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1— TheMaterial Point Method

1.1 Introduction

�eMPM component solves the momentum equations

∇ ⋅ σ + ρb = ρv̇ (1.1)

using an updated Lagrangian formulation. �e momentum solve for solid materials is complicated by
the fact that the equations need material constitutive models for closure. �ese material constitutive
models vary signi�cantly between materials and contribute a large fraction of the computational cost of
a simulation.

�ematerial point method (MPM) was described by Sulsky et al. [1, 2] as an extension to the FLIP (Fluid-
Implicit Particle) method of Brackbill [3], which itself is an extension of the particle-in-cell (PIC) method
of Harlow [4].

Interestingly, the name “material point method” �rst appeared in the literature two years later in a
description of an axisymmetric form of the method [5].

In both FLIP and MPM , the basic idea is the same: objects are discretized into particles, or material
points, each of which contains all state data for the small region of material that it represents. Particles do
not interact with each other directly, rather the particle information is accumulated to a background grid,
where the equations of motion (1.1) are integrated forward in time. �is time advanced solution is then
used to update the particle state. Particle state data includes the position, mass, volume, velocity, stress,
state of deformation of that material, and a number of time-dependent internal material variables.

MPM di�ers from other “mesh-free” particle methods in that, while each object is primarily repre-
sented by a collection of particles, a computationalmesh is also an important part of the calculation.
�is mesh reduces the computational cost of searching for neighboring particles.

MPM usually uses a regular structured grid as a computational mesh. While this grid, in principle, de-
forms as the material that it is representing deforms, at the end of each timestep, it is reset to its original
undeformed position, in e�ect providing a new computational grid for each timestep. �e use of a regu-
lar structured grid for each time step has a number of computational advantages. Computation of spatial
gradients is simpli�ed. Mesh entanglement, which can plague fully Lagrangian techniques, such as the
Finite Element Method (FEM), is avoided.

MPM has also been successful in solving problems involving contact between colliding objects, having an
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advantage over FEM in that the use of the regular grid eliminates the need for doing costly searches for
contact surfaces[6].

In addition to the advantages that MPM brings, as with any numerical technique, it has its own set of
shortcomings. It is computationally more expensive than a comparable FEM code. Accuracy forMPM is
typically lower than FEM, and errors associated with particles moving around the computational grid
can introduce non-physical oscillations into the solution. Finally, numerical di�culties can still arise
in simulations involving large deformation that will prematurely terminate the simulation. �e severity
of all of these issues (except for the expense) has been signi�cantly reduced with the introduction of
the Generalized Interpolation Material Point Method, or GIMP [7]. Newer developments such as the
CPDI MPM method [8] have also been incorporated into the explicit time integrated MPM in Vaango .
Implementation of other approaches along the line of CPDI such as CPDI2 [9] and CPTI [10] is also being
considered for future versions.

In addition, MPM can be incorporated with a multi-material CFD algorithm as the structural compo-
nent in a 
uid-structure interaction formulation. �is capability was �rst demonstrated in the CFDLIB
codes from Los Alamos by Bryan Kashiwa and co-workers[11]. �ere, as in the MPMICE component,
MPM serves as the Lagrangian description of the solid material in a multimaterial CFD code. Certain
elements of the solution procedure are based in the Eulerian CFD algorithm, including intermaterial
heat and momentum transfer as well as satisfaction of a multimaterial equation of state. �e use of a
Lagrangian method such as MPM to advance the solution of the solid material eliminates the di�usion
typically associated with Eulerian methods.

1.2 Weak form of themomentum equation

To derive the weak form of the momentum equation (1.1), we multiply the momentum equation with a
vector-valued weighting function (w) and integrate over the domain (Ω). �e weighting function (w)
satis�es velocity boundary conditions on the parts of the boundary where velocities are prescribed. �en,

∫
Ω
w ⋅ [∇ ⋅ σ + ρ b] dΩ = ∫

Ω
ρ w ⋅ v̇ dΩ . (1.2)

Using the identity v ⋅ (∇ ⋅ S) = ∇ ⋅ (ST ⋅ v) − S ∶ ∇v, where S is a second-order tensor valued �eld and v
is a vector valued �eld, we have

∫
Ω
{∇ ⋅ (σT ⋅w) − σ ∶ ∇w + ρ w ⋅ b} dΩ = ∫

Ω
ρ w ⋅ v̇ dΩ .

Application the divergence theorem to the divergence of the weighted stress leads to

∫
Γ
n ⋅ (σT ⋅w) dΓ + ∫

Ω
{−σ ∶ ∇w + ρ w ⋅ b} dΩ = ∫

Ω
ρ w ⋅ v̇ dΩ

where n is the outward normal to the surface Γ. Rearranging,

∫
Γ
(σ ⋅ n) ⋅w dΓ − ∫

Ω
σ ∶ ∇w dΩ + ∫

Ω
ρ w ⋅ b dΩ = ∫

Ω
ρ w ⋅ v̇ dΩ . (1.3)

If the applied surface traction is t ∶= σ ⋅n, sincew is zero on the part of the boundary where velocities/dis-
placements are speci�ed, we get the weak form

∫
Γt
t ⋅w dΓ − ∫

Ω
σ ∶ ∇w dΩ + ∫

Ω
ρ w ⋅ b dΩ = ∫

Ω
ρ w ⋅ v̇ dΩ . (1.4)
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1.3 Information transfer from particles to grid and back

�e goal ofMPM is to �nd a unique function f (x, t) that satis�es the governing equations (1.1) for a given
initial set of objects and a set of initial and boundary conditions.

An important underlying assumption in MPM is that continuum �eld quantities have two equivalent
representations – a grid representation and a particle representation. For instance, the representation of
a vector �eld f can be both

f(x) = ∑
g
f(xg)Sg(x) = ∑

g
fgSg(x) and f(x) = ∑

p
f(xp)χp(x) = ∑

p
fpχp(x) (1.5)

where the subscript g indicates a grid nodal quantity and the subscript p indicates a particle quantity. A
particle centroid is at the location xpwhile a grid node is at xg . �e functions Sg are interpolation functions
(also called shape functions) that take values from the grid nodes to points in the computational domain.
On the other hand, the functions χp are particle characteristic functions. We assume that both these
representations are partitions of unity. In the above we have ignored time-dependence for simplicity.

�eMPM algorithm is particle-centered. We start with information on particles and then project that in-
formation to the grid nodes for the solution of (1.1). A�er the equations have been solved, the information
on the grid can be interpolated back to the particles in preparation for the next timestep. �e projection
operation from particles to the grid is not as obvious as the interpolation from the grid back to particles
and requires some explanation.

Ideally we would like the two representations in (1.5) to produce identical results. However, due to ap-
proximation errors, they usually do not. Let e(x) be the error. �en we can pose a least-squares error
minimization problem as

Find fg that minimizes E = ∫
Ω
w(x) ∥e(x)∥2 dΩ where ∫

Ω
w(x) dΩ = 1 . (1.6)

�e domain of integration is the volume Ω and w(x) is a weighting function. �en the minimum of the
functional E can be found using

∂E
∂fg

= 0 Ô⇒ ∫
Ω
w(x) [ ∂e

∂fg
⋅ e(x) + e(x) ⋅ ∂e

∂fg
] dΩ = 0 (1.7)

From (1.5),

∂e
∂fg

= ∂
∂fg

⎡⎢⎢⎢⎢⎣
∑
g′
fg′Sg′(x) −∑

p
fpχp(x)

⎤⎥⎥⎥⎥⎦
= ∑

g′

∂fg′
∂fg

Sg′(x) = Sg(x) I . (1.8)

�erefore,

∫
Ω
w(x)Sg(x)e(x) dΩ = 0 Ô⇒ ∫

Ω
w(x)Sg(x)

⎡⎢⎢⎢⎢⎣
∑
g′
fg′Sg′(x) −∑

p
fpχp(x)

⎤⎥⎥⎥⎥⎦
dΩ = 0 . (1.9)

If we note that the particle characteristic function (χp) is required to be zero outside the domain of particle
p and 1 inside, rearrangement of the above equation leads to

∑
g
fg ∫

Ω
w(x)Sg′(x)Sg(x) dΩ = ∑

p
fp ∫

Ωp
w(x)Sg′(x) dΩ . (1.10)

De�ne

Ag′g ∶= ∫
Ω
w(x)Sg′(x)Sg(x) dΩ and Bg′p ∶= ∫

Ωp
w(x)Sg′(x) dΩ . (1.11)
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Equation (1.10) can now be expressed as

∑
g
Ag′gfg = ∑

p
Bg′pfp . (1.12)

Inverting the relation, we have

fg = [A−1]g g′∑
p
Bg′pfp = ∑

p
[A−1]g g′ Bg′pfp (1.13)

where A is the matrix representation of Ag′g in (1.12). We can rewrite the above equation as

fg = ∑
p
ψg pfp (1.14)

where

ψg p ∶= [A−1]g g′ Bg′p . (1.15)

�e map in equation (1.14) can be used to project particle quantities to grid nodes. However, some
simpli�cation is needed to avoid the need to invert a large matrix.

We can remove the need to invert S if we diagonalize Sg′g using a lumped approximation. In that case

Ag′ = ∑
g
Ag′g = ∫

Ω
w(x)Sg′(x)∑

g
Sg(x) dΩ = ∫

Ω
w(x)Sg′(x) dΩ (1.16)

where we have used the partition of unity property of the grid nodal interpolation function. Now note
that the integral over the domain Ω can be split into a sum of integrals over particles.

�e particle-to-grid projection operations in equations (1.14) and (1.15) can then be expressed as

fg = ∑
p
ψg pfp where ψg p =

Bg p
Ag

, Ag = ∑
p
Bg p , Bg p = ∫

Ωp
w(x)Sg(x) dΩ . (1.17)

Going back to (1.5), recall that we had assumed that fp was the value of the function f(x) at the particle
centroid, xp. However, this requirement is not necessary for the development of the projection from
particles to the grid. We may, alternatively, de�ne fp as

fp =
1
Wp
∫
Ωp
f(x)ωp(x) dΩ , Wp ∶= ∫

Ωp
ωp(x) dΩ (1.18)

where Ωp is the particle domain and ωp(x) is a weighting function. Also recall that the grid interpolation
function has the form

f(x) = ∑
g
fgSg(x) . (1.19)

�erefore, we can compute the value of a quantity at a particle using the grid interpolation functions by
substituting (1.19) into (1.18) to get

fp =
1
Wp
∫
Ωp

⎡⎢⎢⎢⎢⎣
∑
g
fgSg(x)

⎤⎥⎥⎥⎥⎦
ωp(x) dΩ = ∑

g
fg [

1
Wp
∫
Ωp
Sg(x)ωp(x) dΩ] . (1.20)

Since the particle domain Ωp is never known exactly andwewould like to avoid determining that domain,
we approximate the above equation as

fp ≈ ∑
g
fg [

1
W⋆

p
∫
Ω⋆p
Sg(x)ω⋆p(x) dΩ] , W⋆

p ∶= ∫Ω⋆p
ω⋆p(x) dΩ (1.21)
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where the alternative weight function ω⋆p(x) is de�ned as

ω⋆p(x) ∶= ωp(x) χ⋆p(x) dΩ . (1.22)

�e function χ⋆p(x) is called the particle averaging function since it is is not identical to the particle
characteristic function χp(x). All that is needed is that the function have compact support in a neigh-
borhood Ω⋆

p containing particle p.

�e grid-to-particle interpolation function can then be expressed as

fp ≈ ∑
g
fg ⟨Sg p⟩ where ⟨Sg p⟩ ∶=

∫Ω⋆p Sg(x)ω
⋆
p(x) dΩ

∫Ω⋆p ω
⋆
p(x) dΩ

, ω⋆p(x) ∶= ωp(x) χ⋆p(x) dΩ . (1.23)

A more compact matrix notation is used in [12]:

f p = S f g (1.24)

where f p is a particle-based quantity matrix that has size Np × 1 for scalars, Np × 3 for vectors, and Np ×6
for symmetric second-order tensors. �e matrix f g are the corresponding grid quantities that have sizes
Ng × 1 for scalars, Ng × 3 for vectors and N f × 6 for symmetric 2-tensors. �e Smatrix has size Np × Ng

with components ⟨Sg p⟩.
We can nowmake some special assumptions about the weight functions in (1.17) to reduce the projection
operation to that use in traditionMPM approaches. Let us assume that

Bg p = Vp ⟨Sg p⟩ Ô⇒ ∫
Ωp
Sg(x)w(x) dΩ = Vp

∫Ωp
Sg(x)ωp(x) dΩ

∫Ωp
ωp(x) dΩ

(1.25)

With that assumption, the particle-to-grid projection operations in equations (1.17) become

fg = ∑
p
ψg pfp where ψg p =

Vp ⟨Sg p⟩
∑p Vp ⟨Sg p⟩

, ∑
p
ψg p = 1 . (1.26)

�e matrix notation used for the above relation in [12] is

f g = S+ f p (1.27)

where S+ is a Ng × Np matrix.

1.3.1 Traditional MPM

If we wish to recover the traditionalMPM formulation [2], take ωp(x) = 1 and χ⋆p(x) = Vpδ(x−xp)where
Vp is the volume of Ω⋆

p = Ωp and δ(x) is the Dirac delta function, we have

Sg p ∶= ⟨Sg p⟩ =
∫Ωp

Sg(x)Vpδ(x − xp) dΩ

∫Ωp
Vpδ(x − xp) dΩ

= Sg(xp) . (1.28)

�e gradient of the interpolation function evaluated at the particle is

Gg p = ⟨∇Sg p⟩ =
∫Ωp
∇Sg(x)Vpδ(x − xp) dΩ

∫Ωp
Vpδ(x − xp) dΩ

= ∇Sg(xp) . (1.29)
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1.3.2 GIMP

To recover the GIMP formulation [7], we take ωp(x) = 1 and the square pulse function χ⋆p(x) = 1 for
x ∈ Ω⋆

p and χ⋆p(x) = 0 otherwise. �e particle domain Ω⋆
p is assumed to be a rectangular parallelepiped.

�en

Sg p ∶= ⟨Sg p⟩ =
⎧⎪⎪⎨⎪⎪⎩

1
V⋆p ∫Ω⋆p Sg(x) dΩ for x ∈ Ω⋆

p

0 otherwise.
(1.30)

�e gradient of the interpolation function is

Gg p = ⟨∇Sg p⟩ =
⎧⎪⎪⎨⎪⎪⎩

1
V⋆p ∫Ω⋆p ∇Sg(x) dΩ for x ∈ Ω⋆

p

0 otherwise.
(1.31)

1.3.3 CPDI

For the CPDI formulation [8], we take ω⋆p(x) = 1 and the particle domain Ω⋆
p is assumed to be a general

parallelepiped that deforms based on the particle deformation gradient. �e expression for ϕg p is similar
to that for GIMP except that a modi�ed shape function is used for interpolation:

Sg p ∶= ⟨Sg p⟩ =
⎧⎪⎪⎨⎪⎪⎩

1
V⋆p ∫Ω⋆p S

⋆
g (x) dΩ for x ∈ Ω⋆

p

0 otherwise.
(1.32)

�e gradient of the interpolation function is

Gg p = ⟨∇Sg p⟩ =
⎧⎪⎪⎨⎪⎪⎩

1
V⋆p ∫Ω⋆p ∇S

⋆
g (x) dΩ for x ∈ Ω⋆

p

0 otherwise.
(1.33)

1.3.4 Transfer to and from grid

For the interpolation from grid nodes to particles, the above relations indicate a general relation (see
(1.23))

fp = ∑
g
fgSg p . (1.34)

In matrix form (see (1.24))

f p = S f g . (1.35)

For the particle-to-grid projection (see (1.17)), consider the case where w(x) = ρ(x) where ρ is the mass
density. �en,

Ag = ∫
Ω
ρ(x)Sg(x) dΩ = mg , Bg p = ∫

Ω
ρ(x)Sg(x)χp(x) dΩ (1.36)

and

mgfg = ∑
p
fp ∫

Ω
ρ(x)Sg(x)χp(x) dΩ = ∑

p
fpmpSg p . (1.37)

where mg is the grid node mass and mP is the particle mass. In matrix form equation 1.37 can be written
as (see (1.27))

f g = S+ f p where S+ ∶= m−1
g S

Tmp (1.38)
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where mg is a Ng × Ng diagonal matrix that is invertible as long as mg ≠ 0, mp is a Np × Np diagonal
matrix, and S is a Np × Ng matrix.

On the other hand, if w(x) = 1, we have

Ag = ∫
Ω
Sg(x) dΩ = Vg , Bg p = ∫

Ω
Sg(x)χp(x) dΩ (1.39)

and

Vgfg = ∑
p
fp ∫

Ω
Sg(x)χp(x) dΩ = ∑

p
fpVpSg p . (1.40)

where Vg is the grid node volume and Vp is the particle volume. In matrix form equation (1.40) can be
written as

f g = S+V f p where S+V ∶= V−1
g S

TV p (1.41)

where V g is a Ng × Ng diagonal matrix that is invertible as long as Vg ≠ 0, and V p is a Np × Np diagonal
matrix.

In traditionalMPM , the velocity (v) is projected using mass weighting as per (1.37)), i.e.,

mgvg = ∑
p
mpvpSg p or vg = S+vp . (1.42)

�is implies that the mass density (ρ) and the momentum per unit volume (P = ρv) are projected to grid
nodes using the volume-weighted approach in (1.40):

Vgρg = ∑
p
VpρpSg p or mg = STmp

VgPg = ∑
p
VpPpSg p or pg = ST pp

(1.43)

where p is amatrix of totalmomentum. Further details of the actual projection operators used inVaango are
discussed next.

1.4 MPM discretization of the weak form

�e weak form of the momentum equation is

∫
Γt
t ⋅w dΓ − ∫

Ω
σ ∶ ∇w dΩ + ∫

Ω
ρ w ⋅ b dΩ = ∫

Ω
ρ w ⋅ v̇ dΩ . (1.44)

To discretize the weak form we can use either of the assumed description of �eld variables shown in
(1.5). �e grid node-based discretization is used in �nite elements while MPM uses the particle-based
discretization but also a grid-based approximation.

Recall from (1.5) and (1.26) that

f(x) = ∑
g
fgSg(x) and fg = ∑

p
ψg pfp , ψg p =

Vp ⟨Sg p⟩
∑p Vp ⟨Sg p⟩

, ∑
p
ψg p = 1 . (1.45)

�erefore, we can write

f(x) = ∑
g
∑
p
ψg pfpSg(x) = ∑

p
fp∑

g
ψg pSg(x) = ∑

p
fpYp(x) (1.46)
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where the particle basis functions , Yp, are de�ned as

Yp(x) ∶= ∑
g
ψg pSg(x) =

Vp∑g ⟨Sg p⟩ Sg(x)
∑p Vp ⟨Sg p⟩

(1.47)

If we compare (1.46) with the particle representation in (1.5):

f(x) = ∑
p
fpχp(x) (1.48)

we see that for the grid-based and particle-based representations to be both accurate representations of
the �eld we need the χp and Yp values to be related by

∫
Ω
w(x)χp(x) = ∫

Ω
w(x)Yp(x) (1.49)

because they cannot be point-wise identical unless the particle characteristic functions satisfy the Kro-
necker property exactly. We will use the Yp particle basis functions to discretize the momentum equa-
tion.

�e �rst step in the MPM discretization is to convert the integrals over Ω in (1.44) into a sum of integrals
over particles using the particle basic functions, Yp:

∫
Γt
t(x) ⋅w(x) dΓ −∑

p
∫
Ωp
Yp(x)σ p ∶ ∇w dΩ +∑

p
∫
Ωp
Yp(x)ρpw(x) ⋅ bp dΩ

= ∑
p
∫
Ωp
Yp(x)ρpw(x) ⋅ v̇(x) dΩ .

(1.50)

�e weighting function, the velocity, and the material time derivative of v are approximated as (see [2]):

w(x) = ∑
g
wgSg(x) , v(x) = ∑

h
vhSh(x) , v̇(x) ≈ ∑

h
v̇hSh(x) . (1.51)

Plugging these into the le� hand side of (1.50) we get

LHS = ∫
Γt
t(x) ⋅

⎡⎢⎢⎢⎢⎣
∑
g
wgSg(x)

⎤⎥⎥⎥⎥⎦
dΓ −∑

p
∫
Ωp
Yp(x)σ p ∶

⎡⎢⎢⎢⎢⎣
∑
g
wg ⊗∇Sg

⎤⎥⎥⎥⎥⎦
dΩ

+∑
p
∫
Ωp
Yp(x)ρp

⎡⎢⎢⎢⎢⎣
∑
g
wgSg(x)

⎤⎥⎥⎥⎥⎦
⋅ bp dΩ

(1.52)

Rearranging,

LHS = ∑
g
wg ⋅

⎡⎢⎢⎢⎢⎣
∫
Γt
t(x)Sg(x) dΓ −∑

p
∫
Ωp
Yp(x)σ p ⋅∇Sg dΩ

+∑
p
∫
Ωp
ρpYp(x)Sg(x)bp dΩ

⎤⎥⎥⎥⎥⎦

(1.53)

Similarly, the right hand side of (1.50) can be written as

RHS = ∑
p
∫
Ωp
Yp(x)ρp

⎡⎢⎢⎢⎢⎣
∑
g
wgSg(x)

⎤⎥⎥⎥⎥⎦
⋅ [∑

h
v̇hSh(x)] dΩ . (1.54)
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Rearrangement leads to

RHS = ∑
g
wg ⋅ ∑

h

⎡⎢⎢⎢⎢⎣
∑
p
∫
Ωp
ρpYp(x)Sg(x)Sh(x)v̇h dΩ

⎤⎥⎥⎥⎥⎦
. (1.55)

Combining the le� and right hand sides and invoking the arbitrariness of wg , for Ng grid points we get
equations for g = 1, 2, . . . ,Ng :

∫
Γt
t(x)Sg(x) dΓ −∑

p
∫
Ωp
Yp(x)σ p ⋅∇Sg dΩ +∑

p
∫
Ωp
ρpYp(x)Sg(x)bp dΩ

= ∑
h

⎡⎢⎢⎢⎢⎣
∑
p
∫
Ωp
ρpYp(x)Sg(x)Sh(x)v̇h dΩ

⎤⎥⎥⎥⎥⎦
.

(1.56)

We can simplify the above equations further by taking the particle variables outside the integral by as-
suming they are constant over a particle domain:

∫
Γt
t(x)Sg(x) dΓ −∑

p
σ p ⋅ [∫

Ωp
Yp(x)∇Sg dΩ] +∑

p
ρpbp [∫

Ωp
Yp(x)Sg(x) dΩ]

= ∑
h
∑
p
ρp [∫

Ωp
Yp(x)Sg(x)Sh(x) dΩ] v̇h .

(1.57)

Recalling that Yp has the same e�ect as χp when integrated over a particle volume, we can write

⟨Sg p⟩ ∶=
1
Vp
∫
Ωp
Yp(x) Sg(x) dΩ . (1.58)

�en (1.57) can be expressed as

∫
Γt
t(x)Sg(x) dΓ −∑

p
Vpσ p ⋅ ⟨∇Sg p⟩ +∑

p
Vpρpbp ⟨Sg p⟩

= ∑
h
∑
p
ρp [∫

Ωp
Yp(x)Sg(x)Sh(x) dΩ] v̇h .

(1.59)

De�ne the mass matrix (M), the internal force vector (f intg ), the body force vector (f
body
g ), and the

external force vector (fextg ) at grid node g as

Mgh ∶= ∑
p
ρp ∫

Ωp
Yp(x) Sg(x) Sh(x) dΩ

f intg ∶= ∑
p
Vpσ p ⋅ ⟨∇Sg p⟩

fbodyg ∶= ∑
p
mpbp ⟨Sg p⟩

fextg ∶= ∫
Γt
t(x) Sg(x) dΓ .

(1.60)

�en, from (1.59) we get the semi-discrete system of equations

∑
h
Mghv̇h = fextg − f intg + fbodyg ; g = 1 . . .Ng (1.61)

�e mass matrix is typically lumped such that

mg = ∑
h
Mgh = ∑

p
ρp ∫

Ωp
Yp(x) Sg(x) [∑

h
Sh(x)] dΩ = ∑

p
ρp ∫

Ωp
Yp(x) Sg(x) dΩ

= ∑
p
ρpVp ⟨Sg p⟩ = ∑

p
mp ⟨Sg p⟩ .

(1.62)
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In that case the semi-discrete system of equations simpli�es to

mg v̇g = fextg − f intg + fbodyg ; g = 1 . . .Ng (1.63)

�e external force at grid nodes ismore di�cult to estimate and is typically computed fromparticle values
using

fextg = ∑
p
fextp ⟨Sg p⟩ . (1.64)

1.4.1 Damping

Two types of arti�cial damping are implemented inVaango . �e �rst approachmodi�es the acceleration
in (1.63) such that

mg v̇g = fextg − f intg + fbodyg − αdvg ; g = 1 . . .Ng (1.65)

where αd is a damping coe�cient.

�e second approach uses Richtmyer-von Neumann arti�cial viscosity to damp out large oscillations in
high strain-rate simulations. Vaango uses a three-dimensional form of the Richtmyer-von Neumann
arti�cial viscosity ([13, 14], p.29). �e viscosity factor takes the form

q = C0 ρ l
√

K
ρ

∣trd∣ + C1 ρ l2 (trd)2 (1.66)

where C0 and C1 are constants, ρ is the mass density, K is the bulk modulus, d is the rate of deformation
tensor, and l is a characteristic length (usually the grid cell size). Typical values of the coe�cients are
C0 = 0.2 and C1 = 2.0.
�e factor q is used to decrease the particle stress:

σ p = σ p − qI (1.67)

before it is projected to grid nodes for internal force calculations.

1.5 AlgorithmDescription

�e interested reader should consult [1, 2] for the development of the discrete equations inMPM discussed
in this section, and [7] for the development of the equations for the GIMP method. �ese end up being
very similar, the di�erences in how the two developments a�ect implementation will be described in
Section 1.6.

In solving a structural mechanics problem with MPM , one begins by discretizing the object of interest
into a suitable number of particles, or “material points”.

What constitutes a suitable number is something of an open question, but it is typically advisable to
use at least two particles in each computational cell in each direction, i.e. 4 particles per cell (PPC)
in 2-D, 8 PPC in 3-D.

In choosing the resolution of the computational grid, similar considerations apply as for any compu-
tational method (trade-o� between time to solution and accuracy, use of resolution studies to ensure
convergence in results, etc.).) Each of these particles will carry, minimally, the following variables:

• position - xp
• mass - mp
• volume - Vp
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• velocity - vp
• stress - σ p
• deformation gradient - F p

�e description that follows is a recipe for advancing each of these variables from the current (discrete)
time tn to the subsequent time tn+1. Note that particle mass,mp, typically remains constant throughout a
simulation unless solid phase reaction models are utilized, a feature that is not present in VaangoMPM .
(Suchmodels are available inMPMICE , see Section 25.) It is also important to point out that the algorithm
for advancing the timestep is based on the so-called Update Stress Last (USL) algorithm.

�e superiority of this approach over the Update Stress First (USF) approach was clearly demon-
strated by Wallstedt and Guilkey [15]. USF was the formulation used in Uintah until mid-2008.

�e discrete momentum equation that results from the weak form is given as:

Ma = fext − f int + fbody (1.68)

whereM is the mass matrix, a is the acceleration vector, fext is the external force vector (sum of the body
forces and tractions), and f int is the internal force vector resulting from the divergence of the material
stresses. �e construction of each of these quantities, which are based at the nodes of the computational
grid, will be described below.

�e solution begins by projecting the particle state to the nodes of the computational grid, to form the
mass matrix M and to �nd the nodal external forces fext, and velocities, v. In practice, a lumped mass
matrix is used to avoid the need to invert a system of equations to solve Eq. (1.68) for acceleration. �ese
quantities are calculated at individual nodes by the following equations, where the ∑

p
represents a sum-

mation over all particles:

mg = ∑
p
mpSg p , vg =

∑pmpvpSg p
mg

, fextg = ∑
p
fextp Sg p (1.69)

and g refers to individual nodes of the grid, mp is the particle mass, vp is the particle velocity, and fextp
is the external force on the particle. �e external forces that start on the particles typically the result of
tractions, the application of which is discussed in the VaangoUser manual. Sg p = ⟨Sg p⟩ is the shape
function of the g-th node evaluated at the particle p as discussed in the section 1.3 equation (1.23). �e
functional form of the shape functions di�ers between MPM , GIMP , and CPDI . Further details of the
di�erence are given in Section 1.6.

Following the operations in Eq. 1.69, f int is still required in order to solve for acceleration at the nodes. �is
is computed at the nodes as a volume integral of the divergence of the stress on the particles, speci�cally:

f intg = ∑
p
Vpσ pGg p (1.70)

where Gg p is the gradient of the shape function of the g-th node evaluated at the particle p, and σ p and
Vp are the time tn values of particle stress and volume respectively.

Equation (1.68) can then be solved for a.

ag =
fextg − f intg + fbodyg

mg
(1.71)

In the explicit version of MPM implemented in Vaango , a forward Euler method is used for the time
integration:

vLg = vg + ag∆t where ∆t = tn+1 − tn . (1.72)
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�e time advanced grid velocity, vLg is used to compute a velocity gradient at each particle according to:

∇vp = ∑
g
vLgGg p . (1.73)

�is velocity gradient is used to update the particle’s deformation gradient, volume and stress. First, an
incremental deformation gradient is computed using the velocity gradient:

∆Fn+1p = (I +∇vp∆t) (1.74)

Particle volume and deformation gradient are updated by:

V n+1
p = det(∆Fn+1p )V n

p , F
n+1
p = ∆Fn+1p ⋅ Fnp . (1.75)

Finally, the velocity gradient, and/or the deformation gradient are provided to a constitutivemodel, which
outputs a time advanced stress at the particles.

