ese represent all of the timesteps for which data has been archived. Suppose now that we wish to know
what the stress state is for all particles (in this case two) at the �nal archived timestep. For this one could
issue:

1 puda -partvar p.stress -timesteplow 10 -timestephigh 10 const_test_hypo.uda

�e resulting output is:
1 Parsing const_test_hypo.uda/index.xml

2 1.00016560e-01 1 0 281474976710656 -2.72031498e-10 -1.05064208e-26 -2.53781271e-08 -1.05

064208e-26 -2.72031498e-10 -1.23584688e-09 -2.53781271e-08 -1.23584688e-09 1.6384007

9e-07

3 1.00016560e-01 1 1 0 1.93256890e-13 6.56787331e-18 1.85514400e-14 6.56787331e-18 2.24310

469e-13 1.85519650e-14 1.85514400e-14 1.85519650e-14 -3.20052991e+06

�e �rst column is the simulation time, the third column is the material number, the fourth column is
the particle ID, and the remaining nine columns represent the components of the Cauchy stress tensor
(σ11,σ12,σ13, ..., σ32,σ33). If desired, the terminal output can be redirected to a text �le for further use.

12.2 partextract

�e command-line utility partextract may be used to extract data from an individual particle. To do this
you �rst need to know the ID number of the particle you are interested in. �is may be done by using
the puda utility, or the visualization tools. Once the extraction tools have been compiled, the partextract
utility executable will be located in /opt/StandAlone/tools/extractors/ . If the executable is run without
any arguments the following usage guide will be displayed in the terminal:

1 No archive file specified

2 Usage: partextract [options] <archive file >

3
4 Valid options are:

5 -mat <material id>

6 -partvar <variable name >

7 -partid <particleid >

8 -part_stress [avg or equiv or all]

9 -part_strain [avg/true/equiv/all/lagrangian/eulerian]

10 -timesteplow [int] (only outputs timestep from int)

11 -timestephigh [int] (only outputs timesteps upto int)

As an example of how to use the partextract utility, suppose we wanted to �nd the velocity at every
archived timestep for the particle with ID 281474976710656 (found above using puda ) in the
const test hypo.uda �le. �e appropriate command to issue is:
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1 partextract -partvar p.velocity -partid 281474976710656 const_test_hypo.uda

�e output to the terminal is:
1 Parsing const_test_hypo.uda/index.xml

2 1.82570019e-05 1 0 281474976710656 0.00000000e+00 0.00000000e+00 -1.00000000e-02

3 1.00129149e-02 1 0 281474976710656 -1.03554318e-19 -1.03554318e-19 -1.00000000e-02

4 2.00059304e-02 1 0 281474976710656 -1.99388121e-19 -1.99388121e-19 -1.00000000e-02

5 .

6 .

7 .

It is noted that if the stress tensor is output using the partextract utility, the output format is di�erent than
for the puda utility. �e partextract utility only outputs the six independent components instead of all
nine. For example, if we use partextract to get the stress tensor for the same particle as above at the last
archived timestep only, the output is:

1 partextract -partvar p.stress -partid 281474976710656 -timesteplow 10 -timestephigh 10

const_test_hypo.uda

2 Parsing const_test_hypo.uda/index.xml

3 1.00016560e-01 1 0 281474976710656 -2.72031498e-10 -1.05064208e-26 -2.53781271e-08 -1.05

064208e-26 -2.72031498e-10 -1.23584688e-09 -2.53781271e-08 -1.23584688e-09 1.6384007

9e-07

Compare this output with the output from puda above. Notice that the ordering of the six independent
components of the stress tensor for partextract are σ11,σ22, σ33, σ23, σ13 , σ12.

12.3 lineextract

Lineextract is used to extract an array of data from a region of a computational domain. Data can be
extracted from a point, along a line, or from a three dimensional region and then stored as a variable for
ease of post processing.

1 Usage:

2 ./ lineextract [options] -uda <archive file >

3
4 Valid options are:

5 -h, --help

6 -v, --variable: <variable name >

7 -m, --material: <material number > [defaults to 0]

8 -tlow, --timesteplow: [int] (sets start output timestep to int) [defaults to 0]

9 -thigh, --timestephigh: [int] (sets end output timestep to int) [defaults to last

timestep]

10 -timestep, --timestep: [int] (only outputs from timestep int) [defaults to 0]

11 -istart, --indexs: <x> <y> <z> (cell index) [defaults to 0,0,0]

12 -iend, --indexe: <x> <y> <z> (cell index) [defaults to 0,0,0]

13 -l, --level: [int] (level index to query range from) [defaults to 0]

14 -o, --out: <outputfilename > [defaults to stdout]

15 -vv, --verbose: (prints status of output)

16 -q, --quiet: (only print data values)

17 -cellCoords: (prints the cell centered coordinates on that level)

18 --cellIndexFile: <filename > (file that contains a list of cell indices)

19 [int 100, 43, 0]

20 [int 101, 43, 0]

21 [int 102, 44, 0]

�e following example shows the usage of lineextract for extracting density data at the 60th computational
cell in the x-direction, spanning thewidth of the domain in the y-direction (0 to 1000), at timestep, 7, (note
timestep actually refers to the seventh data dump, not necessarily the seventh timestep in the simulation.
�e variable containing the density data within the uda is rho CC , and the output variable that will store
the data for post processing is rho .

1 ./ lineextract -v rho_CC -timestep 7 -istart 60 0 0 -iend 60 1000 0 -m 1 -o rho -uda

test01.uda.000
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12.4 compute Lnorm udas

Compute Lnorm udas computes the L1, L2 and L∞ norms for each variable in two udas. �is utility is
useful in monitoring how the solution di�ers from small changes in either the solution tolerances, input
parameters or algorithmic changes. You can also use it to test the domain size inuence. �e norms are
computed using:

d[i] = ∥UDA1[i] −UDA2[i]∥ (12.1)

L1 =
∑All Cellsi d[i]
number of cells

, L2 =

¿
ÁÁÀ ∑All Cellsi d[i]2

number of cells
, L∞ = max(d[i]) (12.2)

�ese norms are computed for each CC, NC, SFCX, SFCY, SFCZ variable, on each level for each timestep.
�e output is displayed on the screen and is placed in a directory named ‘Lnorm.’ �e directory structure
is:

1 Lnorm/

2 -- L-0

3 |-- delP_Dilatate_0

4 |-- mom_L_ME_CC_0

5 |-- press_CC_0

6 |-- press_equil_CC_0

7 |-- variable

8 |-- variable

9 |--etc

and in each variable �le is the physical time, L1, L2 and L∞.�ese data can be plotted using gnuplot or
another plotting program.

�e command usage is
1 compute_Lnorm_udas <uda1> <uda2>

�eutility allows for udas that have di�erent computational domains and di�erent patch distributions to
be compared. �e uda with the smallest computational domain should always be speci�ed �rst. In order
for the norms to be computed the physical times must satisfy

∣physicalTimeuda1 − physicalTimeuda2 ∣ < 1e
−5.

12.5 timeextract

Timeextract is used to extract a user speci�ed variable from a point in a computational domain.
1 Usage:

2 ./ timeextract [options] -uda <archive file >

3
4 Valid options are:

5 -h,--help

6 -v,--variable <variable name >

7 -m,--material <material number > [defaults to 0]

8 -tlow,--timesteplow [int] (only outputs timestep from int) [defaults to 0]

9 -thigh,--timestephigh [int] (only outputs timesteps up to int) [defaults to last

timestep]

10 -i,--index <x> <y> <z> (cell coordinates) [defaults to 0,0,0]

11 -p,--point <x> <y> <z> [doubles] (physical coordinates)

12 -l,--level [int] (level index to query range from) [defaults to 0]

13 -o,--out <outputfilename > [defaults to stdout]

14 -vv,--verbose (prints status of output)

15 -q,--quite (only print data values)

16 -noxml,--xml -cache -off (turn off XML caching in DataArchive)
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�e following example shows the usage of timeextract for extracting density data at the computationat
cell coordinates 5,0,0, from timestep 0 to the last timestep. �e variable containing the density data within
the uda is rho CC and the output variable that will store the data for post processing is rho .

1 ./ timeextract -v rho_CC -i 5 0 0 -o rho -uda test01.uda.000

12.6 particle2ti�

particle2ti� is used to extract a user speci�ed particle variable, compute a cell centered average and write
that data to a series of ti� slices that can be used in further image processing. Each slice in the ti� �le
corresponds to a plane in z direction in the computational domain. Each pixel in the ti� image represents
a cell in the computational domain. �is utility depends on libti�4, libti�4-dev, & libti�xx0c2 , please
verify that they are installed on your system before con�guring and compiling.

�e data types supported are double, Vector, Matrix3 , and the equations for computing the cell-centered
average are:

CCave =
∑nParticlesp=1 Double[p]

nParticles

CCave =
∑nParticlesp=1 Vector[p].length()

nParticles

CCave =
∑nParticlesp=1 Matrix3[p].Norm()

nParticles

�e usage is
1 Usage: tools/extractors/particle2tiff [options] -uda <archive file >

2
3 Valid options are:

4 -h, --help

5 -v, --variable: [string] variable name

6 -m, --material: [int or string ’a, all ’] material index [defaults to 0]

7
8 -max [double] (maximum clamp value)

9 -min [double] (minimum clamp value)

10 -orientation [string] (The orientation of the image with respect to the

rows and columns .)

11 Options:

12 topleft 0th row represents the ........

13 topright 0th row represents the ........

14 botright 0th row represents the ........

15 default -> botleft 0th row represents the .........

16 lefttop 0th row represents the ........

17 righttop 0th row represents the ........

18 rightbot 0th row represents the ........

19 leftbot 0th row represents the ........

20 Many readers ignore this tag

21
22 -tlow, --timesteplow: [int] (start output timestep) [defaults to 0]

23 -thigh, --timestephigh: [int] (end output timestep) [defaults to last timestep]

24 -timestep, --timestep: [int] (only outputs timestep) [defaults to 0]

25
26 -istart, --indexs: <i> <j> <k> [ints] (starting point, cell index) [defaults

to 0 0 0]

27 -iend, --indexe: <i> <j> <k> [ints] (end -point, cell index) [defaults to 0

0 0]

28 -startPt <x> <y> <z> [doubles] (starting point in physical

coordinates)

29 -endPt <x> <y> <z> [doubles] (end -point in physical coordinates)

30
31 -l, --level: [int] (level index to query range from) [defaults to 0]

32 -d, --dir: output directory name [none]
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33 --cellIndexFile: <filename > (file that contains a list of cell indices)

34 [int 100, 43, 0]

35 [int 101, 43, 0]

36 [int 102, 44, 0]

37 ----------------------------------------------------------------------------------------

38 For particle variables the average over all particles in a cell is returned.

�e following example shows the usage of particle2ti� for averaging the particle stress (p.stress) for all
materials over the interior cells of the computational domain. A series of 3 ti� slices are saved for every
timestep in the directory output .