At this point in the timestep, the particle position and velocity are explicitly updated by:

vp(t + ∆t) = vp(t) +∑
g
Sg pag∆t

xp(t + ∆t) = xp(t) +∑
g
Sg pvLg∆t

(1.76)

�is completes one timestep, in that the update of all six of the variables enumerated above (with the
exception of mass, which is assumed to remain constant) has been accomplished. Conceptually, one can
imagine that, since an acceleration and velocity were computed at the grid, and an interval of time has
passed, the grid nodes also experienced a displacement. �is displacement also moved the particles in an
isoparametric fashion. In practice, particle motion is accomplished by Equation 1.76, and the grid never
deforms. So, while the MPM literature will o�en refer to resetting the grid to its original con�guration,
in fact, this isn’t necessary as the grid nodes never leave that con�guration. Regardless, at this point, one
is ready to advance to the next timestep.

�e algorithm described above is the core of the VaangoMPM implementation. However, it neglects a
number of important considerations. �e �rst is kinematic boundary conditions on the grid for velocity
and acceleration. Next, is the use of advanced contact algorithms. By default, MPM enforces no-slip,
no-interpenetration contact. �is feature is extremely useful, but it also means that two bodies initially
in “contact” (meaning that they both contain particles whose data are accumulated to common nodes)
behave as if they are a single body. To enable multi-�eld simulations with frictional contact, or to impose
displacement based boundary conditions, e.g. a rigid piston, additional steps must be taken. �ese steps
implement contact formulations such as that described by Bardenhagen, et al.[16]. �e use of the contact
algorithms is described brie
y in this manual, but the reader will be referred to the relevant literature for
their development. Lastly, heat conduction is also available in the explicitMPM code, although it may be
neglected via a run time option in the input �le. ExplicitMPM is typically used for high-rate simulations
in which heat conduction is negligible.

1.5.1 Deformation gradient computation

�e deformation gradient computation involves the solution of a �rst-order di�erential equation:

Ḟ = l ⋅ F = ∇v ⋅ F (1.77)

which, for constant l and initial condition F = F0, has the exact solution

F(t) = exp(t l) ⋅ F0 = exp(t∇v) ⋅ F0 . (1.78)
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Expanded in series form, and considering only the time step ∆t with initial condition F = Fnp, we have

F p(t) = [I + ∆t∇vp +
1
2!
(∆t∇vp)2 +

1
3!
(∆t∇vp)3 + . . . ] ⋅ Fnp . (1.79)

�e approach in (1.74) is a �rst-order approximation of the Taylor series expansion for the deformation
gradient:

Fn+1p = (I +∇vp∆t)Fnp . (1.80)

�is is the most commonly used method of computing the deformation gradient. Vaango also allows
for an alternative estimate of the deformation gradient by subcycling a�er dividing ∆t into k smaller
increments:

Fn+1p = [∏
k
(I +∇vp∆tk)] Fnp . (1.81)

Alternatively, multiple terms of the expansion in (1.79) can be evaluated by choosing an appropriate 
ag
in the input �le.

Finally, Vaango also provides an option to compute the matrix exponential using the Cayley-Hamilton
theorem . However, all these approaches assume that the velocity gradient remains constant over a time
step.

Pressure stabilization

A pressure stabilization step may be required during the computation of deformation gradients of mate-
rials that are nearly incompressible. �e algorithm involves computing a the particle volumes inside each
grid cell (ignoring volume that may extend outside cell boundaries):

Vc0 = ∑
p∈c

mp

ρ0
, Vc = ∑

p∈c
Vp (1.82)

where Vc0 is an estimate of the initial volume in a cell and Vc is the current volume in the cell. �e initial
density is ρ0. An estimate of the volume change is computed using

Jc =
Vc
Vc0

. (1.83)

A correction is applied to the particle deformation gradient using

F p ← ( Jc
det(F p)

)
1/3
F p . (1.84)

1.6 Shape functions for MPM, GIMP, and CPDI

In both MPM and GIMP , the basic idea is the same: objects are discretized into particles, or material
points, each of which contains all state data for the small region of material that it represents. In MPM ,
these particles are spatially Dirac delta functions, meaning that the material that each represents is as-
sumed to exist at a single point in space, namely the position of the particle. Interactions between the
particles and the grid take place using weighting functions, also known as shape functions or interpola-
tion functions. �ese are typically, but not necessarily, linear, bilinear or trilinear in one, two and three
dimensions, respectively.

Bardenhagen and Kober [7] generalized the development that gives rise to MPM , and suggested that
MPM may be thought of as a subset of their “Generalized Interpolation Material Point” (GIMP ) method.
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As discussed in Section 1.3, in the family of GIMP methods one chooses a characteristic function χp to
represent the particles and a shape function Sg as a basis of support on the computational nodes. An
e�ective shape function Sg p is found by the convolution of χp and Sg which is written as:

Sg p(xp) =
1
Vp
∫
Ωp∩Ω

χp(x − xp)Sg(x)dx. (1.85)

While the user has signi�cant latitude in choosing these two functions, in practice, the choice of Sg is
usually given (in one-dimension) as,

Sg (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 + (x − xg) /h −h < x − xg ≤ 0
1 − (x − xg) /h 0 < x − xg ≤ h
0 otherwise,

(1.86)

where xg is the vertex location, and h is the cell width, assumed to be constant in this formulation, al-
though this is not a general restriction on the method. Multi-dimensional versions are constructed by
forming tensor products of the one-dimensional version in the orthogonal directions. In three dimen-
sions,

Sαg (r, s, t) =
1
8
(1 + r rα)(1 + s sα)(1 + t tα) (1.87)

and r, s, t ∈ [−1, 1] are the natural coordinates of the support domain. A plot of the basis function in
two-dimensions is shown in Figure 1.1.

Figure 1.1: Linear grid node shape functions for 2D traditionalMPM .

1.6.1 MPM

When the choice of characteristic function is the Dirac delta,

χp(x) = δ(x − xp)Vp , (1.88)

where xp is the particle position, and Vp is the particle volume, then traditional MPM is recovered. In
that case, the e�ective shape function is still that given by Equation (1.86). Its gradient is given by:

Gg (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1/h −h < x − xg ≤ 0
−1/h 0 < x − xg ≤ h
0 otherwise,

(1.89)

Plots of Equations 1.86 and 1.89 are shown below. �e discontinuity in the gradient gives rise to poor
accuracy and stability properties.



1.6 Shape functions for MPM, GIMP, and CPDI 23

−h 0 h
0

0.2

0.4

0.6

0.8

1

xp

S i (x
p)

(a) E�ective shape functionwhen using traditionalMPM .
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(b) Gradient of the e�ective shape function when using
traditionalMPM .

1.6.2 GIMP

Typically, when an analyst indicates that they are “using GIMP ” this implies use of the linear grid basis
function given in Eq. 1.86 and a “top-hat” characteristic function, given by (in one-dimension),

χp(x) = H(x − (xp − lp)) −H(x − (xp + lp)), (1.90)

whereH(x) is theHeaviside function (H(x) = 0 if x < 0 andH(x) = 1 if x ≥ 0) and lp is the half-length of
the particle. When the convolution indicated in Eq. 1.85 is carried out using the expressions in Eqns. 1.86
and 1.90, a closed form for the e�ective shape function can be written as:

Sg p (xp) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(h+lp+(xp−xg))2
4hlp −h − lp < xp − xg ≤ −h + lp

1 + (xp−xg)h −h + lp < xp − xg ≤ −lp
1 − (xp−xg)

2+l 2p
2hlp −lp < xp − xg ≤ lp

1 − (xp−xg)h lp < xp − xg ≤ h − lp
(h+lp−(xp−xg))2

4hlp h − lp < xp − xg ≤ h + lp
0 otherwise,

(1.91)

�e gradient of which is:

Gg p(xp) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h+lp+(xp−xg)
2hlp −h − lp < xp − xg ≤ −h + lp

1
h −h + lp < xp − xg ≤ −lp
− (xp−xg)hlp −lp < xp − xg ≤ lp
− 1
h lp < xp − xg ≤ h − lp

− h+lp−(xp−xg)
2hlp h − lp < xp − xg ≤ h + lp

0 otherwise,

(1.92)

Plots of Equations 1.91 and 1.92 are shown in Figure 1.3. �e continuous nature of the gradients are largely
responsible for the improved robustness and accuracy of GIMP overMPM .

1.6.3 UGIMP and cpGIMP

�eGIMP e�ective shape functions in (1.91) are valid only for particle sizes that are smaller than the grid
spacing. In Figure 1.4 we see that discontinuities appear in the e�ective shape function for particles for
which lp > 0.5h.
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Figure 1.3: GIMP e�ective shape functions and their gradients.

Figure 1.4: Two-dimensional GIMP e�ective shape functions (Sg p) for lp = 0.7h .
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�ere is one further consideration in de�ning the e�ective shape function, and that is whether or
not the size (length in 1-D) of the particle is kept �xed (denoted as UGIMP here) or is allowed to
evolve due to material deformations (“Finite GIMP” or “Contiguous GIMP” and cpGIMP here). In
one-dimensional simulations, evolution of the particle (half-)length is straightforward,

lnp = Fnp l0p , (1.93)

where Fnp is the deformation gradient at time n. A similar approach is used in CPDI .

In multi-dimensional simulations, a similar approach can be used, assuming an initially rectangular or
cuboid particle, to �nd the current particle shape. �e di�culty arises in evaluating Eq. (1.85) for these
general shapes. One approach, apparently e�ective, has been to create a cuboid that circumscribes the
deformed particle shape [17]. Alternatively, one can assume that the particle size remains constant (insofar
as it applies to the e�ective shape function evaluations only).

1.6.4 CPDI

�e CPDI formulation [8] is a more recent method for calculating the quantities

⟨Sg p⟩ =
1
Vp
∫
Ωp
Yp(x) S̃g(x) dΩ and ⟨∇Sg p⟩ =

1
Vp
∫
Ωp
Yp(x) ∇S̃g(x) dΩ (1.94)

where Yp are the particle basis functions and S̃g are approximate grid basis functions. Figure 1.5 shows
examples of two-dimensional grid and particle basis functions that are used in CPDI .

(a) CPDI grid basis functions (Sg(x)). (b) CPDI particle basis functions (Np(x)).

Figure 1.5: Two-dimensional CPDI grid and particle basis functions.

In the reference state, the domain Ωp0 for particle p is assumed to be a parallelepiped spanned by the three
vectors r i0p , i = 1, 2, 3 with origin at the centroid. In the deformed state, these vectors become r ip = F p ⋅ r i0p
where F p is the deformation gradient. �e corners of the deformed parallelepiped are used in CPDI to
create the grid basis functions:

S̃g(x) =
8
∑
α=1

Nα
p (x)Sg(xαp) on Ωp (1.95)

where α are the indices of the vertices of the particle parallelepiped,

Nα
p (r, s, t) =

1
8
(1 + r rα)(1 + s sα)(1 + t tα) (1.96)

and r, s, t the natural coordinates of the parallelepiped that range from -1 to 1. �e functions Sg(x) are
typically chosen to be the hat functions of classical MPM. Figure 1.6 shows the particle domains and the
e�ective grid shape functions produced by the CPDI relation in (1.95).
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(a) Particle domains Ωp . (b) E�ective grid basis functions (S̃g(x)).

Figure 1.6: Two-dimensional CPDI particle domains and e�ective grid basis functions.

We can compute the quantities in (1.94) as follows.

Let

s0p = [r10p r20p r30p ] and sp = [r1p r2p r3p] and Fp =
⎡⎢⎢⎢⎢⎢⎣

F11 F12 F13
F21 F22 F23
F31 F32 F33

⎤⎥⎥⎥⎥⎥⎦
. (1.97)

�en sp = Fps0p. Let

Sg p = [Sg(x1p) Sg(x2p) Sg(x3p) Sg(x4p) Sg(x5p) Sg(x6p) Sg(x7p) Sg(x8p)] . (1.98)

Also, let

R =
⎡⎢⎢⎢⎢⎢⎣

−1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1
−1 −1 −1 −1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎦
(1.99)

�en,

Sg p = ⟨Sg p⟩ = mean(Sg p) and Gg p = ⟨∇Sg p⟩ =
1
8
s−Tp RTSTg p . (1.100)

1.7 Contact algorithms

�edefault behavior ofMPM is to handle interactions between objects using velocities on the background
grid. However, beyond some simple situations, contact requires the application of contact laws. In the
Vaango implementation of friction contact, Coulomb friction is assumed. Alternative types of contact,
such as adhesive contact. could also be implemented by changing the contact law.

�e purpose of the various contact algorithms in Vaango is to correct the grid velocities such that a
particular set of contact assumptions are satis�ed. Many of these algorithms require the computaion of
surface normals.

1.7.1 De�nitions

Letmp, vp, pp be themass, velocity, andmomentumof particle p. Also, letmg , vg , pg be themass, velocity,
and momentum at a grid point g due to nearby particles in the region of in
uence. Consider Nα objects
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that can potentially be in contact and index then by the superscript α. �en, from (1.43), we have

mα
g = V α

g ρ
α
g = ∑

p
V α
p ρ

α
pSg p = ∑

p
mα
pSg p and pαg = ∑

p
pαpSg p . (1.101)

In matrix notation,

mα
g = STmα

p and pαg = ST pαp . (1.102)

Similarly, from (1.42), we have

mα
gv

α
g = ∑

p
mα
pv

α
pSg p Ô⇒ vαg =

1
mα
g
∑
p
mα
pv

α
pSg p . (1.103)

In matrix form,

vαg = S+αv
α
p where S+α = (mα

g)
−1 STmα

p . (1.104)

Based on a local conservation of momentum, we de�ne a center-of-mass velocity , vcmg , at grid node g
for all the contacting objects:

vcmg =
∑α mα

gvαg
∑α mα

g
. (1.105)

We also de�ne an e�ective grid mass , me�g , as
1

me�g
= ∑

α

1
mα
g
. (1.106)

1.7.2 Computing surface normals and tractions

Surface normals are typically estimated from the gradient of mass at grid nodes. If mp is the mass of
particle p, then the normal at grid node g due to the particles in its region of in
uence is

ng = ∑
p
mp∇Sg p . (1.107)

Normals are converted to unit vectors before they ar used in Vaango computations.

Surface tractions at the nodes are computed by projecting particle stresses (σ p) to grid nodes:

tg = ng ⋅
⎛
⎝∑p

σ pSg p
⎞
⎠
. (1.108)

1.7.3 Basic contact algorithm

�e most basic contact algroithm in Vaango is called “single-velocity contact” �e center-of-mass ve-
locity is computed using (1.105). Upon contact detection, grid nodes that participate are assigned this
velocity:

vg = vcmg . (1.109)

1.7.4 Contact with a speci�edmaster

A slightly more complex algorithm is the “master”-based contact which is called “speci�ed-velocity con-
tact” in Vaango . In this model, a selected master material is assigned velocities, vmg = vm(t), wherem is
the index of the master material. �e grid node velocities of the materials are then adjusted according to

vg ← vg − [nmg ⋅ (vg − vmg )]nmg (1.110)

where nmg is the normal for the master material computed using (1.107). �is type of contact is useful for
imposing boundary conditions on objects.
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1.7.5 Frictional contact algorithms

�e two main frictional contact algorithms are friction bard , which is based on [16], and friction LR ,
which is described in [12].

Bardenhagen et al. algorithm

In the algorithm developed in [16], a contact interface is de�ned as the set of nodes for which individual
grid velocities associated with each object di�er from the center of mass velocity:

vαg − vcmg ≠ 0 . (1.111)

Once this condition is identi�ed, the surface normal nαg is computed from the mass distribution around
node g, and the surface normal traction tαg is computed from the stresses in surrounding material points.

�e contact condition is

(vαg − vcmg ) ⋅ nαg > 0 and tαg ⋅ nαg < 0 . (1.112)

�is condition indicates compressive stress at node g. If this condition is not satis�ed, the objects are
assumed to have separated.

To enforce (1.112), the grid node velocities are adjusted such that momentum is conserved, i.e.,

∆(vn)αg = ∆vαg ⋅ nαg and ∆(vt)αg = ∆vαg ⋅
⎡⎢⎢⎢⎢⎣
nαg ×

∆vαg × nαg
∥∆vαg × nαg∥

⎤⎥⎥⎥⎥⎦
(1.113)

where

∆vαg ∶= vαg − vcmg . (1.114)

Normal contact is enforced by adjusting material velocities by ∆(vn)αg . �e tangential contact is enforced
using Coulomb friction with the tangential velocity determined using µ∆(vn)αg where µ is the friction
coe�cient. If ∆(vt)αg < µ∆(vn)αg , the no-slip condition is enforced. Otherwise, the tangential components
of the nodal velocities are updated with a reduced friction coe�cient

µred = min(µ,
∣∆(vt)αg ∣
∣∆(vn)αg ∣

) . (1.115)

Returning to the problem of computing object outward normals at a grid point, the traditional approach
is to compute volume gradients using the set of particles in
uencing a node:

gαg = ∑
pα
Gg pVp (1.116)

where the gradients Gg p are as de�ned in (1.29), (1.31), and (1.33). �e normal to an object is calculated
using

nα =
gαg

∥gαg ∥
. (1.117)

For multiple objects, an average gradient can be computed for better accuracy.



1.7 Contact algorithms 29

Nairn et al. algorithm

�e more recent algorithm by [12] uses a logistic regression step to determine contact. �e underlying
approach is similar to that used in [16]. Since the approach is at its simplest when only two objects are
involved at a grid point, we will describe only that case below. Most situations with contact between
multiple objects see [12].

Let the two objects be indexed by α and β. Let pα0g and p
β0
g be the particle momenta projected to the grid.

We would like to compute the momentum correction ∆p so that momentum is conserved a�er contact.
Let the corrected momenta be

pαg = pα0g + ∆p and pβg = p
β0
g − ∆p . (1.118)

If we restrict relative motion between objects at a grid point to the tangent plane, and let t̂ be the direction
of relative motion, then

vβg − vαg = kt̂ Ô⇒
pβg
mβ
g
−
pαg
mα
g
= kt̂ Ô⇒ mα

gp
β
g −m

β
gpαg = mα

gm
β
g kt̂ . (1.119)

From the de�nition of the center-of-mass velocity in (1.105) and the e�ective grid mass (1.106), we have

vcmg =
mα
gvαg +m

β
gv

β
g

mα
g +m

β
g

=
pαg + p

β
g

mα
g +m

β
g
and me�g =

mα
gm

β
g

mα
g +m

β
g
. (1.120)

�erefore,

pαg + p
β
g =

vcmg mα
gm

β
g

me�g
. (1.121)

Solving for pαg , p
β
g from equations (1.119) and (1.121), we have

pαg = mα
gv
cm
g −me�g kt̂ and pβg = m

β
gvcmg +me�g kt̂ . (1.122)

�erefore, from (1.118),

∆p = pαg − pα0g = mα
gv
cm
g −me�g kt̂ −mα

gv
α0
g = mα

g (vcmg − vα0g ) −me�g kt̂ . (1.123)

�e quantity

∆p0 ∶= mα
g (vcmg − vα0g ) (1.124)

is the initial change of momentum before tangential correction. Since the contact force (f c) is given by
the rate of change of momentum due to contact, we have

f c0 = ∆p0

∆t
and f c = ∆p

∆t
= f c0 −

me�g kt̂
∆t

. (1.125)

where ∆t is the timestep size. �e contact compressive traction is found from the normal component of
the contact force needed to prevent interpenetration:

T c
n = −

1
Ac
f c0 ⋅ n (1.126)

where Ac is the contact area. �e tangential contact traction can be found using a contact law:

T c
t =

1
Ac
f c ⋅ t̂ = 1

Ac

⎡⎢⎢⎢⎢⎣
f c0 ⋅ t̂ −

me�g k
∆t

⎤⎥⎥⎥⎥⎦
. (1.127)
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�erefore, if T c
t = T c

t (T c
n) is a contact law,

k = ∆t
me�g

[f c0 ⋅ t̂ − AcT c
t (T c

n)] . (1.128)

We can compute k using the contact law T c
t (T c

n) and then adjust vαg and v
β
g using (1.118). Note that this

process is identical to that used in the Bardenhagen at al. algorithm. �e main di�culty is in �nding
where contact has occurred and the quantities n, t̂, and Ac .

�e basic contact identi�cation condition used in this approach, and in the Bardenhagen et al. approach,
is

(vβg − vαg ) ⋅
gαg − g

β
g

∥gαg − g
β
g∥

< 0 and T c
n > 0 (1.129)

where gg is the volume gradient de�ned in (1.116). �is condition is a variation of (1.112) and is a necessary,
but not su�cient, condition to detect whether the two objects are approaching each other and in contact.
However, T c

n > 0 even when the objects are not touching and a separation condition is needed to correctly
identify contact.

�e logistic regression approach developed in [12] attempts to identify contact without having to rely
purely on grid information. �is approach requires a set of particles (point-cloud) in the neighborhood
of a grid point that satis�es (1.129). �e aim of this technique is to identify a plane within the point-cloud
that best separates the two objects. �enormal to this plane is the contact normalng . �e logistic function
penalizes points as a function of their distance from a preferred separation plane.

�e logistic regressionmethod for separation detection is described next. Let x p be the homogeneous co-
ordinate representation of a particle position, i.e.,Xp = (xp , 1) =∶ (X1, X2, X3, X4), where xp = (x1p , x2p , x

3
p)

is the particle position. LetN be the corresponding normal vector of the separation plane, i.e.,N = (n,N4)
where n = (n1, n2, n3) =∶ (N1,N2,N3) is the normal to the separation plane and n4 is an o�set. �e equa-
tion of the desired separation plane is

X ⋅N = 0 (1.130)

whereX is the vector of particle positions. Let there be P particles in the point-cloud consisting of points
from objects α and β. De�ne a particle label cp as:

cp =
⎧⎪⎪⎨⎪⎪⎩

−1 for particles in object α
1 for particles in object β.

(1.131)

�e objective function that has to be minimized is the error

E =
P
∑
p=1
wp [L(Xp ,N) − cp]

2 +
4
∑
j=1
λ2jN

2
j (1.132)

where wp are weights, λ2j are penalty factors that help regularize the error function and L is the logistic
function given by

L(X,N) = 2
1 + exp(−X ⋅N)

− 1 . (1.133)

�e minimum of E is achieved when ∂E
∂N = 0 and ∂E∂λ = 0. From the �rst requirement

∂E
∂Ni

= 2
P
∑
p=1
wp [L(Xp ,N) − cp]

∂L
∂Ni

+ 2
4
∑
j=1
λ2jN j

∂N j

∂Ni
= 0 (1.134)
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where
∂L
∂Ni

= 2 ∂
∂Ni

[1 + exp(−XmNm)]−1 = −2 [1 + exp(−XmNm)]−2
∂
∂Ni

exp(−XmNm)

= 2 [1 + exp(−XmNm)]−2 exp(−XmNm)Xm
∂Nm

∂Ni

= 2 [1 + exp(−XmNm)]−2 exp(−XmNm)Xi .

(1.135)

De�ne

θp ∶= −Xp ⋅N and ϕp ∶= 1 + exp(θp) . (1.136)

�en, in vector form,

∂L
∂N

=
2 exp(θp)

ϕ2p
X and L(Xp ,N) = 2

ϕp
− 1 . (1.137)

Returning to (1.134), we can write

∂E
∂Ni

= 2
P
∑
p=1
wp [L(Xp ,N) − cp]

∂L
∂Ni

+ 2λ2iNi = 0 . (1.138)

Similarly,

∂E
∂λi

= 2
4
∑
j=1
λ j
∂λ j
∂λi

N2
j = λiN2

i = 0 (1.139)

�en, in vector form, the system of equations needed to solve for N and λ is

P
∑
p=1
wp [L(Xp ,N) − cp]

∂L
∂N

+ (λ ⊙ λ) ⊙N = 0 and

λ ⊙ (N⊙N) = 0
(1.140)

where

N = (N1,N2,N3,N4) , λ = (λ1, λ2, λ3, λ4) , a⊙ b = (a1b1, a2b2, a3b3, a4b4) . (1.141)

�e second set of equations in (1.140) suggest that the solution will improve as λ → 0. Given a vector λ,
the �rst equation in (1.140) can be solved for N using Newton’s method. De�ne

Y(N) ∶=
P
∑
p=1
wp [L(Xp ,N) − cp]

∂L
∂N

+ (λ ⊙ λ) ⊙N . (1.142)

�en, with I denoting the 4 × 4 identity matrix,

∂Y
∂N

=
P
∑
p=1
wp [

∂L
∂N

⊗ ∂L
∂N

+ [L(Xp ,N) − cp]
∂2L
∂N2 ] + (λ ⊙ λ)I . (1.143)

�en Newton’s method gives the iterative rule

Nk+1 = Nk − [ ∂Y
∂N

]
−1

Nk
⋅ Y(Nk) (1.144)

Given appropriate starting values, this method with converge to the solution except in situations where
X ⋅N < 0. It is preferable to normalize N in those situations where the exponential becomes too large.
Once the N vector has been found, the unit normal to the separation plane is determine by normalizing
n = (N1,N2,N3). Contact occurs at particle p if

min
p∈β

(xp ⋅
n

∥n∥
− Rp) −maxp∈α (xp ⋅

n
∥n∥

+ Rp) < 0 (1.145)

where Rp is the distance from the centroid of particle p to its deformed edge along n.
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1.8 Implicit time integration

Recall from equation (1.61) that the MPM discretized momentum equations can be written as a semi-
algebraic system

∑
h
Mghv̇h = fextg − f intg + fbodyg ; g = 1 . . .Ng (1.146)

where the mass matrix (M), the internal force vector (f intg ), the body force vector (f
body
g ), and the external

force vector (fextg ) at grid node g as

Mgh ∶= ∑
p
ρp ∫

Ωp
Yp(x) Sg(x) Sh(x) dΩ

f intg ∶= ∑
p
Vpσ p ⋅ ⟨∇Sg p⟩

fbodyg ∶= ∑
p
mpbp ⟨Sg p⟩

fextg ∶= ∫
Γt
t(x) Sg(x) dΓ .

(1.147)

While theMPM background grid is reset a�er each time increment,MPM does not require it to be reset
during each iteration of an implicit integration process. �erefore, during a time step, we can carry a grid
displacement variable u that can be used to compute grid accelerations ag = v̇g and discarded at the end
of a time step.

Let us express (1.146) in matrix form as

Mgag = f extg − f intg + f bodyg (1.148)

De�ne the residual as

r(un+1g , tn+1) = Mgan+1g − f ext(un+1g , tn+1) + f int(un+1g , tn+1) − f body(un+1g , tn+1) = 0. (1.149)

where the superscipt n + 1 indicates quantities at time tn+1 and ug is the Ng × 3 matrix of grid node
displacements. We use a Newmark-β method to integrate the acceleration:

un+1g = u⋆ + βan+1g (∆t)2

vn+1g = v⋆ + γan+1g ∆t
(1.150)

where

u⋆ = ung + vng∆t + 1
2(1 − 2β)a

n
g(∆t)2

v⋆ = vng + (1 − γ)ang∆t .
(1.151)

1.8.1 Newton’s method

In the Vaango implementation, the residual is expressed in terms of the displacement. We are required to
do this because tangents needed in Newton’s method are easier to compute when forces can be expressed
in the form

f = K ⋅ u (1.152)

where K is the sti�ness matrix. If we were to use the velocity as the primary variable, as in explicit MPM,
we would need rates of the forces instead:

ḟ = K ⋅ v + K̇ ⋅ u . (1.153)
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�e extra term involving the rate of change of the sti�ness matrix complicates the process and we avoid
it in Vaango .

�en, using (1.149) and (1.150), we have

r(un+1g , tn+1) =
1

β∆t2
Mg(un+1g −u⋆)− f ext(un+1g , tn+1)+ f int(un+1g , tn+1)− f body(un+1g , tn+1) = 0. (1.154)

�e problem then reduces to �nding the solution un+1g of the nonlinear system of equations (1.154). New-
ton’s method is used in Vaangowith the starting value of un+1g = u⋆g . Dropping the subscript g temporar-
ily for convenience, and denoting the current Newton iteration by the subscript k, we can linearize the
residual at un+1k using a Taylor expansion:

0 = r(un+1k+1 , tn+1) = r(u
n+1
k , tn+1) +

∂r(un+1k , tn+1)
∂u

(un+1k+1 − u
n+1
k ) . (1.155)

Rearranging the above equation,

∆u = un+1k+1 − u
n+1
k = −[

∂r(un+1k , tn+1)
∂u

]
−1
r(un+1k , tn+1) = −K−1r(un+1k , tn+1) . (1.156)

�is iterative process is continued until ∆u is smaller than a given tolerance. �e tangent matrix K , of
size Ng × Ng , is

K =
∂r(un+1k , tn+1)

∂u
. (1.157)

�is matrix is decomposed and evaluated separately for the internal and external forces, i.e.,

K =
∂r(un+1k , tn+1)

∂u
= 1
β∆t2

Mg−
∂
∂u

[ f ext(un+1g , tn+1)]+
∂
∂u

[ f int(un+1g , tn+1)]−
∂
∂u

[ f body(un+1g , tn+1)] .

(1.158)

Alternatively,

K = 1
β∆t2

Mg − Kext(un+1g , tn+1) + K int(un+1g , tn+1) − Kbody(un+1g , tn+1) . (1.159)

1.8.2 Tangent sti�ness matrix

�e contribution to the tangent matrix (K) from the internal forces is called the tangent sti�ness matrix
(K int). Since an updated Lagrangian formulation is used in MPM , we can compute the tangent sti�ness
using the con�guration at time tn as the reference con�guration.