1 tools/extractors/particle2tiff -m all -d output -v p.stress -uda disks2mat4patch.uda.000

/

2 There are 14 timesteps

3 Initializing time_step_upper to 13

4 Removed directory: output

5 Created directory: output

6 Timestep[0] = 2.08084e-05

7 p.stress: ParticleVariable <Matrix3> being extracted and averaged for material(s): 0, 1

, ........

8 writing slice: [0/3] width: 256 height 256

9 writing slice: [1/3] width: 256 height 256

10 writing slice: [2/3] width: 256 height 256

11 Timestep[1] = 0.0100184

12 p.stress: ParticleVariable <Matrix3> being extracted and averaged for material(s): 0, 1

, ........

13 writing slice: [0/3] width: 256 height 256

14 writing slice: [1/3] width: 256 height 256

15 writing slice: [2/3] width: 256 height 256

16 Timestep[2] = 0.0200161

17 p.stress: ParticleVariable <Matrix3> being extracted and averaged for material(s): 0, 1

, ........

18 writing slice: [0/3] width: 256 height 256

19 writing slice: [1/3] width: 256 height 256

20 writing slice: [2/3] width: 256 height 256

21 Timestep[3] = 0.0300137

22 p.stress: ParticleVariable <Matrix3> being extracted and averaged for material(s): 0, 1

, ........

23 writing slice: [0/3] width: 256 height 256

24 writing slice: [1/3] width: 256 height 256

25 writing slice: [2/3] width: 256 height 256

A montage showing the average particle stress computed from particle2ti� is shown in Fig. 12.1. In this
simulation two similar disks collided at the center of the domain.

12.7 On the y analysis

On the y analysis is used to determine the minimum and maximum of speci�ed variables while the
simulation is running. Parameters are included in the input �le to specify at what frequency the data
is analyzed and which variables to look at. A new directory will be made in the uda directory for each
level (e.g. L-0). Within the new directory the max and min of each variable for the speci�ed material is
determined as a function of time at the given sampling frequency.

Dynamic Output Intervals Input Parameters
Tag Type Description
<samplingFrequency> double Sampling frequency in times per simulated

second
<timeStart> double Simulation time when sampling begins (sec)
<timeEnd> double Simulation time when sampling ends (sec)
<Variables> String Variables to be analyzed including a speci�ca-

tion for which material
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Figure 12.1: Montage showing the averaged particle stress for two cylindrical disks colliding.

�e input �le speci�cation is as follows:
1 <DataAnalysis >

2 <Module name = "minMax">

3 <samplingFrequency > 1e8 </samplingFrequency >

4 <timeStart > 0 </timeStart >

5 <timeEnd > 1000 </timeEnd >

6 <Variables >

7 <analyze label="press_CC" matl="0"/>

8 <analyze label="vel_CC" matl="1"/>

9 <analyze label="rho_CC" matl="0"/>

10 </Variables >

11 </Module >

12 </DataAnalysis >
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13.1 Hypoelastic-plastic model

An example of the portion of an input �le that speci�es a copper body with a hypoelastic stress update,
Johnson-Cook plasticity model, Johnson-Cook Damage Model and Mie-Gruneisen Equation of State is
shown below.

1 <material >

2
3 <include href="inputs/MPM/MaterialData/MaterialConstAnnCopper.xml"/>

4 <constitutive_model type="hypoelastic_plastic">

5 <tolerance >5.0e-10</tolerance >

6 <include href="inputs/MPM/MaterialData/IsotropicElasticAnnCopper.xml"/>

7 <include href="inputs/MPM/MaterialData/JohnsonCookPlasticAnnCopper.xml"/>

8 <include href="inputs/MPM/MaterialData/JohnsonCookDamageAnnCopper.xml"/>

9 <include href="inputs/MPM/MaterialData/MieGruneisenEOSAnnCopper.xml"/>

10 </constitutive_model >

11
12 <burn type = "null" />

13 <velocity_field >1</velocity_field >

14
15 <geom_object >

16 <cylinder label = "Cylinder">

17 <bottom >[0.0 ,0.0 ,0.0]</bottom >

18 <top>[0.0 ,2.54e-2 ,0.0]</top>

19 <radius >0.762e-2</radius >

20 </cylinder >

21 <res>[3,3,3]</res>

22 <velocity >[0.0 , -208.0 ,0.0]</velocity >

23 <temperature >294</temperature >

24 </geom_object >

25
26 </material >

�e general material constants for copper are in the �le MaterialConstAnnCopper.xml. �e contents
are shown below

1 <?xml version =’1.0’ encoding=’ISO -8859-1’ ?>

2 <Uintah_Include >

3 <density >8930.0 </density >

4 <toughness >10.e6</toughness >

5 <thermal_conductivity >1.0</thermal_conductivity >

6 <specific_heat >383</specific_heat >

7 <room_temp >294.0</room_temp >

8 <melt_temp >1356.0 </melt_temp >

9 </Uintah_Include >
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�e elastic properties are in the �le IsotropicElasticAnnCopper.xml. �e contents of this �le are
shown below.

1 <?xml version =’1.0’ encoding=’ISO -8859-1’ ?>

2 <Uintah_Include >

3 <shear_modulus >45.45e9</shear_modulus >

4 <bulk_modulus >136.35 e9</bulk_modulus >

5 </Uintah_Include >

�econstants for the Johnson-Cookplasticitymodel are in the �leJohnsonCookPlasticAnnCopper.xml.
�e contents of this �le are shown below.

1 <?xml version =’1.0’ encoding=’ISO -8859-1’ ?>

2 <Uintah_Include >

3 <plasticity_model type="johnson_cook">

4 <A>89.6e6</A>

5 <B>292.0 e6</B>

6 <C>0.025 </C>

7 <n>0.31</n>

8 <m>1.09</m>

9 </plasticity_model >

10 </Uintah_Include >

�econstants for the Johnson-Cookdamagemodel are in the �leJohnsonCookDamageAnnCopper.xml.
�e contents of this �le are shown below.

1 <?xml version =’1.0’ encoding=’ISO -8859-1’ ?>

2 <Uintah_Include >

3 <damage_model type="johnson_cook">

4 <D1>0.54</D1>

5 <D2>4.89</D2>

6 <D3> -3.03</D3>

7 <D4>0.014</D4>

8 <D5>1.12</D5>

9 </damage_model >

10 </Uintah_Include >

�econstants for theMie-Gruneisenmodel (as implemented in theUintah-VaangoComputational Frame-
work) are in the �le MieGruneisenEOSAnnCopper.xml. �e contents of this �le are shown below.

1 <?xml version =’1.0’ encoding=’ISO -8859-1’ ?>

2 <Uintah_Include >

3 <equation_of_state type="mie_gruneisen">

4 <C_0>3940</C_0>

5 <Gamma_0>2.02</Gamma_0>

6 <S_alpha >1.489</S_alpha >

7 </equation_of_state >

8 </Uintah_Include >

As can be seen from the input �le, any other plasticity model, damage model and equation of state can
be used to replace the Johnson-Cook and Mie-Gruneisen models without any extra e�ort (provided the
models have been implemented and the data exist).

�e material data can easily be taken from a material database or speci�ed for a new material in an input
�le kept at a centralized location. At this stagematerial data for a range ofmaterials is kept in the directory
.../Vaango/StandAlone/inputs/MPM/MaterialData.

13.2 Elastic-plastic model

�e <constitutive_model type="elastic_plastic"> model is more stable (and also more gen-
eral) than the <constitutive_model type="hypoelastic_plastic"> model. A sample input �le
for this model is shown below.

1 <MPM>
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2 <do_grid_reset > false </do_grid_reset >

3 <time_integrator >explicit </time_integrator >

4 <boundary_traction_faces >[zminus ,zplus]</boundary_traction_faces >

5 <dynamic >true</dynamic >

6 <solver >simple </solver >

7 <convergence_criteria_disp >1.e-10</convergence_criteria_disp >

8 <convergence_criteria_energy >4.e-10</convergence_criteria_energy >

9 <DoImplicitHeatConduction >true</DoImplicitHeatConduction >

10 <interpolator >linear </interpolator >

11 <minimum_particle_mass > 1.0e-8</minimum_particle_mass >

12 <maximum_particle_velocity > 1.0e8</maximum_particle_velocity >

13 <artificial_damping_coeff > 0.0 </artificial_damping_coeff >

14 <artificial_viscosity > true </artificial_viscosity >

15 <accumulate_strain_energy > true </accumulate_strain_energy >

16 <use_load_curves > false </use_load_curves >

17 <turn_on_adiabatic_heating > false </turn_on_adiabatic_heating >

18 <do_contact_friction_heating > false </do_contact_friction_heating >

19 <create_new_particles > false </create_new_particles >

20 <erosion algorithm = "none"/>

21 </MPM>

22
23 <MaterialProperties >

24 <MPM>

25 <material name = "OFHCCu">

26 <density > 8930.0 </density >

27 <thermal_conductivity > 386.0 </thermal_conductivity >

28 <specific_heat > 414.0 </specific_heat >

29 <room_temp > 294.0 </room_temp >

30 <melt_temp > 1356.0 </melt_temp >

31 <constitutive_model type="elastic_plastic">

32 <isothermal > false </isothermal >

33 <tolerance > 1.0e-12 </tolerance >

34 <do_melting > false </do_melting >

35 <evolve_porosity > false </evolve_porosity >

36 <evolve_damage > false </evolve_damage >

37 <check_TEPLA_failure_criterion > false </check_TEPLA_failure_criterion >

38 <check_max_stress_failure > false </check_max_stress_failure >

39 <initial_material_temperature > 696.0 </initial_material_temperature >

40
41 <shear_modulus > 46.0e9 </shear_modulus >

42 <bulk_modulus > 129.0e9 </bulk_modulus >

43 <coeff_thermal_expansion > 1.76e-5 </coeff_thermal_expansion >

44 <taylor_quinney_coeff > 0.9 </taylor_quinney_coeff >

45 <critical_stress > 129.0e9 </critical_stress >

46
47 <equation_of_state type = "mie_gruneisen">

48 <C_0> 3940 </C_0>

49 <Gamma_0> 2.02 </Gamma_0>

50 <S_alpha > 1.489 </S_alpha >

51 </equation_of_state >

52
53 <plasticity_model type="mts_model">

54 <sigma_a >40.0e6</sigma_a >

55 <mu_0>47.7e9</mu_0>

56 <D>3.0e9</D>

57 <T_0>180</T_0>

58 <koverbcubed >0.823e6</koverbcubed >

59 <g_0i>0.0</g_0i>

60 <g_0e>1.6</g_0e>

61 <edot_0i>0.0</edot_0i>

62 <edot_0e>1.0e7</edot_0e>

63 <p_i>0.0</p_i>

64 <q_i>0.0</q_i>

65 <p_e>0.666667 </p_e>

66 <q_e>1.0</q_e>

67 <sigma_i >0.0</sigma_i >

68 <a_0>2390.0 e6</a_0>

69 <a_1>12.0e6</a_1>

70 <a_2>1.696e6</a_2>

71 <a_3>0.0</a_3>

72 <theta_IV >0.0</theta_IV >

73 <alpha>2</alpha>

74 <edot_es0>1.0e7</edot_es0>
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75 <g_0es>0.2625 </g_0es>