Recall from (1.147) that for explicitMPM we used

f intg = ∑
p
Vpσ p ⋅ ⟨∇Sg p⟩ where ⟨Sg p⟩ ∶=

1
Vp
∫
Ωp
Yp(x) Sg(x) dΩ . (1.160)

For the computation of the tangent matrix, it is preferable to start from the weak form of the momentum
equation (1.4):

I = ∫
Ω
σ ∶ ∇w dΩ (1.161)

which leads to integral form of equation (1.160) (see (1.56)):

f intg = ∑
p
∫
Ωp
Yp(x)σ p ⋅∇Sg dΩ . (1.162)
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Also, sincewe are typicallyworkingwith rates of stress in the constitutivemodels, it is preferable to express
all quantities in terms of stress rates that are objective. It is easier to work with the Lagrangian PK-1 stress
(P) at the beginning of the timestep rather than the spatial Cauchy stress (σ).

To convert from the spatial description (1.161) to a Lagrangian material description, observe that

∇
n+1
w = ∂w

∂xn+1
= ∂w
∂xn

⋅ ∂xn

∂xn+1
= ∂w
∂xn

⋅ (∆Fn+1n )−1 = ∂w
∂xn

⋅ ∆F
T
c

Jn+1n
= ∇

n
w ⋅ ∆F

T
c

Jn+1n
(1.163)

where, with F as the deformation gradient,

Fn+1 = ∆Fn+1n Fn , Jn+1n = det(∆Fn+1n ) , ∆F c = cofactor(∆Fn+1n ) . (1.164)

�erefore,

I = ∫
Ωn+1

σn+1 ∶ ∇
n+1
w dΩn+1 = ∫

Ωn
σn+1 ∶ ∇

n+1
w Jn+1n dΩn

= ∫
Ωn
σn+1 ∶ (∇

n
w ⋅ ∆FTc ) dΩn = ∫

Ωn
(σn+1 ⋅ ∆F c) ∶ ∇

n
w dΩn

= ∫
Ωn
Pn ∶ ∇

n
w dΩn

(1.165)

where Pn is the �rst Piola-Kirchho� stress. Following the same process as used to derive (1.56), we get

f intg = ∑
p
∫
Ωn
p

Yp(xn)Pnp ⋅ ∇n
Sg dΩn . (1.166)

Taking the material time derivative of (1.166), we have

ḟ intg = ∑
p
∫
Ωn
p

Yp(xn)Ṗ
n
p ⋅ ∇n

Sg dΩn . (1.167)

Since the rate of the �rst Piola-Kirchho� stress is not objective, it is easier to work with the rate of the
second Piola-Kirchho� stress (S):

P = F ⋅ S Ô⇒ Ṗ = Ḟ ⋅ S + F ⋅ Ṡ . (1.168)

Substitution of (1.168) into (1.167) gives

ḟ intg = ∑
p
∫
Ωn
p

Yp(xn) [Ḟ
n+1
p ⋅ Snp + Fn+1p ⋅ Ṡnp] ⋅ ∇n

Sg dΩn . (1.169)

Separating out the two components, we have

ḟ intg = ∑
p
∫
Ωn
p

Yp(xn)Ḟ
n+1
p ⋅ Snp ⋅ ∇n

Sg dΩn +∑
p
∫
Ωn
p

Yp(xn)Fn+1p ⋅ Ṡnp ⋅ ∇n
Sg dΩn . (1.170)

�e rate of the internal force can then be expressed as

ḟ intg = ḟgeog + ḟmatg (1.171)

where the geometric and material rates of the internal forces are de�ned as

ḟgeog ∶= ∑
p
∫
Ωn
p

Yp(xn)Ḟ
n+1
p ⋅ Snp ⋅ ∇n

Sg dΩn

ḟmatg ∶= ∑
p
∫
Ωn
p

Yp(xn)Fn+1p ⋅ Ṡnp ⋅ ∇n
Sg dΩn .

(1.172)
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We can now use the constitutive relation between the second Piola-Kirchho� stress and the Green strain
(E), the expression for the Green strain in terms of the deformation gradient, the relationship between
the velocity gradient (l) and the rate of change of the deformation gradient, and the de�nition of the
rate-of-deformation (d)

Ṡ = C ∶ Ė , E = 1
2 (F

T ⋅ F − I) , Ḟ = l ⋅ F , and d = 1
2(l + l

T) (1.173)

to write the material and geometric rates of the internal force in (1.172) as

ḟmatg = ∑
p
∫
Ωn
p

Yp(xn)Fn+1p ⋅ [Cnp ∶ Ė
n
p] ⋅ ∇n

Sg dΩn

= 1
2∑

p
∫
Ωn
p

Yp(xn)Fn+1p ⋅ [Cnp ∶ ((Ḟ
n+1
p )T ⋅ Fn+1p + (Fn+1p )T ⋅ Ḟn+1p )] ⋅ ∇

n
Sg dΩn

= 1
2∑

p
∫
Ωn
p

Yp(xn)Fn+1p ⋅ [Cnp ∶ ((Fn+1p )T ⋅ (ln+1p )T ⋅ Fn+1p + (Fn+1p )T ⋅ ln+1p ⋅ Fn+1p )] ⋅ ∇
n
Sg dΩn

= ∑
p
∫
Ωn
p

Yp(xn)Fn+1p ⋅ [Cnp ∶ ((Fn+1p )T ⋅ dn+1p ⋅ Fn+1p )] ⋅ ∇
n
Sg dΩn

ḟgeog ∶= ∑
p
∫
Ωn
p

Yp(xn) [(Fn+1p )T ⋅ (ln+1p )T] ⋅ Snp ⋅ ∇n
Sg dΩn .

(1.174)

Recall the interpolation of the velocity from the grid nodes (h) to particles (p) can be computed using

vp(xn+1) = ∑
h
vn+1h Sh(xn+1) (1.175)

�erefore,

ln+1p = ∇
n+1
vn+1p (xn+1) = ∑

h
vn+1h ⊗ ∇

n+1
Sh

dn+1p = 1
2∑

h
[vn+1h ⊗ ∇

n+1
Sh + ∇

n+1
Sh ⊗ vn+1h ] .

(1.176)

Using (1.176) in (1.174), we have

ḟmatg = 1
2∑

h
∑
p
∫
Ωn
p

Yp(xn)Fn+1p ⋅ [Cnp ∶ ((Fn+1p )T ⋅ [ ∇
n+1
Sh ⊗ vn+1h + vn+1h ⊗ ∇

n+1
Sh] ⋅ Fn+1p )] ⋅ ∇

n
Sg dΩn

ḟgeog = ∑
h
∑
p
∫
Ωn
p

Yp(xn) [(Fn+1p )T ⋅ ( ∇
n+1
Sh ⊗ vn+1h )] ⋅ Snp ⋅ ∇n

Sg dΩn .

(1.177)

Since both the second Piola-Kirchho� stress and the Green strain are symmetric, the tensor C has the
symmetries Ci jkl = C jikl = C ji l k . For hyperelastic materials we have the additional symmetry Ci jkl =
Ckl i j. We can take advantage of these symmetries to simplify the above expressions. �e �rst term in the
expression for the rate of the material internal force contains an expression of the form

A ∶= F ⋅ [C ∶ (FT ⋅ [G̃⊗ v] ⋅ F)] ⋅G =∶ α ⋅ v (1.178)

while the second term contains

B ∶= F ⋅ [C ∶ (FT ⋅ [v ⊗ G̃] ⋅ F)] ⋅G =∶ β ⋅ v (1.179)

where

G = Gg ∶= ∇
n
Sg and G̃ = Gh ∶= ∇

n+1
Sh . (1.180)



36 TheMaterial Point Method

In index notation,

Ar = FriCi jkℓFTkmG̃mvnFnℓG j = FriCi jkℓFmkG̃mFnℓG jvn = G j(F ⋅ C ⋅ FT)r jkn(G̃ ⋅ F)kvn
= G j(G̃ ⋅ F)k(F ⋅ C ⋅ FT)r jknvn =∶ αrnvn

Br = FriCi jkℓFTknvnG̃mFmℓG j = FriCi jkℓFnkG̃mFmℓG jvn = G j(F ⋅ C ⋅ FT)r jℓn(G̃ ⋅ F)ℓvn
= G j(G̃ ⋅ F)ℓ(F ⋅ C ⋅ FT)r jℓnvn =∶ βrnvn = αrnvn = Ar

(1.181)

Similarly for the geometrically nonlinear component, we have

C ∶= [FT ⋅ (G̃⊗ v)] ⋅ S ⋅G =∶ γ ⋅ v . (1.182)

In index notation

Cr = FriG̃ivnSnkGk = (G̃ ⋅ FT)r(G ⋅ S)nvn =∶ γrnvn . (1.183)

We can now express (1.177) as

ḟmatg = ∑
h

⎡⎢⎢⎢⎢⎣
∑
p
∫
Ωn
p

Yp(xn) α dΩn
⎤⎥⎥⎥⎥⎦
⋅ vn+1h

ḟgeog = ∑
h

⎡⎢⎢⎢⎢⎣
∑
p
∫
Ωn
p

Yp(xn) γ dΩn
⎤⎥⎥⎥⎥⎦
⋅ vn+1h

(1.184)

where

[α]iℓ = G j [G̃ ⋅ Fn+1p ]
k
[Fn+1p ⋅ Cnp ⋅ (Fn+1p )T]

i jkℓ

[γ]iℓ = [G̃ ⋅ (Fn+1p )T]
i
[G ⋅ Snp]ℓ

(1.185)

Using

ḟ = ∂f
∂u

⋅ v (1.186)

where u is the displacement, we notice from (1.184) that

(Kmat)gh =
∂fmatg

∂un+1h
= ∑

p
∫
Ωn
p

Yp(xn) α dΩn

(Kgeo)gh =
∂fgeog
∂un+1h

= ∑
p
∫
Ωn
p

Yp(xn) γ dΩn .
(1.187)

If we now set the current con�guration as the reference con�guration (see [18], section 6.1.3), we have

Fn+1p = I , Snp = σn+1p , xn = xn+1 , dΩn = dΩn+1 , G = G̃ , Cnp = (Cσ)n+1p . (1.188)

�erefore,

(K int)gh(un+1g , tn+1) = (Kmat)gh + (Kgeo)gh (1.189)

where

(Kmat)gh = ∑
p
∫
Ωn+1
p

Yp(xn+1) G̃g ⋅ (Cσ)n+1p ⋅ G̃h dΩn+1

(Kgeo)gh = ∑
p
∫
Ωn+1
p

Yp(xn+1) (G̃h ⊗ G̃g) ⋅ σn+1p dΩn+1 .
(1.190)

An e�cient way of converting these relations to Voigt form is possible only in the case where the grid
basis functions are trilinear. For GIMP and CPDI basis functions, the problem becomes more complex
and have not been implemented in Vaango .
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1.8.3 External force sti�ness matrix

Recall from (1.60) that the external force is given by

fextg ∶= ∫
Γt
t(x) Sg(x) dΓ . (1.191)

To �nd the contribution to the sti�ness matrix from the external force, note that

ḟextg ∶= ∫
Γt
[ṫ(x) Sg(x) + t(x) (∇Sg ⋅ vg)] dΓ = ∫

Γt
[ṫ(x) Sg(x) + (t(x) ⊗ G̃g) ⋅ vg] dΓ (1.192)

We make the simplifying assumption that

ṫ(x) = t̃(x)vg (1.193)

to get

ḟextg ∶= ∫
Γt
[t̃(x) Sg(x)I + t(x) ⊗ G̃g] ⋅ vg dΓ (1.194)

�erefore,

(Kext)gh = ∫
Γt
[t̃(x) Sg(x)I + t(x) ⊗ G̃g] δgh dΓ (1.195)

1.8.4 Body force sti�ness matrix

�e body force is given by

fextg ∶= ∑
p
∫
Ωp
ρpYp(x)Sg(x)bp dΩ (1.196)

In Vaangowe assume that the body force does not vary with deformation. �erefore,

(Kbody)gh = 0 . (1.197)

1.9 Pseudocode of explicit MPM algorithm in Vaango

�emomentum equation is solved using theMPM algorithm while forward Euler time-stepping is use to
integrate time derivatives. �e pseudocode of the overall algorithm is given below. �e main quantities
of interest are:

• tmax : �e maximum time until which the simulation is to run.
• t, ∆t : �e current time (t = tn) and the time step.
• hg : �e grid spacing vector.
• mp : �e particle mass.
• V n

p ,V n+1
p : �e particle volume at t = tn and t = tn+1.

• xnp , xn+1p : �e particle position at t = tn and t = tn+1.
• unp , un+1p : �e particle displacement at t = tn and t = tn+1.
• vnp , vn+1p : �e particle velocity at t = tn and t = tn+1.
• σnp , σn+1p : �e particle Cauchy stress at time t = tn and t = tn+1.
• Fnp , Fn+1p : �e particle deformation gradient at time t = tn and t = tn+1.
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1.9.1 Initialization

An outline of the initialization process is described below. Speci�c details have been discussed in earlier
reports. �e new quantities introduced in this section are

• np : �e number of particles used to discretize a body.
• bnp , bn+1p : �e particle body force acceleration at t = tn and t = tn+1.
• Dn

p ,Dn+1
p : �e particle damage parameter at t = tn and t = tn+1.

• fext,np , fext,n+1p : �e particle external force at t = tn and t = tn+1.

Algorithm 1 Initialization
Require: xmlProblemSpec, defGradComputer, constitutiveModel, damageModel, particleBC,

↪ mpmFlags materialList,
1: procedure initialize
2: for matl in materialList do
3: np[matl], x0p[matl], u0p[matl], mp[matl], V0

p [matl], v0p[matl], b0p[matl],
↪ fext,0p [matl]← matl.createParticles()

4: F0p[matl]← defGradComputer.initialize(matl)
5: σ0p[matl]← constitutiveModel.initialize(matl)
6: D0

p[matl]← damageModel.initialize(matl)
7: end for
8: if mpmFlags.initializeStressWithBodyForce = TRUE then
9: b0p ← initializeBodyForce()
10: σ0p , F0p ← initializeStressAndDefGradFromBodyForce()
11: end if
12: if mpmFlags.applyParticleBCs = TRUE then
13: fext,0p ← particleBC.initializePressureBCs()
14: end if
15: return np, x0p, u0p, mp, V0

p , v0p, b0p, f
ext,0
p , F0p, σ0p, D0

p
16: end procedure

1.9.2 Time advance

�e operations performed during a timestep are shown in the pseudocode below.

Algorithm 2�eMPM time advance algorithm

1: procedure timeAdvance(hg , xnp , unp , mp, V n
p , vnp , f

ext,n
p , dnp)

2: bnp ← computeParticleBodyForce() ▷Compute the body force term
3: fext,n+1p ← applyExternalLoads() ▷Apply external loads to the particles
4: mg , Vg , vg , bg , fextg ← interpolateParticlesToGrid() ▷Interpolate particle data to the grid
5: exchangeMomentumInterpolated() ▷Exchange momentum between bodies on grid.

↪ Not discussed in this report.
6: f intg , σ g , vg ← computeInternalForce() ▷Compute the internal force at the grid nodes
7: v⋆g , ag ← computeAndIntegrateAcceleration() ▷Compute the grid velocity

↪ and grid acceleration
8: exchangeMomentumIntegrated() ▷Exchange momentum between bodies on grid

↪ using integrated values. Not discussed in this report.
9: v⋆g , ag ← setGridBoundaryConditions() ▷Update the grid velocity and grid

↪ acceleration using the BCs
10: lnp, Fn+1p , V n+1

p ← computeDeformationGradient() ▷Compute the velocity gradient
↪ and the deformation gradient
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11: σn+1p , ηn+1p ← computeStressTensor() ▷Compute the updated stress and
↪ internal variables (if any)

12: σn+1p , ηn+1p , χn+1p , Dn+1
p ← computeBasicDamage() ▷Compute the damage parameter

↪ and update the stress and internal variables
13: χn+1p , Dn+1

p ← updateErosionParameter() ▷Update the indicator variable that is used
↪ to delete particles at the end of a time step

14: V n+1
p , un+1p , vn+1p , xn+1p , mp, hn+1p ← interpolateToParticlesAndUpdate() ▷Update the

↪ particle variables a�er interpolating grid quantities to particles
15: end procedure

�e algorithms used for the above operations are discussed next.

Computing the body force

�e body force consists of a gravitational term and, optionally, centrifugal and coriolis terms that are
needed for simulations inside a rotating frame such as a centrifuge.

Algorithm 3 Computing the body force on particles
Require: xnp , vnp , materialList, particleList, mpmFlags
1: procedure computeParticleBodyForce
2: for matl in materialList do
3: if mpmFlags.rotatingCoordSystem = TRUE then
4: g ← mpmFlags.gravityAcceleration
5: bnp[matl]← g
6: else
7: for part in particleList do
8: g ← mpmFlags.gravityAcceleration
9: xrc ← mpmFlags.coordRotationCenter
10: zr ← mpmFlags.coordRotationAxis
11: w ← mpmFlags.coordRotationSpeed
12: ω ← wzr ▷Compute angular velocity vector
13: acorolis ← 2ω × vnp[matl, part] ▷Compute Coriolis acceleration
14: r ← xnp[matl, part] − xrc
15: acentrifugal ← ω × ω × r ▷Compute the centrifugal body force acceleration
16: bnp[matl,part]← g − acentrifugal − acoriolis ▷Compute the body force acceleration
17: end for
18: end if
19: end for
20: return bnp
21: end procedure

Applying external loads

Note that the updated deformation gradient has not been computed yet at this stage and the particle
force is applied based on the deformation gradient at the beginning of the timestep. �e new quantities
introduced in this section are:

• hnp : �e particle size matrix at time t = tn.

Algorithm 4 Applying external loads to particles

Require: tn+1, xnp , h
n
p, unp, f

ext,n
p , Fnp, materialList, particleList, mpmFlags, particleBC

1: procedure applyExternalLoads
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2: fp ← 0
3: if mpmFlags.useLoadCurves = TRUE then
4: fp ← particleBC.computeForcePerParticle(tn+1) ▷Compute the force per particle

↪ due to the applied pressure
5: end if
6: for matl in materialList do
7: if mpmFlags.useLoadCurves = TRUE then
8: for part in particleList do
9: fext,n+1p [matl,part]← particleBC.getForceVector(tn+1, xnp , h

n
p, unp,

↪ fp, Fnp) ▷Compute the applied force vector at each particle
10: end for
11: else
12: fext,n+1p [matl]← fext,np [matl]
13: end if
14: end for
15: return fext,n+1p
16: end procedure

Interpolating particles to grid

�e grid quantities computed during this procedure and not stored for the next timestep except for the
purpose of visualization. �e new quantities introduced in this section are

• mg : �e mass at a grid node.
• Vg : �e volume at a grid node.
• vg : �e velocity at a grid node.
• fextg : �e external force at a grid node.
• bg : �e body force at a grid node.

Algorithm 5 Interpolating particle data to background grid

Require: mp,V n
p , xnp , h

n
p, bnp, f

ext,n+1
p , Fnp, materialList, particleList, gridNodeList mpmFlags, particleBC

1: procedure interpolateParticlesToGrid
2: interpolator← createInterpolator(mpmFlags) ▷Create the interpolator

↪ and �nd number of grid nodes that can a�ect a particle
3: for matl in materialList do
4: for part in particleList do
5: ng p, Sg p ← interpolator.findCellsAndWeights(xnp , h

n
p, Fnp) ▷Find the node

↪ indices of the cells a�ecting the particle and the interpolation weights
6: pp ← mp[matl][part] vnp[matl][part] ▷Compute particle momentum
7: for node in ng p do
8: mg[matl][node]← mg[matl][node] + mp[matl][part] Sg p[node]
9: Vg[matl][node]← Vg[matl][node] + V n

p [matl][part] Sg p[node]
10: vg[matl][node]← vg[matl][node] + pp Sg p[node]
11: fextg [matl][node]← fextg [matl][node] + f

ext,n+1
p [matl][part] Sg p[node]

12: bg[node]← bg[node] + mp[matl][part] bnp[matl][part] Sg p[node]
13: end for
14: end for
15: for node in gridNodeList do
16: vg[matl][node]← vg[matl][node]/mg[matl][node]
17: end for
18: vg[matl]← applySymmetryVelocityBC(vg[matl]) ▷Apply any symmetry

↪ velocity BCs that may be applicable
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19: end for
20: return mg , Vg , vg , bg , fextg
21: end procedure

Exchangingmomentum using interpolated grid values

�e exchange of momentum is carried out using a contact model. Details can be found in the Uintah
Developers Manual.

Computing the internal force

�is procedure computes the internal force at the grid nodes. �e new quantities introduced in this
section are

• ng p : �e number of grid nodes that are used to interpolate from particle to grid.
• Sg p : �e nodal interpolation function evaluated at a particle
• Gg p : �e gradient of the nodal interpolation function evaluated at a particle
• σv : A volume weighted grid node stress.
• f intg : �e internal force at a grid node.

Algorithm 6 Computing the internal force

Require: hg , Vg , V n
p , xnp , h

n
p, σnp, Fnp, materialList, particleList, gridNodeList mpmFlags

1: procedure computeInternalForce
2: interpolator← createInterpolator(mpmFlags) ▷Create the interpolator and

↪ �nd number of grid nodes that can a�ect a particle
3: for matl in materialList do
4: for part in particleList do
5: ng p, Sg p, Gg p ←

↪ interpolator.findCellsAndWeightsAndShapeDervatives(xnp , h
n
p, Fnp)

↪ ▷Find the node indices of the cells a�ecting the particle and
↪ the interpolation weights and gradients

6: σv ← Vp[matl][part] σnp[matl][part]
7: for node in ng p do
8: f intg [matl][node]← f intg [matl][node] - (Gg p[node]/hg) ⋅σnp[matl][part] V n

p [part]
9: σ g[matl][node]← σ g[matl][node] + σv Sg p[node]
10: end for
11: end for
12: for node in gridNodeList do
13: σ g[matl][node]← σ g[matl][node]/Vg[matl][node]
14: end for
15: vg[matl]← applySymmetryTractionBC() ▷Apply any symmetry tractions BCs

↪ that may be applicable
16: end for
17: return f intg , σ g , vg
18: end procedure

Computing and integrating the acceleration

�is procedure computes the accelerations at the grid nodes and integrates the grid accelerations using
forward Euler to compute grid velocities. �e new quantities introduced in this section are

• ag : �e grid accelerations.
• v⋆g : �e integrated grid velocities.
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Algorithm 7 Computing and integrating the acceleration

Require: ∆t, mg , f intg , fextg , bg , vg , materialList, gridNodeList, mpmFlags
1: procedure computeAndIntegrateAcceleration
2: for matl in materialList do
3: for node in gridNodeList do
4: ag[matl][node]← (f intg [matl][node] + fextg [matl][node] +bg[matl][node])/mg[matl][node]
5: v⋆g ← vg[matl][node] + ag[matl][node] ∗∆t
6: end for
7: end for
8: return v⋆g , ag
9: end procedure

Exchangingmomentum using integrated grid values

�e exchange of momentum is carried out using a contact model. Details can be found in the Uintah
Developers Manual.

Setting grid boundary conditions

Algorithm 8 Setting grid boundary conditions
Require: ∆t, ag , v⋆g , vg , materialList, gridNodeList, mpmFlags
1: procedure setGridBoundaryConditions
2: for matl in materialList do
3: v⋆g [matl]← applySymmetryVelocityBC(v⋆g [matl])
4: for node in gridNodeList do
5: ag[matl][node]← (v⋆g [matl][node] - vg[matl][node]) /∆t
6: end for
7: end for
8: return v⋆g , ag
9: end procedure

Computing the deformation gradient

�e velocity gradient is computed using the integrated grid velocities and then used to compute the de-
formation gradient. �e new quantities introduced in this section are

• ∆Fnp : �e increment of the particle deformation gradient.
• ln+1p : �e particle velocity gradient.
• ρ0 : �e initial mass density of the material.

Algorithm 9 Computing the velocity gradient and deformation gradient

Require: ∆t, xnp ,mp,V n
p , h

n
p, vnp , l

n
p, Fnp, hg , vg , v⋆g , ρ0 materialList, gridNodeList, mpmFlags, velGradComputer

1: procedure computeDeformationGradient
2: interpolator← createInterpolator(mpmFlags)
3: for matl in materialList do
4: for part in particleList do
5: ln+1p [matl,part]← velGradComputer.computeVelGrad(interpolator, hg , xnp[matl,part],

↪ hnp[matl,part], Fnp[matl,part], v⋆g [matl]) ▷Compute the velocity gradient
6: Fn+1p [matl,part], ∆Fn+1p ←computeDeformationGradientFromVelocity(lnp[matl,part],

↪ ln+1p [matl,part], Fnp[matl,part]) ▷Compute the deformation gradient
7: V n+1

p [matl,part]← mp[matl,part]/ρ0 ∗det(Fn+1p [matl,part])
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8: end for
9: end for
10: return ln+1p , Fn+1p , V n+1

p
11: end procedure

Algorithm 10 Computing the deformation gradient using the velocity gradient

Require: ∆t, ln+1p , Fnp, mpmFlags
1: procedure computeDeformationGradientFromVelocity
2: if mpmFlags.defGradAlgorithm = "first order" then
3: Fn+1p , ∆Fn+1p ← seriesUpdateConstantVelGrad(numTerms = 1, ∆t, ln+1p , Fnp)
4: else if mpmFlags.defGradAlgorithm = "subcycle" then
5: Fn+1p , ∆Fn+1p ← subcycleUpdateConstantVelGrad(∆t, ln+1p , Fnp)
6: else if mpmFlags.defGradAlgorithm = "taylor series" then
7: Fn+1p , ∆Fn+1p ← seriesUpdateConstantVelGrad(numTerms= mpmFlags.numTaylorSeriesTerms,
∆t, ln+1p , Fnp)

8: else
9: Fn+1p , ∆Fn+1p ← cayleyUpdateConstantVelGrad(∆t, ln+1p , Fnp)
10: end if
11: return Fn+1p , ∆Fn+1p
12: end procedure

Computing the stress tensor

�e stress tensor is compute by individual constitutive models. Details of the Arena partially saturated
model are given later. �e new quantities introduced in this section are

• ηnp , η
n+1
p : �e internal variables needed by the constitutive model.

Algorithm 11 Computing the stress tensor

Require: ∆t, xnp , mp, V n+1
p , hnp, l

n+1
p , Fn+1p , σnp, ηnp, ρ0, materialList, mpmFlags, constitutiveModel

1: procedure computeStressTensor
2: for matl in materialList do
3: σn+1, ηn+1p ← constitutiveModel[matl].computeStressTensor(∆t, xnp , mp, V n+1

p , hnp,
↪ ln+1p , Fn+1p , σnp, ηnp, ρ0, mpmFlags) ▷Update the stress and any
↪ internal variables needed by the constitutive model

4: end for
5: return σn+1p , ηn+1p
6: end procedure

Computing the basic damage parameter

�edamage parameter is updated and the particle stress is modi�ed in this procedure. �e new quantities
introduced in this section are

• ε f ,np , ε f ,n+1p : �e particle strain to failure at t = Tn and t = Tn+1.
• χnp , χn+1p : An indicator function that identi�es whether a particle has failed completely.
• t χ,np , t χ,n+1p : �e time to failure of a particle.
• Dn

p ,Dn+1
p : A particle damage parameter that can be used to modify the stress.

Algorithm 12 Computing the damage parameter

Require: tn+1, V n+1
p , Fn+1p , σn+1p , Dn

p , ε
f ,n
p , χnp, t

χ,n
p , materialList, mpmFlags
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1: procedure computeDamage
2: for matl in materialList do
3: for part in particleList do
4: if brittleDamage = TRUE then
5: σn+1p , ε f ,n+1p , χn+1p , t χ,n+1p , Dn+1

p ← updateDamageAndModifyStress(V n+1
p , Fn+1p ,

↪ σn+1p , Dn
p , ε

f ,n
p , χnp, t

χ,n
p ) ▷Update the damage parameters and stress

6: else
7: σn+1p , ε f ,n+1p , χn+1p , t χ,n+1p ← updateFailedParticlesAndModifyStress(V n+1

p , Fn+1p ,
↪ σn+1p , ε f ,np , χnp, t

χ,n
p , tn+1) ▷Update the failed particles and stress

8: end if
9: end for
10: end for
11: return σn+1p , ε f ,n+1p , χn+1p , t χ,n+1p , Dn+1

p
12: end procedure

Updating the particle erosion parameter

�e particle failure indicator function is updated in this procedure and used later for particle deletion if
needed.

Algorithm 13 Updating the particle erosion parameter
Require: Dn

p , χnp materialList, mpmFlags, constitutiveModel
1: procedure updateErosionParameter
2: for matl in materialList do
3: for part in particleList do
4: if matl.doBasicDamage = TRUE then
5: χn+1p ← damageModel.getLocalizationParameter() ▷Just get the indicator

↪ parameter for particles that will be eroded.
6: else
7: χn+1p , Dn+1

p ← constitutiveModel[matl].getDamageParameter(χnp, Dn
p)

↪ ▷Update the damage parameter in the constitutive model.
8: end if
9: end for
10: end for
11: return χn+1p , Dn+1

p
12: end procedure

Interpolating back to the particles and update

�is is the �nal step at which the particle velocities and positions are updated and the grid is reset. Particle
that are to be removed are dealt with in a subsequent relocation step.