76 <sigma_es0>770.0e6</sigma_es0>

77 </plasticity_model >

78
79 <shear_modulus_model type="mts_shear">

80 <mu_0>47.7e9</mu_0>

81 <D>3.0e9</D>

82 <T_0>180</T_0>

83 </shear_modulus_model >

84
85 <melting_temp_model type = "constant_Tm">

86 </melting_temp_model >

87
88 <yield_condition type = "vonMises">

89 </yield_condition >

90
91 <stability_check type = "none">

92 </stability_check >

93
94 <damage_model type = "hancock_mackenzie">

95 <D0> 0.0001 </D0>

96 <Dc> 0.7 </Dc>

97 </damage_model >

98
99 <compute_specfic_heat > false </compute_specfic_heat >

100 <specific_heat_model type="constant_Cp">

101 </specific_heat_model >

102
103 </constitutive_model >

104 <geom_object >

105 <box label = "box">

106 <min>[0.0, 0.0, 0.0]</min>

107 <max>[1.0e-2, 1.0e-2, 1.0e-2]</max>

108 </box>

109 <res>[1,1,1]</res>

110 <velocity >[0.0, 0.0, 0.0]</velocity >

111 <temperature >696</temperature >

112 </geom_object >

113 </material >

114
115 </MPM>

116 </MaterialProperties >

13.2.1 An exploding ring experiment

�e follwing shows the complete input �le for an expanding ring test.
1
2 <?xml version =’1.0’ encoding=’ISO -8859-1’ ?>

3 <Uintah_specification >

4 <!--Please use a consistent set of units , (mks , cgs ,...) -->

5 <!-- First crack at the tuna can problem -->

6
7 <Meta>

8 <title>Pressurization of a container via burning w/o fracture </title >

9 </Meta>&gt;

10 <SimulationComponent >

11 <type> mpmice </type>

12 </SimulationComponent >

13 <!--____________________________________________________________________ -->

14 <!-- T I M E V A R I A B L E S -->

15 <!--____________________________________________________________________ -->

16 <Time>

17 <max_Timesteps > 99999 </max_Timesteps >>

18 <maxTime > 2.00e-2 </maxTime >

19 <initTime > 0.0 </initTime >

20 <delt_min > 1.0e-12 </delt_min >

21 <delt_max > 1.0 </delt_max >

22 <delt_init > 2.1e-8 </delt_init >

23 <timestep_multiplier > 0.5 </timestep_multiplier >

24 </Time>
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25 <!--____________________________________________________________________ -->

26 <!-- G R I D V A R I A B L E S -->

27 <!--____________________________________________________________________ -->

28 <Grid>

29 <BoundaryConditions >

30 <Face side = "x-">

31 <BCType id = "all" label = "Symmetric" var = "symmetry">

32 </BCType >

33 </Face>

34 <Face side = "x+">

35 <BCType id = "0" label = "Pressure" var = "Neumann">

36 <value> 0.0 </value>

37 </BCType >

38 <BCType id = "all" label = "Velocity" var = "Dirichlet">

39 <value> [0. ,0. ,0.] </value>

40 </BCType >

41 <BCType id = "all" label = "Temperature" var = "Neumann">

42 <value> 0.0 </value>

43 </BCType >

44 <BCType id = "all" label = "Density" var = "Neumann">

45 <value> 0.0 </value>

46 </BCType >

47 </Face>

48 <Face side = "y-">

49 <BCType id = "all" label = "Symmetric" var = "symmetry">

50 </BCType >

51 </Face>

52 <Face side = "y+">

53 <BCType id = "0" label = "Pressure" var = "Neumann">

54 <value> 0.0 </value >

55 </BCType >

56 <BCType id = "all" label = "Velocity" var = "Dirichlet">

57 <value> [0. ,0. ,0.] </value>

58 </BCType >

59 <BCType id = "all" label = "Temperature" var = "Neumann">

60 <value> 0.0 </value>

61 </BCType >

62 <BCType id = "all" label = "Density" var = "Neumann">

63 <value> 0.0 </value>

64 </BCType >

65 </Face>

66 <Face side = "z-">

67 <BCType id = "all" label = "Symmetric" var = "symmetry">

68 </BCType >

69 </Face>

70 <Face side = "z+">

71 <BCType id = "all" label = "Symmetric" var = "symmetry">

72 </BCType >

73 </Face>

74 </BoundaryConditions >

75 <Level>

76 <Box label = "1">

77 <lower> [ -0.08636 , -0.08636, -0.0016933] </lower >

78 <upper> [ 0.08636 , 0.08636 , 0.0016933] </upper >

79 <extraCells > [1,1,1] </extraCells >

80 <patches > [2,2,1] </patches >

81 <resolution > [102, 102, 1] </resolution >

82 </Box>

83 </Level >

84 </Grid>

85
86 <!--____________________________________________________________________ -->

87 <!-- O U P U T V A R I A B L E S -->

88 <!--____________________________________________________________________ -->

89 <DataArchiver >

90 <filebase >explodeRFull.uda</filebase >

91 <outputTimestepInterval > 20 </outputTimestepInterval >

92 <save label = "rho_CC"/>

93 <save label = "press_CC"/>

94 <save label = "temp_CC"/>

95 <save label = "vol_frac_CC"/>

96 <save label = "vel_CC"/>

97 <save label = "g.mass"/>
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98 <save label = "p.x"/>