Algorithm 14 Interpolating back to the particles and position update

Require: ∆t, ag , v⋆g , xnp , vnp , unp, h
n
p, χn+1p , Fn+1p , V n+1

p , materialList, particleList, gridNodeList,
mpmFlags

1: procedure interpolateToParticlesAndUpdate
2: interpolator← createInterpolator(mpmFlags)
3: for matl in materialList do
4: hn+1p ← hnp
5: for part in particleList do
6: ng p, Sg p ← interpolator.findCellsAndWeights(xnp , h

n+1
p , Fn+1p )
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7: v← 0, a← 0,
8: for node in gridNodeList do
9: v← v + v⋆g [node] ∗ Sg p[node] ▷Update particle velocity
10: a← a + ag[node] ∗ Sg p[node] ▷Update particle acceleration
11: end for
12: xn+1p ← xnp + v ∗ ∆t ▷Update position
13: un+1p ← unp + v ∗ ∆t ▷Update displacement
14: vn+1p ← vnp + a ∗ ∆t ▷Update velocity
15: end for
16: end for
17: deleteRogueParticles() ▷Delete particles that are to be eroded.
18: return V n+1

p , un+1p , vn+1p , xn+1p , mp, hn+1p
19: end procedure





2—MPMMaterial Models

In this chapter we discuss some general features of the MPM material models. Individual models are
complex and are discussed in separate chapters. Notation and de�nitions that are used frequently are also
elaborated upon here.

2.1 Notation and de�nitions

A primary assumption made in many of the material models in Vaango is that stresses and (moderate)
strains can be additively decomposed into volumetric and deviatoric parts.

2.1.1 Volumetric-deviatoric decomposition

�e volumetric-deviatoric decomposition of stress (σ) is expressed as

σ = pI + s (2.1)

where the mean stress (p) and the deviatoric stress (s) are given by

p = 1
3 tr(σ) =

1
3σ ∶ I =

1
3(σ11 + σ22 + σ33) and s = σ − pI =

⎡⎢⎢⎢⎢⎢⎣

σ11 − p σ12 σ13
σ12 σ22 − p σ23
σ13 σ23 σ33 − p

⎤⎥⎥⎥⎥⎥⎦
. (2.2)

Similarly, the volumeric-deviatoric split of the strain (ε) is expressed as

ε = 1
3 εvI + εs (2.3)

where the volumetric strain (εv) and the deviatoric strain (εs) are de�ned as

εv = tr(ε) = ε ∶ I = ε11 + ε22 + ε33 and εs = ε − 1
3 εvI =

⎡⎢⎢⎢⎢⎢⎣

ε11 − 1
3 εv ε12 ε13

ε12 ε22 − 1
3 εv ε23

ε13 ε23 ε33 − 1
3 εv

⎤⎥⎥⎥⎥⎥⎦
. (2.4)
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2.1.2 Stress invariants

�e principal invariants and principal deviatoric invariants of the stress are used in several models. Fre-
quently used invariants are:

I1 = tr(σ) = σ11 + σ22 + σ33
I2 = 1

2 [tr(σ)
2 − tr(σ2)] = σ11σ22 + σ22σ33 + σ33σ11 − (σ212 + σ223 + σ213)

I3 = det(σ) = σ11σ22σ33 + 2σ12σ23σ13 − σ212σ33 − σ223σ11 − σ213σ22
J2 = 1

2 s ∶ s =
1
6 [(σ11 − σ22)

2 + (σ22 − σ33)2 + (σ33 − σ11)2] + (σ212 + σ223 + σ231)
J3 = det(s) = 2

27 I
3
1 − 1

3 I1I2 + I3

(2.5)

Alternatives to I1, J2 and j3 are p, q, and θ, de�ned as

p ∶= 1
3
I1 , q ∶=

√
3J2 , cos 3θ ∶= (

r
q
)
3

=
3
√
3

2
J3
J3/22

, r3 = 27
2
J3 . (2.6)

A geometric accurate view of the stress state and yield surfaces is obtained if the isomorphic cylindrical
coordinates z, ρ, and θ are used instead, where

z ∶= I1√
3
=
√
3p , ρ ∶=

√
2J2 =

√
2
3
q , cos 3θ ∶=

3
√
3

2
J3
J3/22

. (2.7)

2.1.3 E�ective stress and strain

�e e�ective stress and strain (sometimes also referred to as the shear stress and shear strain in the code)
are de�ned such that the product is equal to the plastic work done. �ese measures are strictly applicable
only to J2 plasticity models but have also been used elsewhere.

�e e�ective stress is de�ned as

σe� = q =
√
3J2 =

√
3
2 s ∶ s =

√
1
2 [(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2] + 3(σ212 + σ223 + σ231) . (2.8)

�e e�ective strain is de�ned as

εe� =
√

2
3 εs ∶ εs (2.9)

so that

σe�εe� =
√

(s ∶ s)(εs ∶ εs) . (2.10)

From the de�nition of εs we see that

εs ∶ εs = ε ∶ ε − 2
3 tr(ε)I ∶ ε +

1
9 [tr(ε)]

2 I ∶ I = ε ∶ ε − 2
3 [tr(ε)]

2 + 1
3 [tr(ε)]

2 = ε ∶ ε − 1
3 [tr(ε)]

2

= ε211 + ε222 + ε233 + 2ε212 + 2ε223 + 2ε213 − 1
3 [ε

2
11 + ε222 + ε223 + 2ε11ε22 + 2ε22ε33 + 2ε11ε33]

= 1
3 [(ε11 − ε22)

2 + (ε22 − ε33)2 + (ε33 − ε11)2] + 2(ε212 + ε223 + ε213)
(2.11)

�erefore,

εe� =
√

2
3 [

1
3 [(ε11 − ε22)2 + (ε22 − ε33)2 + (ε33 − ε11)2] + 2(ε212 + ε223 + ε213)] (2.12)

For volume preserving plastic deformations, tr(ε) = 0, and we have

εe� =
√

2
3 (ε211 + ε222 + ε233) +

4
3 (ε212 + ε223 + ε213) =

√
2
3 (ε211 + ε222 + ε233) +

1
3 (γ212 + γ223 + γ213) . (2.13)
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2.1.4 Equivalent strain rate and plastic strain

�e equivalent strain rate is de�ned as

ε̇eq =
√
ε̇ ∶ ε̇ (2.14)

where ε̇(t) is the strain rate tensor. �e distortional equivalent strain rate is

γ̇eq =
√

2
3 ε̇s ∶ ε̇s (2.15)

where ε̇s(t) is the deviatoric strain rate tensor.
For models where an equivalent plastic strain is computed, we de�ne a scalar equivalent plastic strain rate
as

ε̇eqp =
√
ε̇p ∶ ε̇p (2.16)

where ε̇p(t) is the plastic strain rate tensor. �e de�nition of the scalar equivalent plastic strain is

εeqp (t) = ∫
t

0
ε̇eqp (τ)dτ . (2.17)

�e corresponding distortional equivalent plastic strain rate and strain are de�ned as

γ̇eqp =
√

2
3 ε̇

p
s ∶ ε̇

p
s (2.18)

and

γeqp (t) = ∫
t

0
γ̇eqp (τ)dτ . (2.19)

2.1.5 Velocity gradient, rate-of-deformation, deformation gradient

�e velocity gradient is represented by l and the defromation gradient by F . �e rate-of-deformation is

d = 1
2(l + l

T) = 1
2(∇v +∇v

T) . (2.20)

2.1.6 Eigenvectors and coordinate transformations

For most situations, tensor components in Vaango are expressed in terms of the basis vectors e1 =
(1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1). However, in some situations tensor components have to be
expressed in the eigenbasis of a second-order tensor. Let these eigenvectors be v1, v2 and v3. �en a vector
a with components (a1, a2, a2) in the original basis has components (a′1, a′2, a′3) in the eigenbasis. �e
two sets of components are related by

⎡⎢⎢⎢⎢⎢⎣

a′1
a′2
a′3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

e1 ⋅ v1 e2 ⋅ v1 e3 ⋅ v1
e1 ⋅ v2 e2 ⋅ v2 e3 ⋅ v2
e1 ⋅ v3 e2 ⋅ v3 e3 ⋅ v3

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a1
a2
a3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

v11 v12 v13
v21 v22 v23
v31 v32 v33

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a1
a2
a3

⎤⎥⎥⎥⎥⎥⎦
= Q ⋅ a . (2.21)

�e matrix that is used for this coordinate transformation, Q, is given by

QT ∶= [v1 v2 v3] (2.22)

where v1, v2, and v3 are column vectors representing the components of the eigenvectors in the reference
basis.

�e above coordinate transformation for vectors can be written in index notation as

a′i = Qi ja j . (2.23)
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For transformations of second-order tensors, we have

T ′i j = QipQ jqTpq . (2.24)

For fourth-order tensors, the transformation relation is

C′i jkℓ = QimQ jnQkpQℓqCmnpq . (2.25)

If the second-order tensor T is symmetric, we can express it in Mandel notation as a six-dimensional
vector t̂:

t̂ = [T11 T22 T33
√
2T23

√
2T31

√
2T12]

T (2.26)

�en the transformation matrix is a 6 × 6 matrix, Q̂, such that

t̂′i = Q̂i j t̂ j . (2.27)

�e matrix Q̂ has components [19],

Q̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q2
11 Q2

12 Q2
13

√
2Q12Q13

√
2Q11Q13

√
2Q11Q12

Q2
21 Q2

22 Q2
23

√
2Q22Q23

√
2Q21Q23

√
2Q21Q22

Q2
31 Q2

32 Q2
33

√
2Q32Q33

√
2Q31Q33

√
2Q31Q32√

2Q21Q31
√
2Q22Q32

√
2Q23Q33 Q22Q33 + Q23Q32 Q21Q33 + Q31Q23 Q21Q32 + Q31Q22√

2Q11Q31
√
2Q12Q32

√
2Q13Q33 Q12Q33 + Q32Q13 Q11Q33 + Q13Q31 Q11Q32 + Q31Q12√

2Q11Q31
√
2Q12Q22

√
2Q13Q23 Q12Q23 + Q22Q13 Q11Q23 + Q21Q13 Q11Q22 + Q21Q12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.28)

Similarly, the transformation relation for fourth-order tensors simpli�es to

Ĉ′i j = Q̂ipQ̂ jqĈpq (2.29)

where

Ĉ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133
√
2C1123

√
2C1131

√
2C1112

C2211 C2222 C2233
√
2C2223

√
2C2231

√
2C2212

C3311 C3322 C3333
√
2C3323

√
2C3331

√
2C3312√

2C2311
√
2C2322

√
2C2333 2C2323 2C2331 2C2312√

2C3111
√
2C3122

√
2C3133 2C3123 2C3131 2C3112√

2C1211
√
2C1222

√
2C1233 2C1223 2C1231 2C1212

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.30)

2.2 Material models available in Vaango

�eMPMmaterial models implemented in Vaangowere originally chosen for the following purposes:

• To verify the accuracy of the material point method (MPM) and to validate the coupling between
the computational 
uid dynamics code (ICE) and MPM.

• To model the elastic-plastic deformation ofmetals and the consequent damage in the regimes of
both high and low strain rates and high and low temperatures.

• Tomodelpolymer bonded explosives andpolymers under various strain rates and temperatures.
• To model the deformation of biological tissues .
• To model the explosive deformation of rocks and soils .

As of VaangoVersion 20 .9 .18 , the material models that have been implemented are:

1. Rigid material
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2. Ideal gas material
3. Water material
4. Membrane material
5. Programmed burn material
6. Tabular equation of state
7. Murnaghan equation of state
8. JWL++ equation of state
9. Hypoelastic material
10. Hypoelastic material with manufactured solutions
11. Hypoelastic material implementation in FORTRAN
12. Polar-orthotropic hypoelastic material
13. Compressible neo-Hookean hyperelastic material
14. Compressible neo-Hookean hyperelastic material with manufactured solutions
15. Compressible neo-Hookean hyperelastic material with damage
16. Uni�ed explicit/implicit compressible Neo-Hookean hyperelastic material with damage
17. Compressible Neo-Hookean hyperelastic-J2 plastic material with damage
18. Compressible Mooney-Rivlin hyperelastic material
19. Compressible neo-Hookean material for shells
20. Transversely isotropic hyperelastic material
21. �e p-α model for porous materials
22. Viscoelastic material written in FORTRAN for damping
23. Simpli�ed Maxwell viscoelastic material
24. Visco-SCRAMmodel for viscoelastic materials with cracks
25. Visco-SCRAM hotspot model
26. Tabular plasticity model
27. Tabular plasticity model with cap
28. Hypoelastic J2 plasticity model with damage for high-rates
29. Viscoplastic J2 plasticity model
30. Mohr-Coulomb material
31. Drucker-Prager material with deformation induced elastic anisotropy
32. CAM-Clay model for soils
33. Nonlocal Drucker-Prager material
34. Arenisca material for rocks and soils
35. Arenisca3 material for rocks and soils
36. Arena material for partially saturated soils
37. Arena-mixture material for mixes of partially saturated sand and clay
38. Brannon’s soil model
39. Soil foam model

A small subset of these models also have implementations that can be used with ImplicitMPM .

Some of these models can work with multiple sub-models such as elasticity model or yield condition. As
of VaangoVersion 20 .9 .18 , the implemented sub-models are:

1. Equations of state:
(a) Pressure model for Air
(b) Pressure model for Borja’s CAMClay
(c) Pressure model for Granite
(d) Pressure model for hyperelastic materials
(e) Pressure model for Hypoelastic materials
(f) Pressure model for Mie-Gruneisen equation of state
(g) Mie-Gruneisen energy-based equation of state for pressure
(h) Pressure model for Water
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2. Shear modulus models:
(a) Constant shear modulus model
(b) Shear modulus model for Borja’s CAMClay
(c) Shear modulus model by Nadal and LePoac
(d) Mechanical �reshold Stress shear modulus model
(e) Preston-Tonks-Wallace shear modulus model
(f) Steinberg-Guinan shear modulus model

3. Combined elastic modulus models:
(a) Constant elastic modulus model
(b) Tabular elastic modulus model
(c) Neural net elastic modulus model
(d) Arena elastic modulus model
(e) Arena mixture elastic modulus model
(f) Arenisca elastic modulus model

4. Yield condition models:
(a) Yield condition for Arena model
(b) Yield condition for Arena mixture model
(c) Yield condition for Arenisca3 model
(d) Yield condition for CamClay model
(e) Yield condition for Gurson model
(f) Yield condition for Tabular plasticity with Cap
(g) Yield condition for Tabular plasticity with
(h) Yield condition for vonMises J2 plasticity
(i) Classic Mohr-Coulomb model
(j) Sheng’s Mohr-Coulomb model

5. Plastic 
ow stress models
(a) Isotropic hardening plastic 
ow model
(b) Johnson-Cook plastic 
ow model
(c) Mechanical �reshold Stress plastic 
ow model
(d) Preston-Tonks-Wallace plastic 
ow model
(e) Steinberg-Guinan plastic 
ow model
(f) SuvicI viscoplastic 
ow model
(g) Zerilli-Armstrong metal plastic 
ow model
(h) Zerilli-Armstrong polymer plastic 
ow model

6. Plastic internal variable models:
(a) Arena internal variable model
(b) Borja internal variable model
(c) Brannan’s soil model internal variable model
(d) Tabular plasticity with cap internal variable model

7. Kinematic hardening models:
(a) Prager kinematic hardening model
(b) Armstrong-Frederick kinematic hardening model
(c) Arena kinematic hardening model

8. Damage models
(a) Becker’s damage model
(b) Drucker and Becker combined damage model
(c) Drucker loss of stability model
(d) Johnson-Cook damage model
(e) Hancock-MacKenzie damage model

9. Melting model
(a) Constant melting temperature model
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(b) Linear melting temperature model
(c) BPS melting model
(d) Steinberg-Guinan melting temperature model

10. Speci�c heat model
(a) Constant speci�c heat
(b) Cubic speci�c heat model
(c) Copper speci�c heat model
(d) Steel speci�c heat model





3— Special material models

Vaango contains a few material models that are designed for special problems. �ese are discussed in
this chapter.

3.1 Rigidmaterial

Applicable to: explicit and implicit MPM

�is material model assumes that

σ(F , t) = 0 and F(t) = I . (3.1)

�e model is a rough approximation of a rigid body as long as there is no contact between objects. Upon
contact, the model should ideally transition into the form

σ(F , t) = ∞ and F(t) = I . (3.2)

�is situation is approximated using the speci�ed body contact algorithm which is applicable only in
certain directions. Rigid materials were designed to act as rigid surfaces against which deformable ob-
jects could be compressed. �e speci�ed body contat algorithm can simulate the interaction of a single
“master” rigid body with deformable objects.

3.2 Ideal gas material

Applicable to: explicit MPM only

�e ideal gas material assumes that the stress at a particle is

σ(F , t) =
⎧⎪⎪⎨⎪⎪⎩

p(F) I for p ≥ 0
0 for p < 0

(3.3)

where p = −p, and the pressure p is computed with an isentropic ideal gas equation of state:

p = pref [exp(γ εv) − 1] ; εv =
⎧⎪⎪⎨⎪⎪⎩

− ln (J) for J < 1
0 for J ≥ 1

(3.4)
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where J = det(F).
A rate of change of temperature (T) can also be computed by the model:

dT
dt

= 1
∆t

(1 − Jn+1
Jn

)( p
ρCv

) (3.5)

where Jn+1 = J(tn+1, Jn = J(tn), ρ is the mass density, and Cv is the constant volume speci�c heat.

3.3 Water material

Applicable to: explicit MPM only

�is material models water [20], and assumes that the stress is given by

σ(F , t) = p(F)I + 2µ η. (3.6)

where µ is a shear viscosity, d is the symmetric part of the velocity gradient,

p = −p and η = d − 1
3 tr(d)I . (3.7)

�e pressure is given by:

p = κ [J−γ − 1] , J = det(F) (3.8)

where κ the bulk modulus and γ is a model parameter. It has not been validated, but gives qualitatively
reasonable behavior.

3.4 Murnaghanmaterial

Applicable to: explicit MPM only

�is material is based on the equation of state proposed in [21]. �e stress is given by

σ(F , t) = p(F)I + 2µ η. (3.9)

where µ is a shear viscosity, d is the symmetric part of the velocity gradient,

p = −p and η = d − 1
3 tr(d)I . (3.10)

�e pressure is given by:

p = κ
κ′

[J−κ
′
− 1] , J = det(F) (3.11)

where κ the initial bulk modulus and κ′ = dκ/dp is a constant.

3.5 JWL++material

Applicable to: explicit MPM only

�e JWL++ material is a combination of the Murnaghan and JWL models along with a burn algorithm
to convert from one to the other [22]. A small viscous component is added to the JWL model to stabilize
behavior.

�e stress is given by

σ(F , t) = p(F)I + 2µ η. (3.12)
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where µ is a shear viscosity, d is the symmetric part of the velocity gradient,

p = −p and η = d − 1
3 tr(d)I . (3.13)

�e burn rate is computed as

ḟ = (1 − f )G pb (3.14)

where f is the volume fraction of the reactant, G , b are �t parameters, and p is the pressure, computed
using

p = (1 − f )pm + f pjwl . (3.15)

�e Murnaghan pressure (pm) is given by:

pm = 1
nK

[J−n − 1] , J = det(F) (3.16)

where K = 1/κ, κ is the initial bulk modulus, and n = κ′ = dκ/dp is a constant.
�e JWL pressure (pjwl) is given by

pjwl = Aexp(−R1J) + B exp(−R2J) + CJ−(1+ω) (3.17)

where A, B, C, ω are �t parameters, R1, R2 are �t rate parameters, and J = det F .





4— Elastic material models

4.1 Hypoelastic material

Applicable to: explicit and implicit MPM

Hypoelastic materials have stress-deformation relationships of the form

σ̇(F) = C(F) ∶ d(F) (4.1)

where C is an elastic sti�ness tensor and d is the symmetric part of the velocity gradient.

�e base hypoelastic material implemented in Vaango is linear and isotropic:

σ̇ = (κ − 2
3 µ) tr(d) I + 2µd (4.2)

where µ is the shear modulus and κ is the bulk modulus.

To ensure frame indi�erence, both σ and d are unrotated using the beginning of the timestep defor-
mation gradient polar decomposition before any constitutive relations are evaluated. �e updated
stress is rotated back using the deformation gradient decomposition at the end of the time step.

4.2 Hyperelastic Material Models

Several hyperelastic material models have been implemented in Vaango . Other models can be easily
implemented using the available infrastructure. �e general model has the form

σ = 1
J
∂W
∂F

⋅ FT (4.3)

whereW is a strain energy function and J = det F . For isotropic hyperelastic functions that are expessed
in terms of the invariants (I1, I2, J) of the right Cauchy-Green deformation (C = FT ⋅F), the Cauchy stress
is given by

σ =
2
J
[
1
J2/3

(
∂W
∂I1

+ I1
∂W
∂I2

)B −
1
J4/3

∂W
∂I2

B ⋅ B] + [
∂W
∂J

−
2
3J

(I1
∂W
∂I1

+ 2 I2
∂W
∂I2

)] I (4.4)

where B = F ⋅ FT , and

J = det F , I1 = J−2/3I1 , I2 = J−4/3I2 , I1 = trC , I2 = 1
2 [(trC)2 − tr(C ⋅ C)] (4.5)
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Note that I1 and I2 are identical for C and B. Alternatively,

σ =
2
J
[(
∂W
∂I1

+ I1
∂W
∂I2

)B −
∂W
∂I2

B ⋅ B] + 2J
∂W
∂I3

I (4.6)

where I3 = J2.
�e P-wave speed (c) needed to estimate the timestep can be computed using

c2i =
1
ρJ
∂2W
∂λ2i

= 1
ρJ

[∂W
∂I1

∂2I1
∂λ2i

+ ∂W
∂I2

∂2I2
∂λ2i

+ ∂W
∂I3

∂2I3
∂λ2i

] (4.7)

where λi are the principal stretches, i.e., I1 = ∑i λ2i , I2 = λ21 λ22 + λ22λ23 + λ21 λ23 and I3 = λ21 λ22λ23 .

4.2.1 Compressible neo-Hookeanmaterial

Applicable to: explicit and implicit MPM

�e default strain energy function for the compressible neo-Hookean material model implemented in
Vaango is ([23], p.307):

W = κ
2
[ 1
2
(J2 − 1) − ln J] + µ

2
[I1 − 3] (4.8)

�e Cauchy stress corresponding to this function is

σ = κ
2
(J − 1

J
) I + µ

J
(B − 1

3 I1I) (4.9)

where B = J−2/3B = J−2/3F ⋅ FT and J = det F . Consistency with linear elasticity requires that κ = K and
µ = G where K and G are the linear elastic bulk and shear moduli, respectively.
Alternative expressions for the bulk modulus factor are allowed and de�ned in the equation-of-state sub-
models.

4.2.2 Compressible Mooney-Rivlin material

Applicable to: explicit MPM only

�e compressible Mooney-Rivlin material implemented in Vaangohas the form

W = C1(I1 − 3) + C2(I2 − 3) + C3 (
1
I23
− 1) + C4(I3 − 1)2 (4.10)

where C1, C2 and ν are parameters and

C3 = 1
2(C1 + 2C2) , C4 =

1
2 [
C1(5ν − 2) + C2(11ν − 5)

1 − 2ν
] . (4.11)

�e corresponding Cauchy stress is

σ = 2
J
[(C1 + C2I1)B − C2B ⋅ B + J2 [−

2C3
I33

+ 2C4(I3 − 1)]] . (4.12)
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4.2.3 Transversely isotropic hyperelastic material

Applicable to: explicit and implicit MPM

�e transversely isotropic material model implemented in Vaango is based on [24]. �emodel asssumes
a sti�er, “�ber”, direction denoted f̂ and isotropy ortogonal to that direction.

�e strain energy density function for the model has the form

W =Wv +Wd (4.13)

whereWv is the volumetric part andWd is the deviatoric (volume preserving) part. �e volumetric part
of the strain energy is given by

Wv = 1
2κ(ln J)

2 (4.14)

where κ is the bulk modulus and J = det F . �e deviatoric part,Wd , is given by

Wd =
⎧⎪⎪⎨⎪⎪⎩

C1(I1 − 3) + C2(I2 − 3) + C3 [exp (C4(λ − 1)) − 1] for λ < λ⋆

C1(I1 − 3) + C2(I2 − 3) + C5λ + C6 ln λ for λ ≥ λ⋆
(4.15)

where C1, C2, C3, C4, C5, λ⋆ are model parameters, and

C6 = C3 [exp (C4(λ⋆ − 1)) − 1] − C5λ⋆

λ =
√
I4 , I4 = f̂ ⋅ (C ⋅ f̂) , C = J−2/3C .

(4.16)

�e �ber direction is updated using

f̂n+1 =
J−1/3

λ
F ⋅ f̂n . (4.17)

�e Cauchy stress is given by

σ = pI + σd + σ f (4.18)

where

p = κ ln(J)
J

σd =
2
J
[(C1 + C2I1)B − C2B ⋅ B − 1

3(C1I1 + 2C2I2)I]

σ f =
λ
J
∂Wd

∂λ
(f̂n+1 ⊗ f̂n+1 − 1

3 I)

(4.19)

�e model also contains a failure feature that sets σd = 0 when the maximum shear strain, de�ned as
the di�erence between the maximum and mimum eigenvalues of C, exceeds a critical shear strain value.
Also, a �ber stretch failure criterion can be used that compares

√
I4 with a critical stretch value and sets

σ f = 0 is this value is exceeded.

4.3 Elastic modulus models

Applicable to: Hypoelastic Tabular material models

For selected material models that use isotropic hypoelasticity models and require bulk and shear moduli,
specialized elastic moduli models can be used. Some of these models are discussed in this section.
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4.3.1 Support vector regressionmodel

�e support vector regression (SVR) approach [25, 26] can be used to �t bulk modulus models to data
without the need for closed form expressions. �e advantage of this approach is that the resulting model
requires few function evaluations and can, in principle, be computed as fast as a closed-form model.

For the purpose of �tting a bulk modulus model we assume that the input (training) data are of the form
{(ε1, p1), (ε2, p2), . . . , (εm , pm)} ⊂ R2 ×R. Here εi = (εi , εpi ) where ε is the total volumetric strain and
εp is the plastic volumetric strain and pi is the mean stress (assumed positive in compression). �e aim
of SVR is to �nd a function p = f (ε) that �ts the data such that the function is as 
at as possible (in
d + 1-dimensional space), and deviates from pi by at most є (a small quantity).

In nonlinear support vector regression we �t functions of the form

p = f (ε) = w ⋅ ϕ(ε) + b (4.20)

wherew is a vector of parameters, ϕ(ε) are vector-valued basis functions, (⋅) is an inner product, and b is
a scalar o�set. �e �tting process can be posed as the following primal convex optimization problem [27]:

minimize
w,b,ξ,ξ⋆

1
2w ⋅w + C

m
∑
i=1

(ξi + ξ⋆i )

subject to
⎧⎪⎪⎨⎪⎪⎩

−(ξi + є) ≤ pi −w ⋅ ϕ(εi) − b ≤ ξ⋆i + є
ξi , ξ⋆i ≥ 0 , i = 1 . . .m

(4.21)

where C is a constraint multiplier, m is the number of data points, and ξi , ξ⋆i are constraints.

In practice, it is easier to solve the dual problem for which the expansion for f (ε) becomes

p = f (ε) =
m
∑
i=1

(λ⋆i − λi)K(εi , ε) + b , K(εi , ε) = ϕ(εi) ⋅ ϕ(ε) (4.22)

where εi are the sample vectors, λi and λ⋆i are dual coe�cients, and K(εi , ε) is a kernel function. �e
dual convex optimization problem has the form

minimize
λ,λ⋆

1
2

m
∑
i , j=1

(λi − λ⋆i )K(εi , ε j)(λ j − λ⋆j ) + є
m
∑
i=1

(λi + λ⋆i ) +
m
∑
i=1
pi(λi − λ⋆i )

subject to
⎧⎪⎪⎨⎪⎪⎩

∑m
i=1(λi − λ⋆i ) = 0

λi , λ⋆i ∈ [0,C] , i = 1 . . .m .

(4.23)

�e free parameters for the �tting process are the quantities є and C. SVR accuracy also depends strongly
on the choice of kernel function. In this paper, we use the Gaussian radial basis function:

K(εi , ε j) = exp [−
(εi − ε j) ⋅ (εi − ε j)

σ2 d
] = exp [−γ ∥εi − ε j∥

2] , γ ∶= 1
σ2 d

(4.24)

where d is the dimension of ε and σ2 is the width of the support of the kernel (assumed to be equal to the
norm of the covariance matrix of the training data in this paper).

�eminimization problem solves for the di�erence in the dual coe�cients (λ− λ⋆) and the intercept (b),
and outputs a reduced set (mSV < m) of values of εi called “support vectors”. Given these quantities, the
function (4.22) can be evaluated quite e�ciently, particularly if the number of support vectors is small.
SVR �ts to data can be computed using so�ware such as the LIBSVM library [28]. A variation of the above
approach, called ν-SVR [25] can also be used if su�cient computational resources are available.
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�e bulk modulus can be computed from (4.22) using

κ(ε) = ∂p
∂εe

= ∂p
∂ε

=
mSV

∑
i=1

(λ⋆i − λi)
∂Ki

∂ε
, Ki ∶= K(εi , ε) (4.25)

From (4.24),

∂Ki

∂ε
= 2γ(εi − ε) exp [−γ ∥εi − ε∥2] (4.26)

�erefore, the bulk modulus is given by,

κ(ε) =
mSV

∑
i=1

2γ(λ⋆i − λi)(εi − ε) exp [−γ ∥εi − ε∥
2] (4.27)

If we need to account for elastic-plastic coupling, we may also need the derivative

∂κ
∂εp

=
mSV

∑
i=1

4γ2(λ⋆i − λi)(εi − ε)(ε
p
i − ε

p) exp [−γ ∥εi − ε∥2] (4.28)

�e bulk modulus model is also associated with a shear modulus model that computes the value of µ
using a Poisson’s ratio (ν) based on the value of κ. �e Vaango implementation can be accessed in the
tabular plasticity models, using the tag <elastic moduli model type=”support vector”> .





5— Plasticity

Most plasticity models in Vaango are implemented as stand-alone models with their own elasticity law,
yield condition, 
ow rule, and internal variable evolution rules. However, because of the large number of
possible combinations of these, a few metal plasticity models are available that allow the user to swap out
one set of rules for another.

�e list below is not comprehensive. Please see the following chapters for details of the models
actually available in Vaango .

�e plasticity implementations typically contain the following:

1. An elasticity model :
• Isotropic linear elastic model.
• Anisotropic linear elastic models.
• Isotropic nonlinear elastic models.
• Anisotropic nonlinear elastic models.
• Equation of state to determine the pressure (or volumetric response), for example,

– Mie-Gruneisen equation of state.
• Deviatoric stress model to determine the shear response.

– Nadal-LePoac shear modulus model
– Steinberg-Guinan shear modulus model

2. A yield condition :
• von Mises yield condition.
• Drucker-Prager yield condition.
• Mohr-Coulomb yield condition.
• Gurson-Needleman-Tvergaard yield condition.

3. A 
ow rule :
• Associated 
ow.
• Non-Associated 
ow using either a 
ow potential or a material parameter.

4. Isotropic hardening :
• Perfect plasticity (no hardening).
• Johnson-Cook plasticity.
• Mechanical �reshold Stress (MTS) plasticity.

5. Kinematic hardening :
• Isotropic backstress.
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• Deviatoric backstress.
6. Isotropic hardening internal variable evolution rules :

• Mechanical threshold stress evolution.
• Gurson’s porosity evolution law.

7. Kinematic hardening internal variable evolution rules :
• Ziegler-Prager evolution rule.
• Armstrong-Frederick evolution rule

8. Damage evolution rules :
• Johnson-Cook damage model.
• Brittle damage model.

9. Melting temperature models
10. Speci�c heat models
11. Material stability-based localization models :

• Acoustic tensor.
• Drucker stability.

�e models used by the main plasticity codes in the current implementation of Vaango are described in
the following chapters, followed by descriptions of the plasticity algorithms themselves.



6— Equation of state models

In the isotropicmetal plasticitymodels implemented inVaango , the volumetric part of the Cauchy stress
can be calculated using an equation of state. �e equations of state that are implemented in Vaango are
described below.

6.1 Hypoelastic equation of state

In this case we assume that the stress rate is given by

σ̇ = λ tr(de) I + 2 µ de (6.1)

where σ is the Cauchy stress, de is the elastic part of the rate of deformation, and λ, µ are constants.

If dev(de) is the deviatoric part of de then we can write

σ̇ = (λ + 2
3
µ) tr(de) I + 2 µ dev(de) = κ tr(de) I + 2 µ dev(de) . (6.2)

If we split σ into a volumetric and a deviatoric part, i.e., σ = p I + s, take the time derivative to get
σ̇ = ṗ I + ṡ, and compare the result with (6.2), we see that

ṗ = κ tr(de) . (6.3)

In addition we assume that d = de + d p. If we also assume that the plastic volume change is negligible
(tr(d p) ≈ 0), which is reasonable for a void-free metal matrix, we have

ṗ = κ tr(d) . (6.4)

�is is the equation that is used to calculate the pressure p in the default hypoelastic equation of state. For
a forward Euler integration step,

pn+1 = pn + κ tr(dn+1) ∆t . (6.5)

To get the derivative of p with respect to J, where J = det(F), we note that

ṗ = ∂p
∂J

J̇ = ∂p
∂J

J tr(d) . (6.6)
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�erefore,

∂p
∂J

=
κ
J
. (6.7)

�is model is invoked in Vaango using
<equation_of_state type="default_hypo">

</equation_of_state >

6.2 Default hyperelastic equation of state

In this model the pressure is computed using the relation

p = 1
2 κ (Je −

1
Je
) (6.8)

where κ is the bulk modulus and Je is determinant of the elastic part of the deformation gradient.

We can also compute

dp
dJ

= 1
2 κ (1 +

1
(Je)2

) . (6.9)

�e metal plasticity implementations in Vaango assume that the volume change of the matrix during
plastic deformation can be neglected, i.e., Je = J.
�is model is invoked using

<equation_of_state type="default_hyper">

</equation_of_state >

6.3 Mie-Gruneisen equation of state

�e pressure (p) is calculated using a Mie-Grüneisen equation of state of the form ([14, 29])

p = −ρ0 C
2
0 (1 − Je)[1 − Γ0(1 − Je)/2]

[1 − Sα(1 − Je)]2
− Γ0 E ; Je ∶= det F e (6.10)

where C0 is the bulk speed of sound, ρ0 is the initial mass density, Γ0 is the Grüneisen’s gamma at the
reference state, Sα = dUs/dUp is a linear Hugoniot slope coe�cient, Us is the shock wave velocity, Up is
the particle velocity, and E is the internal energy density (per unit reference volume), F e is the elastic part
of the deformation gradient. For isochoric plasticity,

Je = J = det(F) =
ρ0
ρ
.

�e internal energy is computed using

E = 1
V0
∫ CvdT ≈ Cv(T − T0)

V0
(6.11)

where V0 = 1/ρ0 is the reference speci�c volume at temperature T = T0, and Cv is the speci�c heat at
constant volume.
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Also,

∂p
∂Je

=
ρ0 C2

0 [1 + (Sα − Γ0) (1 − Je)]
[1 − Sα (1 − Je)]3

− Γ0
∂E
∂Je

. (6.12)

We neglect the ∂E∂Je term in our calculations.

�is model is invoked in Vaango using

<equation_of_state type="mie_gruneisen">

<C_0>5386</C_0>

<Gamma_0 >1.99</Gamma_0 >

<S_alpha >1.339</S_alpha >

<rho_0> 7200 </rho_0>

</equation_of_state >

An alternative formulation is also available that can be used for models where a linear Hugoniot is not
accurate enough. A cubic model can be used in that formulation.

pn+1 = −
ρ0 C2

0 (1 − Jen+1)[1 − Γ0(1 − Jen+1)/2]
[1 − Sα(1 − Jen+1) − S2(1 − Jen+1)2 − S3(1 − Jen+1)3]2

− Γ0 en+1 ; Je ∶= det F e (6.13)

�is model is invoked using the labelmie gruneisen energy .

6.4 Equations of state used in the ARENAmodel

In many models, a tangent bulk modulus is computed using the equation of state and the pressure is
updated using an integration step. While this approach less accurate than directly evaluating the equation
of state, it is useful when a composite material is being simulated that does not have well-characterized
equations of state at all states.

�e equations of state used by the ARENAmodel for soils are described below. �e bars above quantities
indicate negation.

6.4.1 Solid matrix material

�e pressure in the solid matrix is expressed as

ps = Ksεsv ; εsv ∶= ln(Vs0
Vs

) (6.14)

where ps = −ps is the solid matrix pressure, Ks is the solid bulk modulus, εsv is the volumetric strain, Vs0
is the initial volume of the solid, and Vs is the current volume of the solid. �e solid bulk modulus is
assumed to modeled by the Murnaghan equation:

Ks(ps) = Ks0 + ns (ps − ps0) (6.15)

where Ks0 and ns are material properties, and ps0 is a reference pressure.

6.4.2 Pore water

�e equation of state of the pore water is

pw = Kwεwv + p0 ; εwv ∶= ln(Vw0
Vw

) (6.16)
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where pw = −pw is the water pressure, Kw is the water bulk modulus, Vw0 is the initial volume of water,
Vw is the current volume of water, p0 is the initial water pressure, and εwv is the volumetric strain in the
water. We use the isothermal Murnaghan bulk modulus model for water:

Kw(pw) = Kw0 + nw (pw − pw0) (6.17)

where Kw0 and nw are material properties, and pw0 is a reference pressure.

6.4.3 Pore air

�e isentropic ideal gas equation of state for the pore air is

pa = pr [exp(γ εav) − 1] ; εav ∶= ln(Va0
Va

) (6.18)

where the quantities with subscript a represent quantities for the air model analogous to those for the
water model in (20.10), pr is a reference pressure (101325 Pa) and γ = 1.4. �e bulk modulus of air (Ka)
varies with the volumetric strain in the air:

Ka =
dpa
dεav

= γ pr exp(γ εav) = γ (pa + pr) . (6.19)



7—Deviatoric stress models

Isotropic plasticity models in Vaango typically assume hypoelasticity, for which the stress rate is given
by

σ̇ = ṗ I + ṡ = κ tr(de) I + 2 µ dev(de) (7.1)

where σ = pI + s is the Cauchy stress, p = tr(σ), s is the deviatoric stress, de is the elastic part of the rate
of deformation, and κ, µ are the bulk and shear moduli.

�e pressure is computed using an equation of state as described in the chapter 6. �e deviatoric stress is
computed using the relation

ṡ = 2 µ dev(de) . (7.2)

If a forward Euler stress update is used, we have

sn+1 = sn + 2µdev(den+1)∆t . (7.3)

For linear elastic materials, the shear modulus can vary with temperature and pressure. Several shear
modulus models area available in Vaango for computing the value for a given state.

For linear viscoelastic materials to be used with plasticity, a Maxwell model is available in Vaangowhere
the deviatoric stress is computed as a sum of Maxwell elements:

sn+1 = sn + 2∑
j
µ jdev(den+1)∆t . (7.4)

7.1 Shear modulus models

Shear modulus models that are available in Vaango are described below.

7.1.1 Constant shear modulus

�e default model gives a constant shear modulus. �e model is invoked using
<shear_modulus_model type="constant_shear">

<shear_modulus > 1.0e8 </shear_modulus >

</shear_modulus_model >
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7.1.2 Mechanical Threshold Stress shear modulus

�e simplest model is of the form suggested by [30] ([31])

µ(T) = µ0 −
D

exp(T0/T) − 1
(7.5)

where µ0 is the shear modulus at 0K, and D, T0 are material constants.

�e model is invoked using
<shear_modulus_model type="mts_shear">

<mu_0>28.0e9</mu_0>

<D>4.50e9</D>

<T_0>294</T_0>

</shear_modulus_model >

7.1.3 SCG shear modulus

�e Steinberg-Cochran-Guinan (SCG) shear modulus model ([29, 32]) is pressure dependent and has the
form

µ(p, T) = µ0 +
∂µ
∂p

p
η1/3

+ ∂µ
∂T

(T − 300); η = ρ/ρ0 (7.6)

where, µ0 is the shear modulus at the reference state(T = 300 K, p = 0, η = 1), p is the pressure, and T is
the temperature. When the temperature is above Tm, the shear modulus is instantaneously set to zero in
this model.

�e model is invoked using
<shear_modulus_model type="scg_shear">

<mu_0> 81.8e9 </mu_0>

<A> 20.6e-12 </A>

<B> 0.16e-3 </B>

</shear_modulus_model >

7.1.4 Nadal-LePoac (NP) shear modulus

A modi�ed version of the SCG model has been developed by [33] that attempts to capture the sudden
drop in the shear modulus close to the melting temperature in a smooth manner. �e Nadal-LePoac
(NP) shear modulus model has the form

µ(p, T) = 1
J (T̂)

[(µ0 +
∂µ
∂p

p
η1/3

)(1 − T̂) + ρ
Cm

kb T] ; C ∶=
(6π2)2/3

3
f 2 (7.7)

where

J (T̂) ∶= 1 + exp [−
1 + 1/ζ

1 + ζ/(1 − T̂)
] for T̂ ∶= T

Tm
∈ [0, 1 + ζ], (7.8)

µ0 is the shear modulus at 0 K and ambient pressure, ζ is a material parameter, kb is the Boltzmann
constant, m is the atomic mass, and f is the Lindemann constant.

�e model is invoked using
<shear_modulus_model type="np_shear">

<mu_0>26.5e9</mu_0>

<zeta>0.04</zeta>

<slope_mu_p_over_mu0 >65.0e-12</slope_mu_p_over_mu0 >

<C> 0.047 </C>

<m> 26.98 </m>

</shear_modulus_model >
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7.1.5 Preston-Tonks-Wallace (PTW) shear modulus

�ePTWshearmodel [34] is a simpli�ed version of the SCG shearmodel. �ismodel suggests computing
the shear modulus using

µ(p, T) = µ0 (1 + β
p
η1/3

)(1 − αp
T
Tm

) (7.9)

where µ0 is the shear modulus at room temperature and pressure, p = −p, αp is a material parameter, Tm
is the melting temperature, and

η = ρ
ρ0

, β =

dµ
dp
µ0

. (7.10)

7.1.6 Borja’s shear modulus model

Borja’s deviatoric stress model [35] assumes that the deviatoric part of the elastic strain energy density has
the form

Wdev(εev , εes ) =
3
2 µ (εes )2 (7.11)

where εev = tr(єev) is the volumetric part of the elastic strain, εes =
√
2/3dev(єev) ∶ dev(єev) is the deviatoric

part of the elastic strain, and µ is the shear modulus.

�e shear modulus in the Borja model is computed as

µ(p) = µ0 − αp0 exp(−
εev − εev0

κ̃
) (7.12)

where µ0 is a reference shear modulus, εev0 is the volumetric strain corresponding to a mean normal
compressive stress p0, and κ̃ is the elastic compressibility index.





8—Yield condition

�e yield condition models in Vaango are of two types: yield conditions that are tightly tied to material
models such as CamClay, Arenisca3, Arena, Mohr-Coulomb etc. and those that can be switched in the
input �le. �is chapter discusses those yield conditions that can be easily substituted while simulating
isotropic metal plasticity. �e other yield conditions are described in the chapters that deal with speci�c
models.

8.1 vonMises yield

�e von Mises yield function implemented in Vaango has the form

f = σ ξe� − σy(ε
eq
p , ε̇

eq
p , ϕ, T , ε̇

eq, . . . ) (8.1)

where σy is the 
ow stress, ε
eq
p is the equivalent plastic strain, ε̇

eq
p is the equivalent plastic strain rate, ϕ is

the porosity, and T is the temperature. �e equivalent stress is de�ned as

σ ξe� =
√
3J ξ2 =

√
3
2 ξ ∶ ξ , ξ = s − dev(β) , s = σ − 1

3 tr(σ)I (8.2)

where σ is the Cauchy stress and β is the kinematic hardening backstress.

�e normal to the yield surface is

N = ∂ f
∂σ

= ∂ f
∂ξ

∶ ∂ξ
∂σ

= ∂ f
∂ξ

∶ ∂ξ
∂s

∶ ∂s
∂σ

(8.3)

Noting that

∂s
∂σ

= symm(I) − 1
3 I ⊗ I and

∂ξ
∂s

= symm(I) (8.4)

where I is the fourth-order identity tensor and I is the second-order identity tensor, we have

N = ∂ f
∂ξ

∶ symm(I) ∶ (symm(I) − 1
3 I ⊗ I) =

∂ f
∂ξ

∶ (symm(I) − 1
3 I ⊗ I)

= ∂ f
∂ξ

− 1
3 tr(

∂ f
∂ξ

) I .
(8.5)
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Next we compute the derivative of f :

∂ f
∂ξ

= ∂ f
∂σ ξe�

∂σ ξe�
∂ξ

=
√

3
2

ξ√
ξ ∶ ξ

Ô⇒ tr(∂ f
∂ξ

) = 0 . (8.6)

�erefore,

N =
√

3
2
ξ

∥ξ∥
(8.7)

�e unit normal to the yield surface is

N̂ = ξ
∥ξ∥

. (8.8)

�e von Mises yield condition is the default for metal plasticity and can be invoked using the tag
<yield_condition type="von_mises"/>

8.2 The Gurson-Tvergaard-Needleman (GTN) yield condition

�e Gurson-Tvergaard-Needleman (GTN) yield condition [36, 37] depends on porosity. �e GTN yield
function can be written as

f =
⎛
⎝
σ ξe�
σy

⎞
⎠

2

+ 2q1ϕ⋆ cosh(q2
tr(σ ξ)
2σy

) − (1 + q3ϕ2⋆) (8.9)

where σ ξ = σ −β, σ is the Cauchy stress, β is the backstress, σ ξe� is the equivalent stress de�ned in (8.2), σy
is the 
ow stress of the void-free material, q1, q2, q3 are material constants, and ϕ⋆ is the porosity function
de�ned as

ϕ⋆ =
⎧⎪⎪⎨⎪⎪⎩

ϕ for ϕ ≤ ϕc ,
ϕc + k(ϕ − ϕc) for ϕ > ϕc

(8.10)

where k is a constant and ϕ is the porosity (void volume fraction).

�e normal to the yield surface is

N = ∂ f
∂σ

= ∂ f
∂ξ

∶ ∂ξ
∂σ

+ ∂ f
∂Iξ1

∂Iξ1
∂σ

= ∂ f
∂ξ

∶ ∂ξ
∂s

∶ ∂s
∂σ

+ ∂ f
∂Iξ1

∂Iξ1
∂I1

∂I1
∂σ

(8.11)

where I1 = tr(σ) and Iξ1 = tr(σ ξ) = tr(σ − β). Using (8.5),

N = ∂ f
∂ξ

− 1
3 tr(

∂ f
∂ξ

) I + ∂ f
∂Iξ1

∂Iξ1
∂I1

∂I1
∂σ

. (8.12)

Noting that

∂Iξ1
∂I1

= 1 and
∂I1
∂σ

= I (8.13)

we have

N = ∂ f
∂ξ

− 1
3 tr(

∂ f
∂ξ

) I + ∂ f
∂Iξ1

I . (8.14)
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Computation of the derivatives of f gives

∂ f
∂ξ

= ∂ f
∂σ ξe�

∂σ ξe�
∂ξ

=
√

3
2
⎛
⎝
2σ ξe�
σ2y

⎞
⎠

ξ
∥ξ∥

= 3ξ
σ2y

Ô⇒ tr(∂ f
∂ξ

) = 0 . (8.15)

and

∂ f
∂Iξ1

= q1q2ϕ⋆
σy

sinh(q2
tr(σ ξ)
2σy

) . (8.16)

�erefore,

N = 3ξ
σ2y

+ q1q2ϕ⋆
σy

sinh(q2
tr(σ ξ)
2σy

) I . (8.17)

�e unit normal to the GTN yield surface is given by

N̂ = N
∥N∥

. (8.18)

�e GTN yield condition is invoked using
<yield_condition type="gurson">

<q1> 1.5 </q1>

<q2> 1.0 </q2>

<q3> 2.25 </q3>

<k> 4.0 </k>

<f_c> 0.05 </f_c>

</yield_condition >

8.3 The Rousselier yield condition

�eRousselier yield condition [38] is another porosity-based yield condition that has been used for ductile
tearing simulations.

�e yield function is

f =
σ ξe�
1 − ϕ

+ Dσ1ϕ exp(
tr(σ ξ)

3(1 − ϕ)σ1
) − σy (8.19)

whereD, σ1 arematerial constants, and the remaining quantities have beende�ned in the previous section.

�e normal to the yield surface is

N = ∂ f
∂ξ

− 1
3 tr(

∂ f
∂ξ

) I + ∂ f
∂Iξ1

I (8.20)

where

∂ f
∂ξ

= ∂ f
∂σ ξe�

∂σ ξe�
∂ξ

=
√

3
2

1
1 − ϕ

ξ
∥ξ∥

Ô⇒ tr(∂ f
∂ξ

) = 0 (8.21)

and

∂ f
∂Iξ1

= Dϕ
3(1 − ϕ)

exp( tr(σ ξ)
3(1 − ϕ)σ1

) . (8.22)

�erefore,

N = 1
1 − ϕ

[
√

3
2
ξ

∥ξ∥
+ Dϕ

3
exp( tr(σ ξ)

3(1 − ϕ)σ1
)] . (8.23)





9— Flow rule

Plastic 
ow rules in Vaango have the form

d p = ε̇p = λ̇M (9.1)

where d p = ε̇p is the plastic strain rate tensor, λ is the consistency parameter, and M is a unit tensor in
the direction of the plastic strain rate.

9.1 Associated plasticity

For associated plasticity, Vaango uses the classical approach in plasticity theory and assumes thatM = N̂
is the unit normal to the yield surface:

ε̇p = λ̇N̂ , N̂ =
∂ f
∂σ

∥ ∂ f∂σ ∥
(9.2)

where f is the yield function.

9.2 Non-associated plasticity

Vaangouse two approaches for non-associated plasticity (M ≠ N̂). �e �rst approach, implemented in
the Mohr-Coulomb model, is to use a separate plastic potential (g) to compute M:

ε̇p = λ̇M̂ , M̂ =
∂g
∂σ

∥ ∂g∂σ ∥
(9.3)

�e plastic potential is assumed to have the same form as the yield function, but di�erent parameters to
match experimental data on dilatation.

An alternative approach, used in Arenisca3 and Arena, is to compute the direction of the plastic strain
rate tensor using

ε̇p = λ̇M̂ , M̂ = dev(N) + β tr(N)
∥dev(N) + β tr(N)∥

(9.4)

where β is an adjustable parameter.
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Several 
ow stress models have been implemented in Vaango . �ese are described in this chapter.

10.1 Linear hardeningmodel

�e linear hardening model in Vaango has the form

σy(εeqp ) = σ0 + Kεeqp (10.1)

where σ0 is the initial yield stress, K is a hardening modulus, and ε
eq
p is the equivalent plastic strain.

�e linear hardening model can be invoked using
<flow_model type="linear">

<sigma_0 > 700.0e6 </sigma_0 >

<K>1.5e6</K>

</flow_model >

10.2 Johnson-Cookmodel

�e Johnson-Cook (JC) model ([39]) has the following relation for the 
ow stress (σy)

σy(εeqp , ε̇eq, T) = [A+ B(εeqp )n] [1 + C ln(ε̇⋆)] [1 − (T∗)m] (10.2)

where εeqp is the equivalent plastic strain, A, B, C, n, m are material constants, and

ε̇
⋆
=
ε̇eq

ε̇0
; T∗ =

(T − T0)
(Tm − T0)

. (10.3)

In the above equations, ε̇eq is the equivalent strain rate, ε̇0 is a reference strain rate, T0 is a reference
temperature, and Tm is the melt temperature. For conditions where T⋆ < 0, we assume that m = 1.
�e inputs for this model have the form
<flow_model type="johnson_cook">

<A>792.0 e6</A>

<B>510.0 e6</B>

<C>0.014 </C>
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<n>0.26</n>

<m>1.03</m>

<T_r>298.0</T_r>

<T_m>1793.0 </T_m>

<epdot_0 >1.0</epdot_0 >

</flow_model >

10.3 Steinberg-Guinanmodel

�eSteinberg-Cochran-Guinan-Lund (SCG)model is a semi-empirical model that was developed by [32]
for high strain rate situations and extended to low strain rates and bcc materials by [40]. �e 
ow stress
in this model is given by

σy(εeqp , ε̇
eq
p , T) = [σa f (εeqp ) + σt(ε̇eqp , T)]

µ(p, T)
µ0

(10.4)

where σa is the athermal component of the 
ow stress, f (εeqp ) is a function that represents strain hard-
ening, σt is the thermally activated component of the 
ow stress, µ(p, T) is the shear modulus, and µ0 is
the shear modulus at standard temperature and pressure. �e strain hardening function has the form

f (εeqp ) = [1 + β(εeqp + εpi)]n; σa f (εeqp ) ≤ σmax (10.5)

where β, n are work hardening parameters, and εpi is the initial equivalent plastic strain. �e thermal
component σt is computed using a bisection algorithm from the following equation (based on the work
of [41])

ε̇eqp = [ 1
C1

exp [ 2Uk

kb T
(1 − σt

σp
)
2

] + C2
σt

]
−1
; σt ≤ σp (10.6)

where 2Uk is the energy to form a kink-pair in a dislocation segment of length Ld , kb is the Boltzmann
constant, σp is the Peierls stress. �e constants C1,C2 are given by the relations

C1 ∶=
ρdLdab2ν

2w2 ; C2 ∶=
D
ρdb2

(10.7)

where ρd is the dislocation density, Ld is the length of a dislocation segment, a is the distance between
Peierls valleys, b is the magnitude of the Burgers’ vector, ν is the Debye frequency,w is the width of a kink
loop, and D is the drag coe�cient.

�e inputs for this model are of the form

<flow_model type="steinberg_cochran_guinan">

<mu_0> 81.8e9 </mu_0>

<sigma_0 > 1.15e9 </sigma_0 >

<Y_max> 0.25e9 </Y_max>

<beta> 2.0 </beta>

<n> 0.50 </n>

<A> 20.6e-12 </A>

<B> 0.16e-3 </B>

<T_m0> 2310.0 </T_m0>

<Gamma_0 > 3.0 </Gamma_0 >

<a> 1.67 </a>

<epsilon_p0 > 0.0 </epsilon_p0 >

</flow_model >
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10.4 Zerilli-Armstrongmodel

�e Zerilli-Armstrong (ZA) model ([42–44]) is based on simpli�ed dislocation mechanics. �e general
form of the equation for the 
ow stress is

σy(εeqp , ε̇
eq
p , T) = σa + B exp(−β(ε̇

eq
p )T) + B0

√
εeqp exp(−α(ε̇

eq
p )T) (10.8)

where σa is the athermal component of the 
ow stress given by

σa ∶= σg +
kh√
l
+ K(εeqp )n , (10.9)

σg is the contribution due to solutes and initial dislocation density, kh is the microstructural stress inten-
sity, l is the average grain diameter, K is zero for fccmaterials, B, B0 arematerial constants. �e functional
forms of the exponents α and β are

α = α0 − α1 ln(ε̇eqp ); β = β0 − β1 ln(ε̇eqp ); (10.10)

where α0, α1, β0, β1 are material parameters that depend on the type of material (fcc, bcc, hcp, alloys).
�e Zerilli-Armstrong model has been modi�ed by [45] for better performance at high temperatures.
However, we have not used the modi�ed equations in our computations.

�e input for this model is of the form

<flow_model type="zerilli_armstrong">

<sigma_g > 46.5e6 </sigma_g >

<k_H> 5.0e6 </k_H>

<sqrt_l_inv > 3.7 </sqrt_l_inv >

<B> 0.0 </B>

<beta_0 > 0.0 </beta_0 >

<beta_1 > 0.0 </beta_1 >

<B_0> 890.0 e6 </B_0>

<alpha_0 > 0.0028 </alpha_0 >

<alpha_1 > 0.000115 </alpha_1 >

<K> 0.0 </K>

<n> 0.0 </n>

</flow_model >

10.5 Polymer Zerilli-Armstrongmodel

�e Zerilli-Armstrong model for polymers has the form:

σy(εeqp , ε̇
eq
p , T) = σg + B exp(−βT⋆) + B0

√
ωεeqp exp(−αT⋆) (10.11)

where σg is the athermal component of the 
ow stress and

ω = ωa + ωb ln(ε̇
eq
p ) + ωp

√
p (10.12)

where ωa, ωb, ωp are material parameters and p = −p is the pressure (positive in compression). �e
functional forms of the exponents α and β are

α = α0 − α1 ln(ε̇eqp ); β = β0 − β1 ln(ε̇eqp ); (10.13)

where α0, α1, β0, β1 are material parameters. �e factors B and B0 are de�ned as

B = Bpa (1 + Bpb
√
p)

Bpn
, B0 = B0pa (1 + B0pb

√
p)

B0pn
(10.14)
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where Bpa, B0pa, Bpb, B0pb, Bpn, and B0pn are material parameters. Also,

T⋆ = T
T0

(10.15)

where T0 is a reference temperature.

�e input tags for the polymer ZA model are:

<flow_model type="zerilli_armstrong_polymer">

<sigma_g > 46.5e6 </sigma_g >

<B_pa> 0.0 </B_pa>

<B_pb> 0.0 </B_pb>

<B_pn> 1.0 </B_pn>

<beta_0 > 0.0 </beta_0 >

<beta_1 > 0.0 </beta_1 >

<T_0> 300.0 </T_0>

<B_0pa> 890.0e6 </B_0pa>

<B_0pb> 0.0 </B_0pb>

<B_0pn> 1.0 </B_0pn>

<omega_a > 0.0 </omega_a >

<omega_b > 0.0 </omega_b >

<omega_p > 0.0 </omega_p >

</flow_model >

10.6 Mechanical thresold stress model

�eMechanical �reshold Stress (MTS) model ([46–48]) gives the following form for the 
ow stress

σy(εeqp , ε̇
eq
p , T) = σa + (Siσi + Seσe)

µ(p, T)
µ0

(10.16)

where σa is the athermal component of mechanical threshold stress, µ0 is the shear modulus at 0 K and
ambient pressure, σi is the component of the 
ow stress due to intrinsic barriers to thermally activated
dislocation motion and dislocation-dislocation interactions, σe is the component of the 
ow stress due to
microstructural evolution with increasing deformation (strain hardening), (Si , Se) are temperature and
strain rate dependent scaling factors. �e scaling factors take the Arrhenius form

Si =
⎡⎢⎢⎢⎢⎢⎣
1 −

⎛
⎝

kb T
g0ib3µ(p, T)

ln
ε̇p0i
ε̇eqp

⎞
⎠

1/q i⎤⎥⎥⎥⎥⎥⎦

1/p i

(10.17)

Se =
⎡⎢⎢⎢⎢⎢⎣
1 −

⎛
⎝

kb T
g0eb3µ(p, T)

ln
ε̇p0e
ε̇eqp

⎞
⎠

1/qe⎤⎥⎥⎥⎥⎥⎦

1/pe

(10.18)

where kb is the Boltzmann constant, b is the magnitude of the Burgers’ vector, (g0i , g0e) are normalized
activation energies, (ε̇p0i , ε̇p0e) are constant reference strain rates, and (qi , pi , qe , pe) are constants. �e
strain hardening component of the mechanical threshold stress (σe) is given by a modi�ed Voce law

dσe
dεeqp

= θ(σe) (10.19)
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where

θ(σe) = θ0[1 − F(σe)] + θIVF(σe) (10.20)

θ0 = a0 + a1 ln ε̇eqp + a2
√
ε̇eqp − a3T (10.21)

F(σe) =
tanh(α

σe
σes

)

tanh(α)
(10.22)

ln(
σes
σ0es

) = ( kT
g0esb3µ(p, T)

) ln
⎛
⎝
ε̇eqp
ε̇p0es

⎞
⎠

(10.23)

and θ0 is the hardening due to dislocation accumulation, θIV is the contribution due to stage-IV hard-
ening, (a0, a1, a2, a3, α) are constants, σes is the stress at zero strain hardening rate, σ0es is the saturation
threshold stress for deformation at 0 K, g0es is a constant, and ε̇p0es is the maximum strain rate. Note that
the maximum strain rate is usually limited to about 107/s.