99 <save label = "p.mass"/>

100 <save label = "p.temperature"/>

101 <save label = "p.porosity"/>

102 <save label = "p.particleID"/>

103 <save label = "p.velocity"/>

104 <save label = "p.stress"/>

105 <save label = "p.damage" material = "0"/>

106 <save label = "p.plasticStrain" material = "0"/>

107 <save label = "p.strainRate" material = "0"/>

108 <save label = "g.stressFS"/>

109 <save label = "delP_Dilatate"/>

110 <save label = "delP_MassX"/>

111 <save label = "p.localized"/>

112 <checkpoint cycle = "2" timestepInterval = "20"/>

113 </DataArchiver >

114
115 <Debug>

116 </Debug>

117 <!--____________________________________________________________________ -->

118 <!-- I C E P A R A M E T E R S -->

119 <!--____________________________________________________________________ -->

120 <CFD>

121 <cfl>0.5</cfl>

122 <CanAddICEMaterial >true</CanAddICEMaterial >

123 <ICE>

124 <advection type = "SecondOrder"/>

125 <ClampSpecificVolume >true</ClampSpecificVolume >

126 </ICE>

127 </CFD>

128
129 <!--____________________________________________________________________ -->

130 <!-- P H Y S I C A L C O N S T A N T S -->

131 <!--____________________________________________________________________ -->

132 <PhysicalConstants >

133 <gravity > [0,0,0] </gravity >

134 <reference_pressure > 101325.0 </reference_pressure >

135 </PhysicalConstants >

136
137 <MPM>

138 <time_integrator > explicit </time_integrator >

139 <nodes8or27> 27 </nodes8or27>

140 <minimum_particle_mass > 3.e-12 </minimum_particle_mass >

141 <maximum_particle_velocity > 1.e3 </maximum_particle_velocity >

142 <artificial_damping_coeff > 0.0 </artificial_damping_coeff >

143 <artificial_viscosity > true </artificial_viscosity >

144 <artificial_viscosity_coeff1> 0.07 </artificial_viscosity_coeff1>

145 <artificial_viscosity_coeff2> 1.6 </artificial_viscosity_coeff2>

146 <turn_on_adiabatic_heating > false </turn_on_adiabatic_heating >

147 <accumulate_strain_energy > false </accumulate_strain_energy >

148 <use_load_curves > false </use_load_curves >

149 <create_new_particles > false </create_new_particles >

150 <manual_new_material > false </manual_new_material >

151 <DoThermalExpansion > false </DoThermalExpansion >

152 <testForNegTemps_mpm > false </testForNegTemps_mpm >

153 <erosion algorithm = "ZeroStress"/>

154 </MPM>

155
156 <!--____________________________________________________________________ -->

157 <!-- MATERIAL PROPERTIES INITIAL CONDITIONS -->

158 <!--____________________________________________________________________ -->

159 <MaterialProperties >

160 <MPM>

161 <material name = "Steel Ring">

162 <include href="inputs/MPM/MaterialData/MatConst4340St.xml"/>

163 <constitutive_model type="elastic_plastic">

164 <isothermal > false </isothermal >

165 <tolerance > 1.0e-10 </tolerance >

166 <evolve_porosity > true </evolve_porosity >

167 <evolve_damage > true </evolve_damage >

168 <compute_specific_heat > true </compute_specific_heat >

169 <do_melting > true </do_melting >

170 <useModifiedEOS > true </useModifiedEOS >
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171 <check_TEPLA_failure_criterion > true </check_TEPLA_failure_criterion >