�e inputs for this model are of the form
<flow_model type="mechanical_threshold_stress">

<sigma_a >363.7e6</sigma_a >

<mu_0>28.0e9</mu_0>

<D>4.50e9</D>

<T_0>294</T_0>

<koverbcubed >0.823e6</koverbcubed >

<g_0i>0.0</g_0i>

<g_0e>0.71</g_0e>

<edot_0i >0.0</edot_0i >

<edot_0e >2.79e9</edot_0e >

<p_i>0.0</p_i>

<q_i>0.0</q_i>

<p_e>1.0</p_e>

<q_e>2.0</q_e>

<sigma_i >0.0</sigma_i >

<a_0>211.8e6</a_0>

<a_1>0.0</a_1>

<a_2>0.0</a_2>

<a_3>0.0</a_3>

<theta_IV >0.0</theta_IV >

<alpha>2</alpha>

<edot_es0 >3.42e8</edot_es0 >

<g_0es>0.15</g_0es>

<sigma_es0 >1679.3 e6</sigma_es0 >

</flow_model >

10.7 Preston-Tonks-Wallacemodel

�e Preston-Tonks-Wallace (PTW) model ([34]) attempts to provide a model for the 
ow stress for ex-
treme strain rates (up to 1011/s) and temperatures up to melt. �e 
ow stress is given by

σy(εeqp , ε̇
eq
p , T) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2
⎡⎢⎢⎢⎢⎣
τs + α ln

⎡⎢⎢⎢⎢⎣
1 − φ exp

⎛
⎝
−β −

θεeqp
αφ

⎞
⎠

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
µ(p, T) thermal regime

2τsµ(p, T) shock regime

(10.24)

with

α ∶=
s0 − τy
d

; β ∶=
τs − τy
α

; φ ∶= exp(β) − 1 (10.25)

where τs is a normalized work-hardening saturation stress, s0 is the value of τs at 0K, τy is a normalized
yield stress, θ is the hardening constant in the Voce hardening law, and d is a dimensionless material
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parameter that modi�es the Voce hardening law. �e saturation stress and the yield stress are given by

τs = max
⎧⎪⎪⎨⎪⎪⎩
s0 − (s0 − s∞)erf

⎡⎢⎢⎢⎢⎣
κT̂ ln

⎛
⎝
γξ̇
ε̇eqp

⎞
⎠

⎤⎥⎥⎥⎥⎦
, s0

⎛
⎝
ε̇eqp
γξ̇

⎞
⎠

s1⎫⎪⎪⎬⎪⎪⎭
(10.26)

τy = max
⎧⎪⎪⎨⎪⎪⎩
y0 − (y0 − y∞)erf

⎡⎢⎢⎢⎢⎣
κT̂ ln

⎛
⎝
γξ̇
ε̇eqp

⎞
⎠

⎤⎥⎥⎥⎥⎦
, min

⎧⎪⎪⎨⎪⎪⎩
y1

⎛
⎝
ε̇eqp
γξ̇

⎞
⎠

y2

, s0
⎛
⎝
ε̇eqp
γξ̇

⎞
⎠

s1⎫⎪⎪⎬⎪⎪⎭

⎫⎪⎪⎬⎪⎪⎭
(10.27)

where s∞ is the value of τs close to the melt temperature, (y0, y∞) are the values of τy at 0K and close
to melt, respectively, (κ, γ) are material constants, T̂ = T/Tm, (s1, y1, y2) are material parameters for the
high strain rate regime, and

ξ̇ = 1
2
(
4πρ
3M

)
1/3

(
µ(p, T)

ρ
)
1/2

(10.28)

where ρ is the density, andM is the atomic mass.

�e inputs for this model are of the form
<flow_model type="preston_tonks_wallace">

<theta> 0.025 </theta>

<p> 2.0 </p>

<s0> 0.0085 </s0>

<sinf> 0.00055 </sinf>

<kappa> 0.11 </kappa>

<gamma> 0.00001 </gamma >

<y0> 0.0001 </y0>

<yinf> 0.0001 </yinf>

<y1> 0.094 </y1>

<y2> 0.575 </y2>

<beta> 0.25 </beta>

<M> 63.54 </M>

<G0> 518e8 </G0>

<alpha> 0.20 </alpha>

<alphap > 0.20 </alphap >

</flow_model >

10.8 SUVIC-I model

SUVIC-I is a viscoplastic model for ice that has been used formodeling the interaction of tires with ice [49,
50]. �e model is an extension of the SUVIC model (Strain-rate history dependent Uni�ed Viscoplastic
model with Internal Variables for Crystalline materials). �e model is applicable for strain rates in the
range of 10−8 to 10−2 s−1. Further details on the range of applicability of the model can be found in [49].

�is model is driven by a specialized viscoplastic constitutive model for which the yield criterion is given
by

⟨Xae − R
K

⟩ , ⟨x⟩ =
⎧⎪⎪⎨⎪⎪⎩

x for x > 0
0 for x ≤ 0

(10.29)

where the e�ective reduced stress is de�ned as

Xae ∶=
√

3
2(s − β) ∶ (s − β) (10.30)

and R is the yield stress, K is the drag stress, s = dev(σ) is the deviatoric stress, β is the deviatoric
backstress.

�e inelastic strain rate is given by

ε̇i = [A⟨Xae − R
K

⟩
N
exp(− Q

RT
)] n , n = 3

2 (
s − β
Xae

) (10.31)
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where A is a kinetic-law material constants, and Q , R, T are the activation energy, Universal gas constant
and the absolute temperature, respectively.

�e equivalent inelastic strain rate for the model is de�ned as

ε̇eqi =
√

2
3 ε̇

i ∶ ε̇i = A⟨Xae − R
K

⟩
N
exp(− Q

RT
) . (10.32)

�e evolution of the deviatoric backstress is given by

β̇ = 2
3A1 ε̇i − A1(βsat)−1 ε̇eqi β − A2(βe�sat)q−1C−qβ (10.33)

where A1 is a constant that is �tted to the kinematic hardening and dynanamic recovery curves, βsat is a
saturation value of the backstress, and A2, q, C are constants �tted to static recovery curves. �e isotropic
hardening yield stress evolves as

Ṙ = A3

dg
ε̇eqi (1 − R

Rsat
) − A4

dg
(R − Rsat)p

C
(10.34)

where A3 is a constant, dg is the grain size, Rsat is the saturation value of R, and A4, p, C are constants
associated with static recovery. �e drag stress evolves as

K̇ = A5

dg
ε̇eqi (1 − K

Ksat
) − A6

dg
(K − Ksat)q

C
(10.35)

and has the same form as the yield stress evolution rule. �e static recovery terms are ignored in the
Vaango implementation. �e saturation value for the e�ective stress is given by

σe�sat = σ0 (
ε̇eqi
ε̇0

)
1/n

(10.36)

where σ0 and ε̇0 are reference values and n is a constant. Similar relations are assumed for the reference
values of the other quantities:

βe�sat = β0 (
ε̇eqi
ε̇0

)
1/n

; Rsat = R0 (
ε̇eqi
ε̇0

)
1/n

(10.37)

�e drag stress saturation value is given by

Ksat =
⎡⎢⎢⎢⎢⎣

ε̇eqi
Aexp (−QRT )

⎤⎥⎥⎥⎥⎦
(Xsat − Rsat) (10.38)

where Xsat is the saturation value of Xae .

A typical input deck for the SUVIC-I model is shown below.
<constitutive_model type="visco_plastic">

<shear_modulus >3.52e9</shear_modulus >

<bulk_modulus >8.9e9</bulk_modulus >

<remove_particles > false </remove_particles >

<zero_stress_upon_failure > false </zero_stress_upon_failure >

<stability_check type="none"> </stability_check >

<equation_of_state type="default_hypo">

<bulk_modulus >8.9e9</bulk_modulus >

</equation_of_state >

<viscoplastic_flow_model type="suvic_i">

<coeff_backstress_evol >75e6</coeff_backstress_evol >

<exponent_backstress_evol > 1</exponent_backstress_evol >

<normalizing_backstress > 1e6</normalizing_backstress >

<coeff_saturation_backstress > 0.1e6</coeff_saturation_backstress >

<exponent_backstress > 4</exponent_backstress >
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<ref_strainrate >7.794e-08</ref_strainrate >

<normalizing_inelastic_strainrate >5.0e9 </normalizing_inelastic_strainrate >

<activation_energy > 67500.0 </activation_energy >

<universal_gas_constant >8.3144 </universal_gas_constant >

<temperature >269.15 </temperature >

<exponent_inelastic_strainrate >4.0 </exponent_inelastic_strainrate >

<coeff_yieldstress_saturation >0.8e6 </coeff_yieldstress_saturation >

<exponent_yieldstress >4.0 </exponent_yieldstress >

<coeff_yieldstress_evol > 1600.0 e6</coeff_yieldstress_evol >

<exponent_dragstress > 4.0</exponent_dragstress >

<coeff_dragstress_evol >95e6 </coeff_dragstress_evol >

<coeff_stress_saturation >1.0e6</coeff_stress_saturation >

<intial_drag >0.05e6</intial_drag >

<initial_yield > 0.0</initial_yield >

<integration_parameter_theta > 0.5</integration_parameter_theta >

</viscoplastic_flow_model >

</constitutive_model >
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Kinematic hardening in Vaango is modeled with a backstress (β) that is subtracted from the stress while
evaluating the yield condition. In Arena, the pore water pressure (pw = −pw) acts as a backstress, i.e.,

β = pwI . (11.1)

Formetals, the backstress can either be ignored ormodeled using the approaches described in this chapter.

11.1 Ziegler-Prager model

If the evolution of the backstress is given by the Ziegler-Prager kinematic hardening rule, we have

β̇ = 2
3
βH ε̇p (11.2)

where β is the backstress, βH is a constant hardening modulus, and ε̇p is the plastic strain rate.

�e Prager model is invoked using
<kinematic_hardening_model type="prager_hardening">

<beta> 1.0 </beta>

<hardening_modulus >1.5e6</hardening_modulus >

</kinematic_hardening_model >

11.2 Armstrong-Frederick model

�e Armstrong-Frederick model evolves the backstress using

β̇ = 2
3
βH1 ε̇p − βH2 β ∥ε̇p∥ (11.3)

where β, H1 and H2 are material parameters.

�e Armstrong-Frederick model is invoked using
<kinematic_hardening_model type="armstrong_frederick_hardening">

<beta> 1.0 </beta>

<hardening_modulus_1 >1.5e6</hardening_modulus_1 >

<hardening_modulus_2 >1.5e4</hardening_modulus_2 >

</kinematic_hardening_model >





12— Internal variable evolution

Internal variables are used to model isotropic hardening/so�ening behavior in Vaango . �e evolution
of these internal variables is assumed to be given by �rst-order di�erential equations of the form

η̇ = λ̇hη (12.1)

where η is the internal variable, λ is the consistency parameter, and hη is a hardening/so�ening modulus.

�e kinematic hardening backstress is also an internal variable. Equations for the evolution of
backstress are given in Chapter 11. Other internal variables that are speci�c to CamCay, Arena,
Tabular plasticity, etc. are discussed in separate chapters associated with these models.

12.1 Equivalent plastic strain

Recall from the 
ow rule (9.1) that

ε̇p = λ̇M (12.2)

where M is a unit tensor (M ∶ M = 1). �erefore, using the de�nition of the equivalent plastic strain rate
from (2.16),

ε̇p ∶ ε̇p = (λ̇)2 Ô⇒ λ̇ =
√
ε̇p ∶ ε̇p = ε̇eqp . (12.3)

�erefore, from the de�nition of the equivalent plastic strain in (2.17), we see that the evolution rule for
the equivalent plastic strain can be expressed in the the form (12.1) as

ε̇eqp = λ̇hεp , hεp = 1 . (12.4)

12.2 Porosity

�e evolution of porosity is assumed to be given by the sum of the rate of void growth and the rate of void
nucleation [51]. In Vaango these rates are computed as [52]:

ϕ̇ = ϕ̇nucl + ϕ̇grow (12.5)

ϕ̇grow = (1 − ϕ)tr(ε̇p) (12.6)

ϕ̇nucl =
fn

(sn
√
2π)

exp
⎡⎢⎢⎢⎣
− 1
2

(εeqp − εn)2

s2n

⎤⎥⎥⎥⎦
ε̇eqp (12.7)
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where ε̇p is the plastic strain rate, fn is the volume fraction of void nucleating particles , εn is the mean of
the distribution of nucleation strains, and sn is the standard deviation of the distribution.

From the 
ow rule (9.1),

tr(ε̇p) = λ̇tr(M) (12.8)

�erefore, using (12.3),

ϕ̇ = λ̇hϕ , hϕ = (1 − ϕ)tr(M) + fn
(sn

√
2π)

exp
⎛
⎝
− 1
2

(εeqp − εn)2

s2n

⎞
⎠
. (12.9)

Vaango allows for the possibly of porosity to be di�erent in each MPM particle. �e inputs tags for
de�ning the porosity and its distribution are:

<evolve_porosity > true </evolve_porosity >

<initial_mean_porosity > 0.005 </initial_mean_porosity >

<initial_std_porosity > 0.001 </initial_std_porosity >

<critical_porosity > 0.3 </critical_porosity >

<frac_nucleation > 0.1 </frac_nucleation >

<meanstrain_nucleation > 0.3 </meanstrain_nucleation >

<stddevstrain_nucleation > 0.1 </stddevstrain_nucleation >

<initial_porosity_distrib > gauss </initial_porosity_distrib >

12.3 Backstress

�e backstress evolution rule can also be expressed in terms of the consistency parameter in the form

β̇ = λ̇hβ (12.10)

For the Ziegler-Prager model in (11.2),

hβ = 2
3 βHM (12.11)

where M is the unit tensor in the direction of th eplastic 
ow rate.

For the Armstrong-Frederick model in (11.3),

hβ = 2
3 βH1M − βH2β . (12.12)

12.4 Damage

�e evolution of damagemodels in Vaango is detailed in Chapter 15. �esemodels have the general form

Ḋ = g(σ , T) ε̇eqp = λ̇hD , hD = g(σ , T) (12.13)

where D is the damage parameter and g(σ , T) is a damage function.

12.5 Temperature

�e rise in temperature due to plastic dissipation can also be treated as an internal variable that causes
so�ening. �is may be considered to be equivalent to treating the plastic work as an internal variable.

�e evolution of temperature (T) due to plastic work is given by the equation

Ṫ =
χ

ρCp
σ ∶ ε̇p (12.14)



12.5 Temperature 93

where χ is the Taylor-Quinney coe�cient, ρ is the density, and Cp is the speci�c heat.

Expressed in terms of the consistency parameter,

Ṫ = λ̇hT , hT =
χ

ρCp
σ ∶ M (12.15)

where M is the plastic 
ow rate direction de�ned in the 
ow rule.





13—Melting temperature models

�emelting temperature is used by several models in Vaango to compute the shearmodulus. Failure and
transitioning into 
uid-like behavior is also controlled by the melting temperature. �emelt temperature
models implemented in Vaango are described below.

13.1 Constant melting temperature

�e default is to use a constant melting temperature. �is model is invoked using

<melting_temp_model type="constant_Tm">

</melting_temp_model >

13.2 Steinberg-Cochran-Guinanmelting temperature

A pressure dependent relation to determine the melting temperature (Tm) in the Steinberg-Cochran-
Guinan (SCG) melt model ([32]).

�is model is based on a modi�ed Lindemann law and has the form

Tm(ρ) = Tm0 exp [2a (1 −
1
η
)] η2(Γ0−a−1/3); η = ρ

ρ0
(13.1)

where Tm0 is the melt temperature at η = 1, a is the coe�cient of the �rst order volume correction to
Grüneisen’s gamma (Γ0).

�is model is invoked with

<melting_temp_model type="scg_Tm">

<T_m0> 2310.0 </T_m0>

<Gamma_0 > 3.0 </Gamma_0 >

<a> 1.67 </a>

</melting_temp_model >
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13.3 Burakovsky-Preston-Silbar melting temperature

�eBurakovsky-Preston-Silbar (BPS)model is based on dislocation-mediated phase transitions [53]. �e
BPS model has the form

Tm(p) = Tm(0)
⎡⎢⎢⎢⎢⎣

1
η
+

1
η4/3

µ
′
0

µ0
p
⎤⎥⎥⎥⎥⎦
; η =

⎛
⎝
1 +

K
′
0

K0
p
⎞
⎠

1/K′0
(13.2)

Tm(0) =
κλµ0 vWS

8π ln(z − 1) kb
ln(

α2

4 b2ρc(Tm)
) (13.3)

where p is the pressure, η = ρ/ρ0 is the compression, µ0 is the shear modulus at room temperature and
zero pressure, µ

′
0 = ∂µ/∂p is the derivative of the shearmodulus at zero pressure,K0 is the bulkmodulus at

room temperature and zero pressure, K
′
0 = ∂K/∂p is the derivative of the bulk modulus at zero pressure,

κ is a constant, λ = b3/vWS where b is the magnitude of the Burgers’ vector, vWS is the Wigner-Seitz
volume, z is the coordination number, α is a constant, ρc(Tm) is the critical density of dislocations, and
kb is the Boltzmann constant.

�is model is invoked with
<melting_temp_model type="bps_Tm">

<B0> 137e9 </B0>

<dB_dp0 > 5.48 <dB_dp0 >

<G0> 47.7e9 <G0>

<dG_dp0 > 1.4 <dG_dp0 >

<kappa> 1.25 <kappa >

<z> 12 <z>

<b2rhoTm > 0.64 <b2rhoTm >

<alpha> 2.9 <alpha>

<lambda > 1.41 <lambda >

<a> 3.6147e-9<a>

<v_ws_a3_factor > 1/4 <v_ws_a3_factor >

<Boltzmann_Constant > <Boltzmann_Constant >

</melting_temp_model >
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A part of the plastic work done is converted into heat and used to update the temperature of a particle.
�e increase in temperature (∆T) due to an increment in plastic strain (∆εeqp ) is given by the equation

∆T =
χσy
ρCp

∆εeqp (14.1)

where χ is the Taylor-Quinney coe�cient, and Cp is the speci�c heat. �e value of the Taylor-Quinney
coe�cient is taken to be 0.9 in all our simulations (see [54] for more details on the variation of χ with
strain and strain rate).

�e Taylor-Quinney coe�cient is taken as input using the tags
<taylor_quinney_coeff > 0.9 </taylor_quinney_coeff >

�e heat generated at a material point is conducted away at the end of a time step using the transient heat
equation. �e e�ect of conduction onmaterial point temperature is negligible (but non-zero) for the high
strain-rate problems simulated using Vaango.

14.1 Constant speci�c heat model

�e default model returns a constant speci�c heat and is invoked using
<specific_heat_model type="constant_Cp">

</specific_heat_model >

14.2 Speci�c heat model for copper

�e speci�c heat model for copper is of the form

Cp =
⎧⎪⎪⎨⎪⎪⎩

A0 T3 − B0 T2 + C0 T − D0 if T < T0
A1 T + B1 if T ≥ T0 .

(14.2)

�e model is invoked using
<specific_heat_model type = "copper_Cp"> </specific_heat_model >
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14.3 Speci�c heat model for steel

A relation for the dependence of Cp upon temperature is used for the steel ([55]).

Cp =
⎧⎪⎪⎨⎪⎪⎩

A1 + B1 t + C1 ∣t∣−α if T < Tc
A2 + B2 t + C2 t−α

′
if T > Tc

(14.3)

t =
T
Tc
− 1 (14.4)

where Tc is the critical temperature at which the phase transformation from the α to the γ phase takes
place, and A1,A2, B1, B2, α, α

′
are constants.

�e model is invoked using
<specific_heat_model type = "steel_Cp"> </specific_heat_model >



15—Damagemodels

�e damage models implemented in Vaango are described in this chapter. �e most common model
evolves a scalar damage parameter that can either be used to 
ag failure when a critical value is reached
or to modify the stress as in continuum damage mechanics.

15.1 Hancock-MacKenzie model

�eHancock-MacKenzie model [56] evolves a scalar damage parameter (D) using the rule:

Ḋ = 1
1.65

ε̇eqp exp(
tr(σ)
2σe�

) (15.1)

where D = 0 for virgin material, ε̇p is the equivalent plastic strain rate, σ is the Cauchy stress, and σeq =√
3J2 is the von Mises equivalent stress.

Expressed as an evolution equation in terms of the plastic consistency parameter, the above can be written
as

Ḋ = λ̇hD , hD = 1
1.65

exp( tr(σ)
2σe�

) . (15.2)

�e input tags for the damage model are :
<damage_model type="hancock_mackenzie">

<D0>0.05</D1>

<Dc>3.44</D2>

</damage_model >

15.2 Johnson-Cookmodel

�e Johnson-Cook damage model [57] depends on temperature, plastic strain, and strain rate. �e dam-
age evolution rule for the damage parameter (D) can be written as

Ḋ =
ε̇eqp
ε fp

, ε fp = [D1 + D2 exp (D3σ⋆)] [1 + D4 ln(ε̇⋆p)] [1 + D5T⋆] . (15.3)
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�e damage parameter D has a value of 0 for virgin material and a value of 1 at fracture, ε fp is the fracture
strain, D1,D2,D3,D4,D5 are constants. In the above equation,

σ⋆ = tr(σ)
3σe�

(15.4)

where σ is the Cauchy stress and σe� is the von Mises equivalent stress. �e scaled plastic strain rate and
temperature are de�ned as

ε̇⋆p =
ε̇eqp
ε̇p0

, T⋆ = T − T0
Tm − T0

(15.5)

where ε̇p0 is a reference strain rate and T0 is a reference temperature, Tm is the melting temperature, and
ε̇eqp is the equivalent plastic strain rate.

When expressed in terms of the consistency parameter, the Johnson-Cook damage model has the form,

Ḋ = λ̇hD , hD = [[D1 + D2 exp (D3σ⋆)] [1 + D4 ln(ε̇⋆p)] [1 + D5T⋆]]
−1 . (15.6)

�e input tags for the damage model are :
<damage_model type="johnson_cook">

<D1>0.05</D1>

<D2>3.44</D2>

<D3> -2.12</D3>

<D4>0.002</D4>

<D5>0.61</D5>

</damage_model >

An initial damage distribution can be created using the following tags
<evolve_damage > true </evolve_damage >

<initial_mean_scalar_damage > 0.005 </initial_mean_scalar_damage >

<initial_std_scalar_damage > 0.001 </initial_std_scalar_damage >

<critical_scalar_damage > 1.0 </critical_scalar_damage >

<initial_scalar_damage_distrib > gauss </initial_scalar_damage_distrib >



16—Material failure

16.1 Introduction

�e primary technique used in Vaango to simulate failure is damage evolution. A particle is tagged as
“failed” when its temperature is greater than the melting point of the material at the applied pressure.
Failure is also 
agged when the porosity of a particle is greater critical limit (typically 0.9) and the strain
exceeds the fracture strain of the material.

An alternative approach that can be used in the metal plasticity models implemented in Vaango is to
test material stability conditions to determine and propagate failure. Upon failure detection, a particle is
either removed from the computation by setting the stress to zero or is converted into a material with a
di�erent velocity �eld which interacts with the remaining particles via contact. Either approach leads to
the simulation of a newly created surface. More details of the approach can be found in [58–60].

16.2 Erosion algorithm

In metal plasticity simulations, the heat generated at a material point is conducted away at the end of a
time step using the heat equation. If special adiabatic conditions apply (such as in impact problems), the
heat is accumulated at a material point and is not conducted to the surrounding particles. �is localized
heating can be used to determine whether a material point has melted.

�e determination of whether a particle has failed can bemade on the basis of either or all of the following
conditions:

• �e particle temperature exceeds the melting temperature.
• �e TEPLA-F fracture condition [61] is satis�ed. �is condition can be written as

( ϕ
ϕc

)
2

+
⎛
⎝
εeqp
ε fp

⎞
⎠

2

= 1 (16.1)

where ϕ is the current porosity, ϕc is the maximum allowable porosity, ε
eq
p is the current equivalent

plastic strain, and ε fp is the equivalent plastic strain at fracture.
• An alternative to ad-hoc damage criteria is to use the concept of material stability bifurcation to
determine whether a particle has failed or not.

Since the material unloads locally a�er fracture, the hypoelastic-plastic stress update may not work accu-
rately under certain circumstances. An improvement would be to use a hyperelastic-plastic stress update
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algorithm. Also, the plasticity models are temperature dependent. Hence there is the issue of severe mesh
dependence due to change of the governing equations from hyperbolic to elliptic in the so�ening regime
[62–64]. Viscoplastic stress update models or nonlocal/gradient plasticity models [65, 66] can be used to
eliminate some of these e�ects. Such models that have been implemented in Vaango are discussed later.

�e tags used to control the erosion algorithm are in two places. In the <MPM> </MPM> section the fol-
lowing 
ags can be set

<erosion algorithm = "ZeroStress"/>

<create_new_particles > false </create_new_particles >

<manual_new_material > false </manual_new_material >

If the erosion algorithm is "none" then no particle failure is done.

In the <constitutive_model type="elastic_plastic"> section, the following 
ags can be set
<evolve_porosity > true </evolve_porosity >

<evolve_damage > true </evolve_damage >

<do_melting > true </do_melting >

<useModifiedEOS > true </useModifiedEOS >

<check_TEPLA_failure_criterion > true </check_TEPLA_failure_criterion >

<check_max_stress_failure > false </check_max_stress_failure >

<critical_stress > 12.0e9 </critical_stress >

16.3 Material stability conditions

16.3.1 Drucker’s condition

�e simplest criterion that can be used is the Drucker stability postulate [67] which states that time rate
of change of the rate of work done by a material cannot be negative. �erefore, the material is assumed
to become unstable (and a particle fails) when

σ̇ ∶ d p ≤ 0 (16.2)

16.3.2 Acoustic tensor criterion

Another stability criterion that is less restrictive is the acoustic tensor criterion which states that the ma-
terial loses stability if the determinant of the acoustic tensor changes sign [68–70].

We assume that the strain is localized in a thin bandwith normaln. �e band is assumed be homogeneous
but has slightly di�erent material properties than the surrounding material.

To develop the bifurcation relations [69], assume that vb is the velocity of a material point in the band
(Ωb) and v0 is the velocity of the material outside the band (Ω0). �e deformation of the material outside
the band is assumed to be uniform. �e deformation within the band is also assumed to be homogeneous.

We assume that stresses and rates of deformation have been rotated to the undeformed con�guration
using the polar decomposition of the deformation gradient.

Consider the case where the local coordinates of points in the band are expressed in terms of an orthonor-
mal basis e1, e2, e3 where e2 = n. �en a point x inside (or outside) the band can be expressed as x = xiei .
Continuity and the homogeneity of deformation in the two regions requires that only the velocity in the
n direction can be di�erent in the two regions. �is implies

vb(x) − v0(x) = f(n ⋅ x) = f(x2) (16.3)

where f is an unknown function. �e velocity gradient can be computed from the above relation as

∇vb = ∇v0 +
df
dx2

⊗ n = ∇v0 + q⊗ n (16.4)
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where

q ∶=
df
dx2

=
⎧⎪⎪⎨⎪⎪⎩

0 for x ∈ Ω0

q for x ∈ Ωb
(16.5)

�e rate of deformation in the band is

db = 1
2 [∇v

b + (∇vb)T] = 1
2 [∇v

0 + (∇v0)T] + 1
2(q⊗ n + n⊗ q) = d

0 + 1
2(q⊗ n + n⊗ q) . (16.6)

�e stress rate is related to the rate of deformation by

σ̇0 = C0 ∶ d0 , σ̇b = Cb ∶ db = Cb ∶ d0 + 1
2C

b ∶ (q⊗ n + n⊗ q) . (16.7)

�e minor symmetry of C implies that

σ̇b = Cb ∶ d0 +Cb ∶ (q⊗ n) . (16.8)

Homogeneity of the deformation also implies that

n ⋅ σb = n ⋅ σ0 . (16.9)

Taking the material time derivative of the above gives

ṅ ⋅ σb + n ⋅ σ̇b = ṅ ⋅ σ0 + n ⋅ σ̇0 . (16.10)

We need an expression for ṅ. To �nd that, note that if n0 and n are the unit normals to the band in the
reference and current con�gurations, using Nanson’s formula, we have

nda = J(F−T ⋅ n0)dA , J = det F . (16.11)

Taking the time derivative of (16.11),

ṅda + nḋa =
dJ
dt

(F−T ⋅ n0)dA+ J (
dF−1

dt
)
T

⋅ n0dA (16.12)

For the derivative of J, we have

dJ
dt

= ∂J
∂F

∶ Ḟ = JF−T ∶ Ḟ = Jtr(Ḟ ⋅ F−1) = Jtr(∇v) . (16.13)

We can also show that

dF−1

dt
= −F−1 ⋅ Ḟ ⋅ F−1 = −F−1 ⋅∇v . (16.14)

�erefore, using (16.11),

ṅda + nḋa = Jtr(∇v)(F−T ⋅ n0)dA− J(∇v)T ⋅ F−T ⋅ n0dA
= n ⋅ [tr(∇v)I −∇v] da .