172 <initial_material_temperature > 600.0 </initial_material_temperature >

173 <taylor_quinney_coeff > 0.9 </taylor_quinney_coeff >

174 <check_max_stress_failure > false </check_max_stress_failure >

175 <critical_stress > 12.0e9 </critical_stress >

176
177 <!-- Warning: you must copy link this input file into your -->

178 <!-- sus directory or these paths won ’t work. -->

179
180 <include href="inputs/MPM/MaterialData/IsoElastic4340St.xml"/>

181 <include href="inputs/MPM/MaterialData/MieGrunEOS4340St.xml"/>

182 <include href="inputs/MPM/MaterialData/ConstantShear.xml"/>

183 <include href="inputs/MPM/MaterialData/ConstantTm.xml"/>

184 <include href="inputs/MPM/MaterialData/JCPlastic4340St.xml"/>

185 <include href="inputs/MPM/MaterialData/VonMisesYield.xml"/>

186 <include href="inputs/MPM/MaterialData/DruckerBeckerStabilityCheck.xml"/>

187 <include href="inputs/MPM/MaterialData/JCDamage4340St.xml"/>

188 <specific_heat_model type="steel_Cp"> </specific_heat_model >

189
190 <initial_mean_porosity > 0.005 </initial_mean_porosity >

191 <initial_std_porosity > 0.001 </initial_std_porosity >

192 <critical_porosity > 0.3 </critical_porosity >

193 <frac_nucleation > 0.1 </frac_nucleation >

194 <meanstrain_nucleation > 0.3 </meanstrain_nucleation >

195 <stddevstrain_nucleation > 0.1 </stddevstrain_nucleation >

196 <initial_porosity_distrib > gauss </initial_porosity_distrib >

197
198 <initial_mean_scalar_damage > 0.005 </initial_mean_scalar_damage >

199 <initial_std_scalar_damage > 0.001 </initial_std_scalar_damage >

200 <critical_scalar_damage > 1.0 </critical_scalar_damage >

201 <initial_scalar_damage_distrib > gauss </initial_scalar_damage_distrib >

202 </constitutive_model >

203
204 <geom_object >

205 <difference >

206 <cylinder label = "outer cylinder">

207 <bottom > [0.0 ,0.0 , -.05715] </bottom >

208 <top> [0.0,0.0 , .05715] </top>

209 <radius > 0.05715 </radius >

210 </cylinder >

211 <cylinder label = "inner cylinder">

212 <bottom > [0.0 ,0.0 , -.0508] </bottom >

213 <top> [0.0,0.0 , .0508] </top>

214 <radius > 0.0508 </radius >

215 </cylinder >

216 </difference >

217 <res> [2,2,2] </res>

218 <velocity > [0.0 ,0.0 ,0.0] </velocity >

219 <temperature > 600 </temperature >

220 </geom_object >

221 </material >

222 <material name = "reactant">

223 <include href="inputs/MPM/MaterialData/MatConstPBX9501.xml"/>

224 <constitutive_model type = "visco_scram">

225 <include href="inputs/MPM/MaterialData/ViscoSCRAMPBX9501.xml"/>

226 <include href="inputs/MPM/MaterialData/TimeTempPBX9501.xml"/>

227 <randomize_parameters > false </randomize_parameters >

228 <use_time_temperature_equation > true </use_time_temperature_equation >

229 <useObjectiveRate > true </useObjectiveRate >

230 <useModifiedEOS > true </useModifiedEOS >

231 </constitutive_model >

232 <geom_object >

233 <difference >

234 <cylinder label = "inner cylinder"> </cylinder >

235 <cylinder label = "inner hole">

236 <bottom > [0.0 ,0.0 , -.0508] </bottom >

237 <top> [0.0,0.0 , .0508] </top>

238 <radius > 0.01 </radius >

239 </cylinder >

240 </difference >

241 <res> [2,2,2] </res>

242 <velocity > [0.0 ,0.0 ,0.0] </velocity >

243 <temperature > 440.0 </temperature >
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244 </geom_object >

245 </material >

246
247 <contact >

248 <type>approach </type>

249 <materials > [0,1] </materials >

250 <mu> 0.0 </mu>

251 </contact >

252 <thermal_contact >

253 </thermal_contact >

254 </MPM>

255
256 <ICE>

257 <material >

258 <EOS type = "ideal_gas">

259 </EOS>

260 <dynamic_viscosity > 0.0 </dynamic_viscosity >

261 <thermal_conductivity > 0.0 </thermal_conductivity >

262 <specific_heat > 716.0 </specific_heat >

263 <gamma> 1.4 </gamma>

264 <geom_object >

265 <difference >

266 <box>

267 <min> [ -0.254 , -0.254 , -0.254] </min>

268 <max> [ 0.254, 0.254, 0.254] </max>

269 </box>

270 <cylinder label = "outer cylinder"> </cylinder >

271 </difference >

272 <cylinder label="inner hole"> </cylinder >

273 <res> [2,2,2] </res>

274 <velocity > [0.0 ,0.0 ,0.0] </velocity >

275 <!--

276 <temperature > 300.0 </temperature >

277 <density > 1.1792946927374306000e+00 </density >

278 -->

279 <temperature > 400.0 </temperature >

280 <density > 0.884471019553073 </density >

281 <pressure > 101325.0 </pressure >

282 </geom_object >

283 </material >

284 </ICE>

285
286 <exchange_properties >

287 <exchange_coefficients >

288 <momentum > [0, 1e15 , 1e15] </momentum >

289 <heat> [0, 1e10 , 1e10] </heat>

290 </exchange_coefficients >

291 </exchange_properties >

292 </MaterialProperties >

293
294 <AddMaterialProperties >

295 <ICE>

296 <material name = "product">

297 <EOS type = "ideal_gas">

298 </EOS>

299 <dynamic_viscosity > 0.0 </dynamic_viscosity >

300 <thermal_conductivity > 0.0 </thermal_conductivity >

301 <specific_heat > 716.0 </specific_heat >

302 <gamma> 1.4 </gamma>

303 <geom_object >

304 <box>

305 <min> [ 1.0, 1.0, 1.0] </min>

306 <max> [ 2.0, 2.0, 2.0] </max>

307 </box>

308 <res> [2,2,2] </res>

309 <velocity > [0.0 ,0.0 ,0.0] </velocity >

310 <temperature > 300.0 </temperature >

311 <density > 1.1792946927374306000e+00 </density >

312 <pressure > 101325.0 </pressure >

313 </geom_object >

314 </material >

315 </ICE>

316
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317 <exchange_properties >

318 <exchange_coefficients >

319 <momentum > [0, 1e15 , 1e15 , 1e15 , 1e15 , 1e15] </momentum >

320 <heat> [0, 1e10 , 1e10 , 1e10 , 1e10 , 1e10] </heat>

321 <!--

322 <heat > [0, 1, 1, 1, 1, 1] </heat >

323 -->

324 </exchange_coefficients >

325 </exchange_properties >

326 </AddMaterialProperties >

327
328
329 <Models >

330 <Model type="Simple_Burn">

331 <Active > false </Active >

332 <fromMaterial > reactant </fromMaterial >

333 <toMaterial > product </toMaterial >

334 <ThresholdTemp > 450.0 </ThresholdTemp >

335 <ThresholdPressure > 50000.0 </ThresholdPressure >

336 <Enthalpy > 2000000.0 </Enthalpy >

337 <BurnCoeff > 75.3 </BurnCoeff >

338 <refPressure > 101325.0 </refPressure >

339 </Model>

340 </Models >

341
342
343 </Uintah_specification >

�e PBS script used to run this test is
1
2 #

3 # ASK PBS TO SEND YOU AN EMAIL ON CERTAIN EVENTS: (a)bort (b)egin (e)nd (n)ever

4 #

5 # (User May Change)

6
7 #PBS -m abe

8
9 #

10 # SET THE NAME OF THE JOB:

11 #

12 # (User May Change)

13
14 #PBS -N ExplodeRing

15
16 #

17 # SET THE QUEUE IN WHICH TO RUN THE JOB.