(16.15)

To �nd ḋa, we compute a dot product of both sides of (16.11) to get

da2 = J2(F−T ⋅ n0) ⋅ (F−T ⋅ n0)dA2 = J2n0 ⋅ (F−1 ⋅ F−T) ⋅ n0dA2 . (16.16)

�e material time derivative of the above expression is

2daḋa = 2J
dJ
dt
n0 ⋅ (F−1 ⋅ F−T) ⋅ n0dA2 + J2n0 ⋅

d
dt

(F−1 ⋅ F−T) ⋅ n0dA2 (16.17)
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For the derivative of the F−1 product, we have

d
dt

(F−1 ⋅ F−T) =
dF−1

dt
⋅ F−T + F−1 ⋅ (

dF−1

dt
)
T

= −F−1 ⋅ Ḟ ⋅ F−1 ⋅ F−T − F−1 ⋅ F−T ⋅ ḞT ⋅ F−T

= −F−1 ⋅∇v ⋅ F−T − F−1 ⋅ (∇v)T ⋅ F−T = −2F−1 ⋅ d ⋅ F−T .
(16.18)

Substitution into (16.17) gives

daḋa = J2tr(∇v)n0 ⋅ (F−1 ⋅ F−T) ⋅ n0dA2 − J2n0 ⋅ (F−1 ⋅ d ⋅ F−T) ⋅ n0dA2

= tr(∇v)(JF−T ⋅ n0dA) ⋅ (JF−T ⋅ n0dA) − (JF−T ⋅ n0dA) ⋅ d ⋅ (JF−T ⋅ n0dA)
= tr(∇v)n ⋅ nda2 − n ⋅ d ⋅ nda2 = tr(∇v)da2 − n ⋅ d ⋅ nda2 .

(16.19)

�erefore,

ḋa = [tr(∇v) − n ⋅ d ⋅ n] da = [tr(∇v) − n ⋅∇v ⋅ n] da . (16.20)

Plugging (16.20) into (16.15), we have

ṅda + n [tr(∇v) − n ⋅ d ⋅ n] da = n ⋅ [tr(∇v)I −∇v] da . (16.21)

�at gives us the expression for ṅ that we seek,

ṅ = n ⋅ [d ⋅ (n⊗ n) −∇v] = n ⋅∇v ⋅ (n⊗ n − I) . (16.22)

Using (16.22) in (16.10), we have

n ⋅ [(σ̇b − σ̇0) +∇vb ⋅ (n⊗ n − I) ⋅ (σb − σ0)] = 0 . (16.23)

Substituting equations (16.7), (16.8), and (16.4),

n ⋅ [(Cb ∶ d0 +Cb ∶ (q⊗ n) −C0 ∶ d0) + (∇v0 + q⊗ n) ⋅ (n⊗ n − I) ⋅ (σb − σ0)] = 0 . (16.24)

Using the symmetry of stress and the projection n⊗ n − I, we can reorganize the above expression into

n ⋅ [(Cb + (σb − σ0) ⋅ (n⊗ n − I) ⋅ I) ∶ (q⊗ n) + (Cb −C0) ∶ d0 + (σb − σ0) ⋅ (n⊗ n − I) ⋅∇v0] = 0 .
(16.25)

Further rearrangement leads to

[n ⋅ (Cb + (σb − σ0) ⋅ (n⊗ n − I) ⋅ I) ⋅ n] ⋅q = −n ⋅ [(Cb −C0) ∶ d0 + (σb − σ0) ⋅ (n⊗ n − I) ⋅∇v0]
(16.26)

�is equation has a solution (q) only if

det [n ⋅ (Cb + (σb − σ0) ⋅ (n⊗ n − I) ⋅ I) ⋅ n] ≠ 0 . (16.27)

�e canonical bifurcation condition is obtained if σb = σ0:

det(A) ∶= det(n ⋅C ⋅ n) = 0 (16.28)

where A is the acoustic tensor .

Evaluation of the acoustic tensor requires a search for a normal vector around the material point and is
therefore computationally expensive.
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16.3.3 Becker’s simpli�cation

A simpli�cation of this criterion is a check which assumes that the direction of instability lies in the plane
of the maximum and minimum principal stress [71].

Let the principal stresses be σ1 > σ2 > σ3, and the corresponding principal directions (eigenvectors) are
E1, E2, E3. We can express the unit normal to the band in this basis as n = niE i .
�e components of the tangent modulus in this coordinate system are given by

C′i jkℓ = QimQ jnQkpQℓqCmnpq . (16.29)

where the 3 × 3 matrix used for this coordinate transformation, Q, is given by

QT ∶= [E1 E2 E3] (16.30)

�en the acoustic tensor in (16.28) has the components

A jk = C′i jkℓninℓ (16.31)

If det(A jk) = 0, then q j = d f j/dx2 can be arbitrary and there is a possibility of strain localization. Also,
this condition indicates when a material transitions from stable behavior where det(A jk > 0. If this
condition for loss of hyperbolicity is met, then a particle deforms in an unstable manner and failure can
be assumed to have occurred at that particle.

Becker’s simpli�cation is to consider only selected components of the acoustic tensor by assuming that
the stress state in the band can be approximated as a planar tension problem. �en the acoustic tensor
takes the form

A =
⎡⎢⎢⎢⎢⎢⎣

C′1111n21 + C′3113n23 0 (C′1133 + C′3131)n1n3
0 C′1221n21 + C′3223n23 0

(C′3311 + C′1313)n1n3 0 C′1331n21 + C′3333n23

⎤⎥⎥⎥⎥⎥⎦
(16.32)

Without loss of generality, we can divide this matrix by n21 to get

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C′1111 + C′3113
n23
n21

0 (C′1133 + C′3131)
n3
n1

0 C′1221 + C′3223
n23
n21

0

(C′3311 + C′1313)
n3
n1 0 C′1331 + C′3333

n23
n21

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(16.33)

Let α ∶= n3/n1. �en we can write

Ã =
⎡⎢⎢⎢⎢⎢⎣

C′1111 + C′3113α2 0 (C′1133 + C′3131)α
0 C′1221 + C′3223α2 0

(C′3311 + C′1313)α 0 C′1331 + C′3333α2

⎤⎥⎥⎥⎥⎥⎦
(16.34)

and we have

det(Ã) = (C′1111+C′3113α2)α2(C′1331+C′3333α2)−(C′1133+C′3131)α(C′1221+C′3223α2)(C′3311+C′1313)α (16.35)

Setting the determinant to zero allows us to get the following quadratic equation in β ∶= α2:

(C′1111 + C′3113β)(C′1331 + C′3333β) − (C′1133 + C′3131)(C′1221 + C′3223β)(C′3311 + C′1313) = 0 . (16.36)

We can express the above in Voigt notation (convention 11, 22, 33, 23, 31, 12) as

(Ĉ11 + Ĉ55β)(Ĉ55 + Ĉ33β) − (Ĉ13 + Ĉ55)(Ĉ66 + Ĉ44β)(Ĉ31 + Ĉ55) = 0 . (16.37)
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or

a1β2 + a2β + a3 = 0 (16.38)

where,

a1 = Ĉ33Ĉ55
a2 = Ĉ11Ĉ33 − Ĉ13Ĉ31Ĉ44 − Ĉ13Ĉ44Ĉ55 − Ĉ31Ĉ44Ĉ55 − Ĉ44Ĉ2

55 + Ĉ2
55

a3 = Ĉ11Ĉ55 − Ĉ13Ĉ31Ĉ66 − Ĉ13Ĉ55Ĉ66 − Ĉ31Ĉ55Ĉ66 .
(16.39)

�e four roots are

n3
n1

= ±
√

−a2 ±
√
a22 − 4a1a3
2a1

. (16.40)

If there are no real roots, a band cannot form and there is no bifurcation. If there are four real roots
then bifurcation is possible. Two real roots indicate an intermediate condition that may not be realized
in practice but is considered stable in Vaango .

More explicitly, for unstable deformation,

a22 − 4a1a3 ≥ 0 and
−a2 ±

√
a22 − 4a1a3
2a1

≥ 0 . (16.41)

If these conditions are satis�ed, theMPM particle is assumed to have failed.



17— Isotropic metal plasticity

�e deformation gradient (F) can be decomposed into a rotation tensor (R) and a stretch tensor
(U) with the polar decomposition F = R ⋅U . In the isotropic metal plasticity model implemented
in Vaango , R is used to rotate the stress (σ) and the rate of deformation (d) into the unrotated
con�guration before the updated stress is computed:

σ̂ = RT ⋅ σ ⋅ R ; ε̇ = RT ⋅ d ⋅ R (17.1)

where ε̇ is a “natural” strain rate. A�er the stress has been updated, it is rotated back using

σ = R ⋅ σ̂ ⋅ RT . (17.2)

In the following discussion, all equations should be treated as referring to the hatted quantities even
though we drop the hats for convenience.

17.1 Themodel

�emetal plasticity model assumes that we know the total strain rate (ε̇t) and that this strain rate can be
decomposed into a mechanical component (ε̇) and a thermal expansion component (ε̇α):

ε̇t = ε̇ + ε̇α . (17.3)

�e thermal expansion component is assumed to be of the rate form

ε̇α = ∂εα

∂T
Ṫ = αṪ (17.4)

where T is the temperature and α is a coe�cient of thermal expansion. �en the mechanical strain rate
can be expressed as

ε̇ = ε̇t − αṪ . (17.5)

�e primary function of the metal plasticity model is to compute the stress when a mechanical strain rate
ε̇ is given, which we assume can be additively decomposed into elastic (ε̇e) and plastic (ε̇p) parts:

ε̇ = ε̇e + ε̇p . (17.6)
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�e Cauchy stress (σ) is decomposed into volumetric and deviatoric parts:

σ = p I + s where p = 1
3 tr(σ) and s = dev(σ) = σ − 1

3 tr(σ) . (17.7)

In the above p = σm is the mean stress and s is the deviatoric stress. An alternative decomposition that
can be used for the isotropic metal plasticity models implemented in Vaango is

σ = σp Î + σs ŝ , Î =
1

√
3
I , ŝ = s

∥s∥
, σp =

√
3p , σs = ∥s∥ . (17.8)

�is decomposition is useful because Î and ŝ for a basis that can be used to express several other quan-
tities in the metal plasticity models implemented in Vaango . �e time derivative of stress can then be
expressed as

σ̇ = ṗ I + ṡ = σ̇p Î + σ̇s ŝ . (17.9)

�e isotropy of the material allows us to compute the mean stress using an equation of state if desired.
�e deviatoric stress is computed using a rate-form stress-strain relation. For convenience, we assume
that rate-form relations are used for both the mean stress and the deviatoric stress.

17.1.1 Purely elastic loading/unloading

�e elastic constitutive relation is assumed to be of the form

σ̇ e = ∂σ
∂εe

∶ ε̇e = Ce ∶ ε̇e , Ce = (κ − 2
3 µ) I ⊗ I + 2µ symm(I) (17.10)

or,

σ̇ e = (κ − 2
3 µ) tr(ε̇

e)I + 2µ ε̇e . (17.11)

In the above, µ(ρ, p, T , ϕ,D) is the shear modulus, κ(ρ, p, T , ϕ,D) is the tangent bulk modulus, I is the
second-order identity tensor and I is the fourth-order identity tensor. Also, ρ is the mass density, p is the
pressure, T is the current temperature, ϕ is the current porosity and D is a scalar damage parameter.

�e inverse relationship is

ε̇e = Se ∶ σ̇ e , Se = 1
3
( 1
3κ

− 1
2µ

) I ⊗ I + 1
2µ
symm(I) (17.12)

Using the decomposition (17.8), we can write

ε̇e = Se ∶ (σ̇ ep Î + σ̇ es ŝe) =
σ̇ ep
3κ
Î + σ̇ es

2µ
ŝe . (17.13)

17.1.2 Yield condition

�e isotropic metal plasticity yield conditions implemented in Vaango have the form

f (σβ , ε
eq
p , ε̇

eq
p , ϕ,D, T , ε̇

eq, . . . ) = 0 , σβ ∶= σ − β . (17.14)

�e quantity σβ is further decomposed into isotropic and deviatoric parts:

σβ = pβI + ξ (17.15)

where ξ = dev(σβ) and pβ = tr(σβ)/3. Most of the metal yield conditions in Vaango use this notation.
Derivatives of f with respect to the stress (σ) can therefore be expressed as

∂ f
∂σ

= ∂ f
∂σβ

∶
∂σβ
∂σ

= ∂ f
∂σβ

= ∂ f
∂pβ

∂pβ
∂σβ

+ ∂ f
∂ξ

∶ ∂ξ
∂σβ

= 1
3
∂ f
∂pβ

I + ∂ f
∂ξ

− 1
3 tr(

∂ f
∂ξ

) I . (17.16)
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�e isotropic metal yield conditions in Vaango are expressed in terms of σ ξe� =
√
3J ξ2 =

√ 3
2 ξ ∶ ξ. �ere-

fore,

∂ f
∂σ

= 1
3
∂ f
∂pβ

I + ∂ f
∂σ ξe�

∂σ ξe�
∂ξ

= 1
3
∂ f
∂pβ

I +
√

3
2
∂ f
∂σ ξe�

ξ
∥ξ∥

. (17.17)

If we express both I and ξ in terms of the basis Î and ŝ, we have

I =
√
3Î , ξ = ξs ŝ , ξs = ξ ∶ ŝ and ∥ξ∥ = ξs Ô⇒ ξ

∥ξ∥
= ŝ . (17.18)

�erefore,

N = ∂ f
∂σ

= 1
√
3
∂ f
∂pβ

Î +
√

3
2
∂ f
∂σ ξe�

ŝ , ∥N∥ =

¿
ÁÁÁÀ 1

3 (
∂ f
∂pβ

)
2

+ 3
2
⎛
⎝
∂ f
∂σ ξe�

⎞
⎠

2

, N̂ = N
∥N∥

. (17.19)

�e Kuhn-Tucker loading-unloading conditions are

λ̇ ≥ 0 ; f ≤ 0 ; λ̇ f = 0 (17.20)

and the consistency condition is λ̇ ḟ = 0.

17.1.3 Flow rule

We assume that the plastic rate of deformation is given by the 
ow rule

ε̇p = λ̇ M̂ . (17.21)

For the isotropic metal plasticity models in Vaango , we assume associated plasticity:

ε̇p = λ̇ N̂ = λ̇
∥N∥

⎡⎢⎢⎢⎢⎣

1√
3
∂ f
∂pβ

Î +
√

3
2
∂ f
∂σ ξe�

ŝ
⎤⎥⎥⎥⎥⎦
. (17.22)

17.1.4 Isotropic and kinematic hardening/softening rules

�e equivalent plastic strain (εeqp ) evolves according to the relation

ε̇eqp = λ̇ hεp . (17.23)

�e back stress (β) evolves according to the relation

β̇ = λ̇ hβ . (17.24)

�e porosity (ϕ) is assumed to evolve according to the relation

ϕ̇ = λ̇ hϕ . (17.25)

�e damage parameter (D) evolves as

Ḋ = λ̇ hD . (17.26)

�e temperature (Tp) due to plastic dissipation evolves as

Ṫp = λ̇ hT . (17.27)
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17.1.5 Elastic-plastic loading/unloading

During purely elastic loading and unloading

λ̇ = 0 , ε̇p = 0 , ε̇ = ε̇e . (17.28)

In that situation, the stress is updated using (17.10).

However, during elastic-plastic deformation, λ̇ > 0, and we have

σ̇ = ∂σ
∂εe

∶ ε̇e + ∂σ
∂β

∶ β̇ + ∂σ
∂εeqp

ε̇eqp + ∂σ
∂ϕ

ϕ̇ + ∂σ
∂D

Ḋ + ∂σ
∂Tp

Ṫp

= Ce ∶ ε̇e + λ̇
⎡⎢⎢⎢⎣

∂σ
∂β

∶ hβ + ∂σ
∂εeqp

hεp + ∂σ
∂ϕ

hϕ + ∂σ
∂D

hD + ∂σ
∂Tp

hT
⎤⎥⎥⎥⎦

= Ce ∶ ε̇ − λ̇
⎡⎢⎢⎢⎣
Ce ∶ M̂ − ∂σ

∂β
∶ hβ − ∂σ

∂εeqp
hεp − ∂σ

∂ϕ
hϕ − ∂σ

∂D
hD − ∂σ

∂Tp
hT

⎤⎥⎥⎥⎦

(17.29)

De�ne

P ∶= Ce ∶ M̂ − ∂σ
∂β

∶ hβ − ∂σ
∂εeqp

hεp − ∂σ
∂ϕ

hϕ − ∂σ
∂D

hD − ∂σ
∂Tp

hT . (17.30)

�en,

σ̇ = Ce ∶ ε̇ − λ̇P = σ̇ trial − λ̇P where σ̇ trial ∶= Ce ∶ ε̇ . (17.31)

In Vaango , we assume that the coupling terms ∂σ/∂β are zero and T = Tp for elastic-plastic coupling.
From (17.10) we have

σ̇ e = (κ − 2
3 µ) tr(ε̇

e)I + 2µ ε̇e (17.32)

We can use this relation to estimate the coupling terms for the internal variables η ∈ {εeqp , ϕ,D, T}:

∂σ
∂η

= (∂κ
∂η

− 2
3
∂µ
∂η

) tr(εe)I + 2∂µ
∂η

εe (17.33)

Similarly, from (17.13), choosing the basis to be Î and ŝtrial = dev(σ trial)/ ∥dev(σ trial)∥,

εe =
σ ep
3κ
Î + σ es σss

2µ
ŝtrial and tr(εe) =

σ ep√
3κ

(17.34)

where σss = ŝe ∶ ŝtrial. Substitution into (17.33) leads to
∂σ
∂η

= 1
κ
∂κ
∂η
σ ep Î +

1
µ
∂µ
∂η

σ es σss ŝ
trial . (17.35)

Also, for associated plasticity and using (17.19),

Ce ∶ M̂ = 1
∥N∥

⎡⎢⎢⎢⎢⎣

√
3κ

∂ f
∂pβ

Î + 2
√

3
2 µ

∂ f
∂σ ξe�

ŝ
⎤⎥⎥⎥⎥⎦
= 1

∥N∥

⎡⎢⎢⎢⎢⎣

√
3κ

∂ f
∂pβ

Î +
√
6µ

∂ f
∂σ ξe�

σss ŝtrial
⎤⎥⎥⎥⎥⎦

(17.36)

�erefore,

P =
⎡⎢⎢⎢⎢⎣

√
3κ

∥N∥
∂ f
∂pβ

− 1
κ∑η

∂κ
∂η
σ ep

⎤⎥⎥⎥⎥⎦
Î +

⎡⎢⎢⎢⎢⎣

√
6µ

∥N∥
∂ f
∂σ ξe�

− 1
µ∑η

∂µ
∂η

σ es
⎤⎥⎥⎥⎥⎦
σss ŝtrial (17.37)

For an elastic-plastic load step, we can compute the plastic strain rate using (17.13):

ε̇p = ε̇ −
σ̇ ep
3κ
Î − σ̇ es

2µ
ŝtrial . (17.38)
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17.1.6 Consistency condition

�e consistency condition requires that, when λ̇ > 0,

ḟ (σ , β, εeqp , ε̇
eq
p , ϕ,D, T , ε̇

eq, . . . ) = 0 . (17.39)

For rate-independent plasticity, from the chain rule,

ḟ = ∂ f
∂σ

∶ σ̇ + ∂ f
∂β

∶ β̇ + ∂ f
∂εeqp

ε̇eqp + ∂ f
∂ϕ

ϕ̇ + ∂ f
∂D

Ḋ + ∂ f
∂Tp

Ṫp = 0 . (17.40)

Using the hardening/so�ening rules,

∂ f
∂σ

∶ σ̇ + λ̇
⎡⎢⎢⎢⎣

∂ f
∂β

∶ hβ + ∂ f
∂εeqp

hεp + ∂ f
∂ϕ

hϕ + ∂ f
∂D

hD + ∂ f
∂Tp

hT
⎤⎥⎥⎥⎦
= 0 (17.41)

or

∂ f
∂σ

∶ σ̇ + λ̇H = 0 . (17.42)

De�ne,

N ∶= ∂ f
∂σ

, N̂ ∶= N
∥N∥

, Ĥ ∶= H
∥N∥

. (17.43)

�en,

N̂ ∶ σ̇ + λ̇Ĥ = 0 . (17.44)

Combining the stress-rate equation (17.31) with the consistency equation (17.44), we have

N̂ ∶ σ̇ trial = N̂ ∶ Ce ∶ ε̇ = λ̇(N̂ ∶ P − Ĥ) . (17.45)

�erefore,

λ̇ = N̂ ∶ σ̇ trial

N̂ ∶ P − Ĥ
= N̂ ∶ Ce ∶ ε̇
N̂ ∶ P − Ĥ

(17.46)

Substituting this expression to (17.31), we have

σ̇ = σ̇ trial − N̂ ∶ σ̇ trial

N̂ ∶ P − Ĥ
P = σ̇ trial − P ⊗ N̂

N̂ ∶ P − Ĥ
∶ σ̇ trial (17.47)

or,

σ̇ = Ce ∶ ε̇ − (P ⊗ N̂) ∶ Ce

N̂ ∶ P − Ĥ
∶ ε̇ = Cep ∶ ε̇ . (17.48)

�e quantity Cep is the continuum elastic-plastic tangent modulus.

17.2 Stress update

�e �rst step in the stress update procedure is to compute a trial stress state from

σ̇ trial = Ce ∶ ε̇ . (17.49)

We assume that

σ trial = σn + ∆t(Ce
n ∶ ε̇n+1) (17.50)
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where σn is the stress at the end of time tn, Ce
n is the elastic modulus at that time, ε̇n+1 is the strain rate

computed from the symmetric part of the unrotated velocity gradient, and ∆t = tn+1 − tn is the timestep
size.

�e trial state contains the vector

ηtrial = [σ trial, βn , (ε
eq
p )n , (ε̇eqp )n , ϕn ,Dn , Tn , ε̇

eq
n , κn , µn , . . . ] . (17.51)

where the subscript (n) indicates the state at the end of time tn.

�e trial state is used to compute the yield function

fy = f [σ trial, βn , (ε
eq
p )n , (ε̇eqp )n , ϕn ,Dn , Tn , ε̇

eq
n , κn , µn , . . . ] (17.52)

If fy ≤ 0, the trial state is in the elastic regime and we update the stress using

σn+1 = σ trial , βn+1 = βn , (εeqp )n+1 = (εeqp )n , (ε̇eqp )n+1 = (ε̇eqp )n
ϕn+1 = ϕn , Dn+1 = Dn , Tn+1 = Tn
κn+1 = κ(pn+1, Tn) , µn+1 = µ(pn+1, Tn) .

(17.53)

If fy > 0, the trial state is outside the yield surface in the elastic-plastic regime. We can used a backward
Euler algorithm to compute the updated stress state:

σn+1 − σn
∆t

= σ trial − σn
∆t

− λn+1 − λn
∆t

Pn+1 or σn+1 = σ trial − ∆λn+1Pn+1 . (17.54)

�e plastic strain and the internal variables can similarly be updated using

εpn+1 = ε
p
n +∆λn+1 M̂n+1

(εeqp )n+1 = (εeqp )n +∆λn+1 h
εp
n+1

βn+1 = βn +∆λn+1 hβn+1
ϕn+1 = ϕn +∆λn+1 hϕn+1
Dn+1 = Dn +∆λn+1 hDn+1

(Tp)n+1 = (Tp)n +∆λn+1 hTn+1 .

(17.55)

In addition, the stress state has to lie on the yield surface:

f (σ trial − ∆λn+1Pn+1) = 0 . (17.56)

Finally, the consistency condition needs to be satis�ed:

N̂n+1 ∶ (σn+1 − σn) + ∆λn+1Ĥn+1 = 0 (17.57)

or,

N̂n+1 ∶ (σ trial − σn) = ∆λn+1(N̂n+1 ∶ Pn+1 − Ĥn+1) . (17.58)

17.2.1 Iterative solution

Vaango assumes associated plasticity for isotropic metals, i.e., M̂ = N̂ . �erefore, the following coupled
equations, not all of which are independent, have to be solved for Γ ∶= ∆λn+1 and the updated state
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[σn+1, κn+1, µn+1, εpn+1, (ε
eq
p )n+1, βn+1, ϕn+1,Dn+1, (Tp)n+1]:

σn+1 = σ trial − ΓPn+1
εpn+1 = ε

p
n + ΓN̂n+1

βn+1 = βn + Γh
β
n+1

(εeqp )n+1 = (εeqp )n + Γh
εp
n+1

ϕn+1 = ϕn + Γhϕn+1
Dn+1 = Dn + ΓhDn+1

(Tp)n+1 = (Tp)n + ΓhTn+1
N̂n+1 ∶ (σ trial − σn) − Γ(N̂n+1 ∶ Pn+1 − Ĥn+1) = 0
fn+1 = f (σ trial − ΓPn+1) = 0

(17.59)

where

Pn+1 = Ce
n+1 ∶ N̂n+1 −

∂σ
∂β

∣
n+1

∶ hβn+1 −
∂σ
∂εeqp

RRRRRRRRRRRn+1
hεpn+1 −

∂σ
∂ϕ

∣
n+1

hϕn+1 −
∂σ
∂D

∣
n+1

hDn+1 −
∂σ
∂Tp

∣
n+1

hTn+1

N̂n+1 =
Nn+1

∥Nn+1∥
, Nn+1 =

∂ f
∂σ

∣
n+1

Ĥn+1 =
Hn+1

∥Nn+1∥
, Hn+1 =

∂ f
∂β

∣
n+1

∶ hβn+1 +
∂ f
∂εeqp

RRRRRRRRRRRn+1
hεpn+1 +

∂ f
∂ϕ

∣
n+1

hϕn+1 +
∂ f
∂D

∣
n+1

hDn+1 +
∂ f
∂Tp

∣
n+1

hTn+1 .