18 # (Note, there is currently only one queue, so you should never change this field.)

19
20 #PBS -q defaultq

21
22 #

23 # SET THE RESOURCES (# NODES, TIME) REQESTED FROM THE BATCH SCHEDULER:

24 # - select: <# nodes>,ncpus=2,walltime=<time>

25 # - walltime: walltime before PBS kills our job.

26 # [[ hours:] minutes :] seconds [. milliseconds]

27 # Examples:

28 # walltime =60 (60 seconds)

29 # walltime =10:00 (10 minutes)

30 # walltime =5:00:00 (5 hours)

31 #

32 # (User May Change)

33
34 #PBS -l select =2: ncpus=2,walltime =24:00

35
36 #

37 # START UP LAM

38
39 cd $PBS_O_WORKDIR

40 lamboot

41
42 # [place your command here] >& ${PBS_O_WORKDIR }/ output.${PBS_JOBID}

43 mpirun -np 4 ../ sus_opt explodeRFull.ups >& output.${PBS_JOBID}
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44
45 #

46 # REMEMBER , IF YOU ARE RUNNING TWO SERIAL JOBS , YOU NEED A:

47 # wait

48
49 #

50 # STOP LAM

51
52 lamhalt -v

53 exit
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• Data Warehouse (NewDW, OldDW, DW) - �e Data Warehouse is an abstraction (and imple-
mentation vehicle) used in Uintah to provide data to simulation components (across distributed
memory spaces as necessary). OldDW refers to a DW from the previous time step. NewDW refers
to the DW for the current time step. In practice, variables are usually pulled from the OldDW,
updated, and placed in the NewDW.

• Time step - Uintah is a time dependent code. A time step refers to a unique point in simulation
time. �e state of the simulation is updated one time step at a time.

• Adaptive Mesh Re�nement (AMR) - In brief, AMR allows spending less CPU time on “inactive”
(less interesting) areas of the simulation, and spend more time computing where there are many
particles reacting. Resolution is low in the center where things are stable, but high at the edges.
�is feature is in ICE, but not ARCHES.

• CCA - Common Component Architecture.
• CFD - Computational Fluid Dynamics modeling.
• DistCC - Parallel, distributed compiler.
• Doxygen - Doxygen (code documentation) web interface.
• GhostCells (and Extra Cells)
• Grid - �e problem’s physical domain. �e number of cells in the grid determine the resolution of
the simulation.

• Handle - Smart pointers. Handles track the number of references to a given object, and when the
number reaches zero, de-allocates the memory.

• Level - Not a ’level’ in 3d-space, but a level of recursion into anAMRgrid. ARCHES doesn’t support
AMR or nonuniform cells, and therefore doesn’t need recursion, so it works on a single level ’1’.

• Material Point Method (MPM) -�e main component for simulating structures (physcial objects)
in the UCF.

• Message Passing Interface (MPI) -Communication library used bymany distributed so�ware pack-
ages to communicate data between multiple processors. Besides send’ing and recv’ing data, data
reduction (UCF Reduction Variables) is supported.
– OpenMPI

• Patch - A physical region of the grid assigned one to each processor. �e processor working on a
patch will compute properties for each of the cells contained in the patch. �ink of this as a big
cube that contains hundreds of little cubes.

• Regression Tester (RT) - Runs nightly accuracy, memory, and completion tests on Uintah simula-
tions.
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• SCIRun - A Problem Solving Environment (PSE) originally used to provide core so�ware building
blocks for Uintah as well as an extensive visualization package for viewing Uintah data archives.

• SUS - Standalone Uintah Simulator. �is is the main executable program in the Uintah project.
• SVN - Subversion code versioning system.
• Uintah - �e general name of the C-SAFE simulation code. Sometimes also refered to as the UCF.
�e name comes from the Uintah mountain range in Utah.

• Uintah Computational Framework (UCF) - �e core so�ware infrastructure for Uintah.
– Variables (CC, NC, FC) - Cell centered, Node centered, and Face centered (respectively) data
structures used within the UCF.

• Uintah Data Archive (UDA) - �e directory/�le/data layout for storing Uintah simulation data.
• Uintah Problem Speci�cation (UPS (Section 2.3)) - An XML based �le used to specify Uintah sim-
ulation properties.

• Uintah So�ware Organization
– Visualization
– scinew - a wrapper for the C++ new() function that allows for memory tracking.
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Following is a table of conversion factors from bomb units to mks units. Bomb units are useful in small
scale simulations that occur very quickly, such as detonation and deformation.

Measure Conversion Factor
mass µg
length cm
time µs

kinematic viscosity 1 cm
2

µs = 102m
2

s
velocity 1 cmµs = 104ms

force 1 µgcmµs2 = 10N

pressure 10N
cm2 = 105Pa

viscosity 105Paµs = 10−1Pas

density 1 µgcm3 = 1
g
m3

heat capacity 10Ncm
µgK = 108 J

kgK

power 10Ncm
µs = 105W

thermal conductivity 105W
cmK = 107 WmK

surface energy 10Ncm
cm2 = 103 J

m2

fracture toughness 10N
cm

3
2
= 10−2 N

m
3
2

enthalpy 1 Jkg = 10−8 cm
2

µs2
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