(17.60)

Let us express the stresses and strains as vectors:

S ∶= [σ11, σ22, σ33,
√
2σ23,

√
2σ31,

√
2σ12] Ep ∶= [εp11, ε

p
22, ε

p
33,

√
2εp23,

√
2εp31,

√
2εp12] . (17.61)

We can also write

N ∶= [ ∂ f
∂σ11

,
∂ f
∂σ22

,
∂ f
∂σ33

,
√
2
∂ f
∂σ23

,
√
2
∂ f
∂σ31

,
√
2
∂ f
∂σ12

] , N̂ = N
∥N∥

. (17.62)

Because of the isotropy of the elasticity tensor, we have

Ce ∶ N̂ = C = [2µN1 + (κ − 2
3 µ)(N1 + N2 + N3), 2µN2 + (κ − 2

3 µ)(N1 + N2 + N3),

2µN3 + (κ − 2
3 µ)(N1 + N2 + N3), 2

√
2µN4, 2

√
2µN5, 2

√
2µN6]

(17.63)

where Ni are the components of the vector N̂. If we ignore the elastic-plastic coupling term ∂σ/∂β, and
de�ne

Zεp ∶=
⎡⎢⎢⎢⎣

∂σ11
∂εeqp

hεp ,
∂σ22
∂εeqp

hεp ,
∂σ33
∂εeqp

hεp ,
√
2
∂σ23
∂εeqp

hεp ,
√
2
∂σ31
∂εeqp

hεp ,
√
2
∂σ12
∂εeqp

hεp
⎤⎥⎥⎥⎦

Zϕ ∶= [∂σ11
∂ϕ

hϕ ,
∂σ22
∂ϕ

hϕ ,
∂σ33
∂ϕ

hϕ ,
√
2
∂σ23
∂ϕ

hϕ ,
√
2
∂σ31
∂ϕ

hϕ ,
√
2
∂σ12
∂ϕ

hϕ]

ZD ∶= [∂σ11
∂D

hD ,
∂σ22
∂D

hD ,
∂σ33
∂D

hD ,
√
2
∂σ23
∂D

hD ,
√
2
∂σ31
∂D

hD ,
√
2
∂σ12
∂D

hD]

ZTp ∶= [∂σ11
∂Tp

hT ,
∂σ22
∂Tp

hT ,
∂σ33
∂Tp

hT ,
√
2
∂σ23
∂Tp

hT ,
√
2
∂σ31
∂Tp

hT ,
√
2
∂σ12
∂Tp

hT]

(17.64)
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we have

P = C − Zεp − Zϕ − ZD − ZTp . (17.65)

Noting that β is required to be symmetric for the conservation of angular momentum, we can express the
internal variables as a vector such that

Q ∶= [β11, β22, β33,
√
2β23,

√
2β31,

√
2β12, ε

eq
p , ϕ,D, Tp]

H ∶= [hβ11, h
β
22, h

β
33,

√
2hβ23,

√
2hβ31,

√
2hβ12, hεp , hϕ , hD , hT]

∂ f
∂Q

∶=
⎡⎢⎢⎢⎣

∂ f
∂β11

,
∂ f
∂β22

,
∂ f
∂β33

,
√
2
∂ f
∂β23

,
√
2
∂ f
∂β31

,
√
2
∂ f
∂β12

,
∂ f
∂εeqp

,
∂ f
∂ϕ

,
∂ f
∂D

,
∂ f
∂Tp

⎤⎥⎥⎥⎦

(17.66)

�erefore,

H = ∂ f
∂Q

⋅H , Ĥ = H
∥N∥

. (17.67)

�en (17.59), can be written in vector form as

Sn+1 = Strial − ΓPn+1
Epn+1 = E

p
n + ΓN̂n+1

Qn+1 = Qn + ΓHn+1

N̂n+1⋅(Strial − Sn) − Γ(N̂n+1 ⋅ Pn+1 − Ĥn+1) = 0 Ô⇒ Γ = N̂n+1 ⋅ (Strial − Sn)
(N̂n+1 ⋅ Pn+1 − Ĥn+1)

fn+1 = f (Strial − ΓPn+1) = 0

(17.68)

Since P = P(S,Ep ,Q), N = N(S,Ep ,Q), H = H(S,Ep ,Q), and H = H(S,Ep ,Q), we can write the
equations above as residuals:

rS(Γ, S,Ep ,Q) ∶= −Sn+1 + Strial − ΓPn+1(S,Ep ,Q) = 0
rE(Γ, S,Ep ,Q) ∶= −Epn+1 + E

p
n + ΓN̂n+1(S,Ep ,Q) = 0

rq(Γ, S,Ep ,Q) ∶= −Qn+1 +Qn + ΓHn+1(S,Ep ,Q) = 0
r f (Γ, S,Ep ,Q) ∶= f (Sn+1,Epn+1,Qn+1) = 0

(17.69)

First-order Taylor series expansions of these functions at (Γ, Sn ,Epn ,Qn), give

rS(Γ, S,Ep ,Q) ≈ rS(Γ, Sn ,E
p
n ,Qn)+

∂rS
∂Γ

∣
n
(Γ − Γn) +

∂rS
∂S

∣
n
⋅ (S − Sn) +

∂rS
∂Ep

∣
n
⋅ (Ep − Epn) +

∂rS
∂Q

∣
n
⋅ (Q −Qn)

rE(Γ, S,Ep ,Q) ≈ rE(Γ, Sn ,Epn ,Qn)+
∂rQ
∂Γ

∣
n
(Γ − Γn) +

∂rQ
∂S

∣
n
⋅ (S − Sn) +

∂rQ
∂Ep

∣
n
⋅ (Ep − Epn) +

∂rQ
∂Q

∣
n
⋅ (Q −Qn)

rQ(Γ, S,Ep ,Q) ≈ rQ(Γ, Sn ,Epn ,Qn)+
∂rE
∂Γ

∣
n
(Γ − Γn) +

∂rE
∂S

∣
n
⋅ (S − Sn) +

∂rE
∂Ep

∣
n
⋅ (Ep − Epn) +

∂rE
∂Q

∣
n
⋅ (Q −Qn)

r f (Γ, S,Ep ,Q) ≈ r f (Γ, Sn ,E
p
n ,Qn)+

∂r f
∂Γ

∣
n
(Γ − Γn) +

∂r f
∂S

∣
n
⋅ (S − Sn) +

∂r f
∂Ep

∣
n
⋅ (Ep − Epn) +

∂r f
∂Q

∣
n
⋅ (Q −Qn)

(17.70)
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Since the residuals are required to be zero at the end of the timestep, we get the following rule for the k-th
iteration,

∂rS
∂Γ

∣
k
∆Γ + ∂rS

∂S
∣
k
⋅ ∆S + ∂rS

∂Ep
∣
k
⋅ ∆Ep + ∂rS

∂Q
∣
k
⋅ ∆Q = −rS(Γk , Sk ,E

p
k ,Qk)

∂rE
∂Γ

∣
k
∆Γ + ∂rE

∂S
∣
k
⋅ ∆S + ∂rE

∂Ep
∣
k
⋅ ∆Ep + ∂rE

∂Q
∣
k
⋅ ∆Q = −rE(Γk , Sk ,E

p
k ,Qk)

∂rQ
∂Γ

∣
k
∆Γ + ∂rQ

∂S
∣
k
⋅ ∆S + ∂rQ

∂Ep
∣
k
⋅ ∆Ep + ∂rQ

∂Q
∣
k
⋅ ∆Q = −rQ(Γk , Sk ,E

p
k ,Qk)

∂r f
∂Γ

∣
k
∆Γ +

∂r f
∂S

∣
k
⋅ ∆S +

∂r f
∂Ep

∣
k
⋅ ∆Ep +

∂r f
∂Q

∣
k
⋅ ∆Q = −r f (Γk , Sk ,E

p
k ,Qk)

(17.71)

where

∆Γ = Γk+1 − Γk , ∆S = Sk+1 − Sk , ∆Ep = E
p
k+1 − E

p
k , ∆Q = Qk+1 −Qk . (17.72)

�e derivatives of the residuals are (dropping subscripts n + 1 for convenience),

∂rS
∂Γ

= −P , ∂rE
∂Γ

= N̂ ,
∂rQ
∂Γ

= H ,
∂r f
∂Γ

= 0

∂rS
∂S

= − [I] − Γ ∂P
∂S

,
∂rE
∂S

= Γ ∂N̂
∂S

,
∂rQ
∂S

= Γ ∂H
∂S

,
∂r f
∂S

= ∂ f
∂S

∂rS
∂Ep

= −Γ ∂P
∂Ep

,
∂rE
∂Ep

= − [I] + Γ ∂N̂
∂Ep

,
∂rQ
∂Ep

= Γ ∂H
∂Ep

,
∂r f
∂Ep

= ∂ f
∂Ep

∂rS
∂Q

= −Γ ∂P
∂Q

,
∂rE
∂Q

= Γ ∂N̂
∂Q

,
∂rQ
∂Q

= − [I] + Γ ∂H
∂Q

,
∂r f
∂Q

= ∂ f
∂Q

(17.73)

�erefore, using N = ∂ f /∂S,

− Pk∆Γ − ([I] + Γk
∂P
∂S

∣
k
) ⋅ ∆S − Γk

∂P
∂Ep

∣
k
⋅ ∆Ep − Γk

∂P
∂Q

∣
k
⋅ ∆Q = −rS(Γk , Sk ,E

p
k ,Qk)

N̂k∆Γ + Γk
∂N̂
∂S

∣
k
⋅ ∆S − ([I] − Γk

∂N̂
∂Ep

∣
k
) ⋅ ∆Ep + Γk

∂N̂
∂Q

∣
k
⋅ ∆Q = −rE(Γk , Sk ,E

p
k ,Qk)

Hk∆Γ + Γk
∂H
∂S

∣
k
⋅ ∆S + Γk

∂H
∂Ep

∣
k
⋅ ∆Ep − ([I] − Γk

∂H
∂Q

∣
k
) ⋅ ∆Q = −rQ(Γk , Sk ,E

p
k ,Qk)

Nk ⋅ ∆S +
∂ f
∂Ep

∣
k
⋅ ∆Ep + ∂ f

∂Q
∣
k
⋅ ∆Q = −r f (Γk , Sk ,E

p
k ,Qk)

(17.74)

Because the derivatives of N̂, P,H with respect to S, Ep, Qmay be di�cult to calculate, it is more conve-
nient to use a semi-implicit scheme where the quantities N̂, P,H are evaluated at tn. In that case we have

− Pk∆Γ − ∆S = −rS(Γk , Sk ,E
p
k ,Qk)

N̂k∆Γ − ∆Ep = −rE(Γk , Sk ,E
p
k ,Qk)

Hk∆Γ − ∆Q = −rQ(Γk , Sk ,E
p
k ,Qk)

Nk ⋅ ∆S +
∂ f
∂Ep

∣
k
⋅ ∆Ep + ∂ f

∂Q
∣
k
⋅ ∆Q = −r f (Γk , Sk ,E

p
k ,Qk)

(17.75)

We now force rS , rE , and rQ to be zero at all times, leading to the expressions

∆S = −Pk∆Γ
∆Ep = N̂k∆Γ
∆Q = Hk∆Γ

r f (Γk , Sk ,E
p
k ,Qk) +Nk ⋅ ∆S +

∂ f
∂Ep

∣
k
⋅ ∆Ep + ∂ f

∂Q
∣
k
⋅ ∆Q = 0

(17.76)
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Plugging the expressions for ∆S, ∆Ep, ∆Q from the �rst three equations into the fourth gives us

r f (Γk , Sk ,E
p
k ,Qk) −Nk ⋅ Pk∆Γ +

∂ f
∂Ep

∣
k
⋅ N̂k∆Γ +

∂ f
∂Q

∣
k
⋅Hk∆Γ = 0 (17.77)

or

∆Γ =
f (Sk ,E

p
k ,Qk)

Nk ⋅ Pk −
∂ f
∂Ep ∣k

⋅ N̂k −
∂ f
∂Q ∣

k
⋅Hk

(17.78)

In the metal plasticity models implemented in Vaango , there is no direct dependence of f on Ep. �ere-
fore, using (17.67),

Γk+1 = Γk +
f (Sk ,Qk)

Nk ⋅ Pk −Hk
. (17.79)

All quantities on the right hand side of the above equation are known, and we can compute Γk+1. �e
other variables can now be updated using

Sk+1 = Sk − Pk∆Γ , E
p
k+1 = E

p
k + N̂k∆Γ , Qk+1 = Qk +Hk∆Γ (17.80)

�e iterative process can be stopped when r f is close to 0 and Γk+1 is close to the value required to satisfy
consistency given in (17.68).

17.2.2 Stress update in reduced stress space

�e isotropic metal yield functions in Vaango depend only on two invariants of stress. �erefore, the
return mapping can be carried out in the reduced stress space spanned by Î and ŝtrial where

Î = I
∥I∥

= I
√
3
and ŝtrial = strial

∥strial∥
= dev(σ trial)

∥dev(σ trial)∥
. (17.81)

�e stress can be expressed in terms of this basis as,

σn+1 = (σp)n+1 Î+(σs)n+1 ŝtrial where (σp)n+1 = σn+1 ∶ Î =
tr(σn+1)√

3
, (σs)n+1 = σn+1 ∶ ŝtrial . (17.82)

As before,

σ trial = σn + ∆t(Ce
n ∶ ε̇n+1) = σn + ∆t [(κn − 2

3 µn) tr(ε̇n+1)I + 2µn ε̇n+1] (17.83)

�e trial stress is then decomposed into

σ trial = σ trialp Î + σ trials ŝtrial where σ trialp = tr(σ
trial)

√
3

, σ trials = σ trial ∶ ŝtrial = ∥strial∥ . (17.84)

�e yield function is computed using

fy = f [σ trialβ , (εeqp )n , (ε̇eqp )n , ϕn ,Dn , Tn , ε̇
eq
n , κn , µn , . . . ] , σ trialβ = σ trial − βn . (17.85)

If fy ≤ 0, the state is updated using

σn+1 = σ trial , βn+1 = βn , (εeqp )n+1 = (εeqp )n , (ε̇eqp )n+1 = (ε̇eqp )n
ϕn+1 = ϕn , Dn+1 = Dn , Tn+1 = Tn
κn+1 = κ(pn+1, Tn) , µn+1 = µ(pn+1, Tn) .

(17.86)
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If fy > 0, integration of the stress rate by backward Euler leads to

σn+1 = σ trial − ∆λn+1Pn+1 . (17.87)

Expressed in terms of the trial basis using (17.37), and noting that σn+1 = σ en+1 and (σss)n+1 = ŝn+1 ∶ ŝtrial,

Pn+1 =
⎡⎢⎢⎢⎢⎣

√
3κn+1

∥Nn+1∥
∂ fn+1
∂pβ

− 1
κn+1
∑
η

∂κn+1
∂η

(σp)n+1
⎤⎥⎥⎥⎥⎦
Î

+
⎡⎢⎢⎢⎢⎣

√
6µn+1

∥Nn+1∥
∂ fn+1
∂σ ξe�

− 1
µn+1
∑
η

∂µn+1
∂η

(σs)n+1
⎤⎥⎥⎥⎥⎦
(σss)n+1 ŝtrial

(17.88)

�erefore,

(σp)n+1 = σ trialp − ∆λn+1
⎡⎢⎢⎢⎢⎣

√
3κn+1

∥Nn+1∥
∂ fn+1
∂pβ

− 1
κn+1
∑
η

∂κn+1
∂η

(σp)n+1
⎤⎥⎥⎥⎥⎦

(σs)n+1 = σ trials − ∆λn+1
⎡⎢⎢⎢⎢⎣

√
6µn+1

∥Nn+1∥
∂ fn+1
∂σ ξe�

− 1
µn+1
∑
η

∂µn+1
∂η

(σs)n+1
⎤⎥⎥⎥⎥⎦
(σss)n+1

(17.89)

�e plastic strain can be updated using (17.38):

εpn+1 = ε
p
n + ∆tε̇n+1 − (

(σp)n+1 − (σp)n
3κn+1

) Î − ((σs)n+1 − (σs)n
2µn+1

) ŝtrial . (17.90)

�e internal variables can be updated using

ηn+1 = ηn + ∆λn+1 h
η
n+1 (17.91)

Also, as before, the stress state has to lie on the yield surface:

f (σ trial − ∆λn+1Pn+1) = 0 (17.92)

and the consistency condition needs to be satis�ed:

N̂n+1 ∶ (σ trial − σn) = ∆λn+1(N̂n+1 ∶ Pn+1 − Ĥn+1) (17.93)

where

N̂n+1 =
Nn+1

∥Nn+1∥
, Nn+1 = 1√

3
∂ fn+1
∂pβ

Î +
√

3
2
∂ fn+1
∂σ ξe�

ŝtrial . (17.94)

We can now attempt to express the iterative semi-implicit stress update algorithm given in (17.79) and
(17.80) in terms of the trial basis. Recall that

Γk+1 = Γk +
f (Sk ,Qk)

Nk ⋅ Pk −Hk
, Epk+1 = E

p
k + N̂k∆Γ , Sk+1 = Sk − Pk∆Γ , Qk+1 = Qk +Hk∆Γ (17.95)

Reverting back to tensor notation,

Γk+1 = Γk +
f (σ k , ηk)

∥N k∥ (N̂ k ∶ Pk − Ĥk)
, εpk+1 = ε

p
k + N̂ k∆Γ , σ k+1 = σ k −Pk∆Γ , ηk+1 = ηk +Hk∆Γ (17.96)

Using (17.94) and (17.88), we have

∥N k∥ (N̂ k ∶ Pk) = 1√
3
∂ fk
∂pβ

⎡⎢⎢⎢⎢⎣

√
3κk

∂ fk
∂pβ

−
∥N k∥
κk
∑
η

∂κk
∂η

(σp)k
⎤⎥⎥⎥⎥⎦
+

√
3
2
∂ fk
∂σ ξe�

⎡⎢⎢⎢⎢⎣

√
6µk

∂ fk
∂σ ξe�

−
∥N k∥
µk
∑
η

∂µk
∂η

(σs)k
⎤⎥⎥⎥⎥⎦
(σss)k

(17.97)
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Also,

∥N k∥ Ĥk =
∂ fk
∂β

∶ (hβ)k +
∂ fk
∂εeqp

(hεp)k +
∂ fk
∂ϕ

(hϕ)k +
∂ fk
∂D

(hD)k +
∂ fk
∂Tp

(hT)k . (17.98)

At the end of the iterative process, the plastic strain tensor may also be updated using (17.90) and a non-
hardening return used to force the computed stress state on the �nal yield surface.

17.2.3 Algorithm 1

Two implementations of the model described in this chapter have been implemented in Vaango . �e
algorithm described in this section is used when the elastic plastic hp algorithm is invoked in an input
�le. �is plastic return algorithm is more robust but does not include kinematic hardening or so�ening
due to damage and temperature changes. So�ening and damage are treated in an uncoupledmanner a�er
the stress has been updated. Also, elastic-plastic coupling is ignored. For this algorithm, the timestep is
divided into substeps and the following algorithm is applied at each substep. At the end of the last substep,
the stress state is projected back to the updated yield surface without any changes to the internal variables.

1. Inputs:

Timestep size: ∆t
New strain rate: ε̇n+1, ε̇

eq
n+1

Old stress: σn
Old moduli: κn , µn

Old plastic strain: εpn
Old equivalent plastic rate: (ε̇eqp )n

Old internal variables: (εeqp )n , ϕn , Tn

Trial stress: σ trial = σn + ∆t [(κn − 2
3 µn) tr(ε̇n+1)I + 2µn ε̇n+1]

(17.99)

2. Decompose trial stress

ptrial = 1
3 tr(σ

trial) , strial = σ trial − 1
3 tr(σ

trial)I , ŝtrial = strial

∥strial∥
σ trial = σ trialp Î + σ trials ŝtrial , σ trialp =

√
3ptrial , σ trials = ∥strial∥

(17.100)

3. Decompose start-of-timestep stress

σn = pnI + sn = (σp)n Î + (σs)n ŝtrial , (σe�)n =
√

3
2 sn ∶ sn

(σp)n = σn ∶ Î , (σs)n = σn ∶ ŝtrial = sn ∶ ŝtrial
(17.101)

4. Compute fn and derivatives

fn = f (sn , pn , (εeqp )n , (ε̇eqp )n , ϕn , Tn , κn , µn , ε̇eqn+1, . . . ) ,
∂ fn
∂p

,
∂ fn
∂σe�

(17.102)

5. Compute components of Nn and ∥Nn∥

Nn = (Np)n Î + (Ns)n ŝtrial , ∥Nn∥ =
√

(Np)2n + (Ns)2n

(Np)n = 1√
3
∂ fn
∂p

, (Ns)n =
√

3
2
∂ fn
∂σe�

(17.103)
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6. Compute components of Pn

Pn = (Pp)n Î + (Ps)n ŝtrial

(Pp)n =
√
3κn

∥Nn∥
∂ fn
∂p

, (Ps)n =
√
6µn

∥Nn∥
∂ fn
∂σe�

(17.104)

7. Initialize:

k = 0 , Γ = 0
σ k = σ trial

(17.105)

8. Decompose current stress

σ k = pkI + sk = (σp)k Î + (σs)k ŝtrial , (σe�)k =
√

3
2 sk ∶ sk

(σp)k = σ k ∶ Î , (σs)k = σ k ∶ ŝtrial = sk ∶ ŝtrial , (σss)k =
sk

∥sk∥
∶ ŝtrial = 1

(17.106)

9. Compute fk and derivatives

fk = f (sk , pk , (ε
eq
p )k , (ε̇

eq
p )k , ϕk , Tn , κn , µn , ε̇

eq
n+1, . . . ) ,

∂ fk
∂p

,
∂ fk
∂σe�

(17.107)

10. Compute components of N k and ∥N k∥

N k = (Np)k Î + (Ns)k ŝtrial , ∥N k∥ =
√

(Np)2k + (Ns)2k

(Np)k = 1√
3
∂ fk
∂p

, (Ns)k =
√

3
2
∂ fk
∂σe�

.
(17.108)

11. Compute N k ∶ Pn

N k ∶ Pn = (Np)k(Pp)n + (Ns)k(Ps)n (17.109)

12. Compute updated ∆Γ

Γk+1 = Γk +
fk

N k ∶ Pn
, ∆Γ = Γk+1 − Γk (17.110)

13. Compute updated stress components:

(σp)k+1 = (σp)k − (Pp)n∆Γ , (σs)k+1 = (σs)k − (Ps)n∆Γ (17.111)

14. Compute fk+1

fk+1 = f (sk+1, pk+1, (ε
eq
p )k , (ε̇

eq
p )k+1, ϕk+1,Dk+1, Tk+1, κk+1, µk+1, ε̇

eq
n+1, . . . ) (17.112)

15. If ∣ fk+1∣ < ftolerance and ∣Γk+1 − Γk ∣ < Γtolerance go to step 18.
16. Set k ← k + 1 and go to step 8.
17. Update the stress:

σn+1 = (σp)k+1 Î + (σs)k+1 ŝtrial (17.113)

18. Compute internal variable hardening/so�ening moduli

(hεp)k+1 , (hϕ)k+1 (17.114)
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19. Compute updated internal variables

(εeqp )n+1 = (εeqp )n + (hεp)k+1∆Γ , ϕn+1 = ϕn + (hϕ)k+1∆Γ , (17.115)

20. Compute updated elastic strain

εen+1 = εen + (
(σp)k+1 − (σp)n

3κn
) Î − ((σs)k+1 − (σs)n

2µn
) ŝtrial . (17.116)

21. Compute the updated plastic strain

εpn+1 = εen + ε
p
n + ∆tε̇n+1 − εen+1 , (ε̇eqp )n+1 = ∥εpn+1∥ (17.117)

22. Compute updated elastic moduli

κn+1 = κ ((σp)k+1, εen+1, (Tp)n) , µn+1 = µ ((σp)k+1, εen+1, (Tp)n) (17.118)

17.2.4 Algorithm 2

�e following stress update algorithm is used for each (plastic) time step formodels that require kinematic
hardening.

1. Inputs:

Timestep size: ∆t
New strain rate: ε̇n+1, ε̇

eq
n+1

Old stress: σn
Old moduli: κn , µn

Old plastic strain: εpn
Old equivalent plastic rate: (ε̇eqp )n

Old internal variables: βn , (ε
eq
p )n , ϕn ,Dn , (Tp)n

Trial stress: σ trial = σn + ∆t [(κn − 2
3 µn) tr(ε̇n+1)I + 2µn ε̇n+1]

(17.119)

2. Decompose trial stress:

ptrial = 1
3 tr(σ

trial) , strial = σ trial − 1
3 tr(σ

trial)I , ŝtrial = strial

∥strial∥
σ trial = σ trialp Î + σ trials ŝtrial , σ trialp =

√
3ptrial , σ trials = ∥strial∥

(17.120)

3. Initialize:

k = 0 , Γ = 0
σ k = σ trial, κk = κn , µk = µn , ε

p
k = ε

p
n

(εeqp )k = (εeqp )n , βk = βn . ϕk = ϕn , Dk = Dn , (Tp)k = (Tp)n
(ε̇eqp )k = (ε̇eqp )n , ε̇eq = ε̇eqn+1

(17.121)

4. Compute shi�ed stress using backstress:

(σβ)k = σ k − βk , (pβ)k = 1
3 tr(σβ)k , ξk = (σβ)k − (pβ)kI , (σ ξe�)k =

√
3
2 ξk ∶ ξk (17.122)

5. Compute fk and derivatives

fk = f (ξk , (pβ)k , (ε
eq
p )k , (ε̇

eq
p )k , ϕk ,Dk , Tk , κk , µk , ε̇

eq
n+1, . . . ) ,

∂ fk
∂pβ

,
∂ fk
∂σ ξe�

(17.123)
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6. Compute components of N k and ∥N k∥

N k = (Np)k Î + (Ns)k ŝtrial , ∥N k∥ =
√

(Np)2k + (Ns)2k

(Np)k = 1√
3
∂ fk
∂pβ

, (Ns)k =
√

3
2
∂ fk
∂σ ξe�

.
(17.124)

7. Compute derivatives of bulk and shear modulus with respect to internal variables

∂κk
∂εeqp

,
∂κk
∂ϕ

,
∂κk
∂Dk

,
∂κk
∂Tk

,
∂µk
∂εeqp

,
∂µk
∂ϕ

,
∂µk
∂Dk

,
∂µk
∂Tk

(17.125)

8. Decompose current stress

σ k = pkI + sk = (σp)k Î + (σs)k ŝtrial

(σp)k = σ k ∶ Î , (σs)k = σ k ∶ ŝtrial = sk ∶ ŝtrial , (σss)k =
sk

∥sk∥
∶ ŝtrial = 1 (17.126)

9. Compute components of Pk

Pk = (Pp)k Î + (Ps)k ŝtrial

(Pp)k =
⎡⎢⎢⎢⎢⎣

√
3κk

∥N k∥
∂ fk
∂pβ

− 1
κk
∑
η

∂κk
∂η

(σp)k
⎤⎥⎥⎥⎥⎦

(Ps)k =
⎡⎢⎢⎢⎢⎣

√
6µk

∥N k∥
∂ fk
∂σ ξe�

− 1
µk
∑
η

∂µk
∂η

(σs)k
⎤⎥⎥⎥⎥⎦
(σss)k

(17.127)

10. Compute ∥N k∥ (N̂ k ∶ Pk)

∥N k∥ (N̂ k ∶ Pk) = (Np)k(Pp)k + (Ns)k(Ps)k (17.128)

11. Compute derivatives of fk with respect to internal variables

∂ fk
∂β

,
∂ fk
∂εeqp

,
∂ fk
∂ϕ

,
∂ fk
∂D

,
∂ fk
∂Tp

(17.129)

12. Compute internal variable hardening/so�ening moduli

(hβ)k , (hεp)k , (hϕ)k , (hD)k , (hT)k (17.130)

13. Compute ∥N k∥ Ĥk

∥N k∥ Ĥk =
∂ fk
∂β

∶ (hβ)k +
∂ fk
∂εeqp

(hεp)k +
∂ fk
∂ϕ

(hϕ)k +
∂ fk
∂D

(hD)k +
∂ fk
∂Tp

(hT)k . (17.131)

14. Compute updated ∆Γ

Γk+1 = Γk +
fk

∥N k∥ (N̂ k ∶ Pk − Ĥk)
, ∆Γ = Γk+1 − Γk (17.132)

15. Compute updated stress components:

(σp)k+1 = (σp)k − (Pp)k∆Γ , (σs)k+1 = (σs)k − (Ps)k∆Γ (17.133)

16. Compute updated internal variables:

βk+1 = βk + h
β∆Γ , (εeqp )k+1 = (εeqp )k + hεp∆Γ

ϕk+1 = ϕk + hϕ∆Γ , Dk+1 = Dk + hD∆Γ , (Tp)k+1 = (Tp)k + hT∆Γ
(17.134)
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17. Compute updated elastic strain:

εek+1 = ε
e
n + (

(σp)k+1 − (σp)n
3κk

) Î − ((σs)k+1 − (σs)n
2µk

) ŝtrial . (17.135)

18. Compute the updated plastic strain:

εpk+1 = ε
e
n + ε

p
n + ∆tε̇n+1 − εek+1 , (ε̇eqp )k+1 = ∥εpk+1∥ (17.136)

19. Compute updated elastic moduli

κk+1 = κ ((σp)k+1, εek+1, (Tp)k+1) , µk+1 = µ ((σp)k+1, εek+1, (Tp)k+1) (17.137)

20. Compute fk+1

fk+1 = f (ξk+1, (pβ)k+1, (ε
eq
p )k+1, (ε̇

eq
p )k+1, ϕk+1,Dk+1, Tk+1, κk+1, µk+1, ε̇

eq
n+1, . . . ) (17.138)

21. If ∣ fk+1∣ < ftolerance and ∣Γk+1 − Γk ∣ < Γtolerance go to step 23.
22. Set k ← k + 1 and go to step 4.
23. Update the state:

σn+1 = (σp)k+1 Î + (σs)k+1 ŝtrial , βn+1 = βk+1 , (εeqp )n+1 = (εeqp )k+1
ϕn+1 = ϕk+1 , Dn+1 = Dk+1 , (Tp)n+1 = (Tp)k+1 , (ε̇eqp )n+1 = (ε̇eqp )k+1
κn+1 = κk , µn+1 = µk

εen+1 = ε
p
n + (

(σp)k+1 − (σp)n
3κn+1

) Î − ((σs)k+1 − (σs)n
2µn+1

) ŝtrial

εpn+1 = εen + ε
p
n + ∆tε̇n+1 − εen+1

(17.139)

17.3 Example 1: vonMises plasticity

Consider the case of J2 plasticity with the yield condition

f ∶=
√

3
2 ∥s − dev(β)∥ − σy(ε

eq
p , ε̇

eq, ϕ, T , . . . ) =
√

3
2 ∥ξ∥ − σy(ε

eq
p , ε̇

eq, ϕ, T , . . . ) ≤ 0 (17.140)

where ∥ξ∥ =
√
ξ ∶ ξ. �e derivatives of the yield function with respect to the internal variables are

∂ f
∂β

= −
√

3
2
ξ

∥ξ∥
,

∂ f
∂εeqp

= −
∂σy
∂εeqp

,
∂ f
∂ϕ

= −
∂σy
∂ϕ

,
∂ f
∂D

= −
∂σy
∂D

,
∂ f
∂Tp

= −
∂σy
∂Tp

(17.141)

Assume the associated 
ow rule

d p = λ̇ N̂ = λ̇ N
∥N∥

where N = ∂ f
∂σ

= ∂ f
∂ξ

=
√

3
2

ξ
∥ξ∥

, ∥N∥ =
√

3
2 (17.142)

�en

d p = λ̇ ξ
∥ξ∥

; dev(d p) = d p , tr(d p) = 0, ∥d p∥ = ε̇eqp = λ̇ . (17.143)

�e evolution of the equivalent plastic strain is given by

ε̇eqp = λ̇ hεp Ô⇒ hεp = 1 . (17.144)

�e evolution of porosity is given by (there is no evolution of porosity)

ϕ̇ = λ̇ hϕ = 0 Ô⇒ hϕ = 0 . (17.145)
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�e evolution of the back stress is given by the Prager kinematic hardening rule

β̇ = λ̇hβ = H′d p Ô⇒ hβ = H′ ξ
∥ξ∥

(17.146)

where H′ is a hardening modulus. For the Armstrong-Frederick kinematic hardening model,

β̇ = λ̇ hβ = H1 d p −H2 β ∥d p∥ = λ̇ [H1
ξ

∥ξ∥
−H2 β] Ô⇒ hβ = H1

ξ
∥ξ∥

−H2 β (17.147)

17.4 Example 2: Gurson-typemodel

Consider a Gurson-type yield condition with kinematic hardening. In this case the yield condition can
be written as

f ∶= 3
2
(σ ξe�)

2

σ2y
+ 2 q1 ϕ⋆ cosh( 3

2
q2 pβ
σy

) − [1 + q3 (ϕ∗)2] (17.148)

where σy is the yield stress of the matrix material (zero-porosity),

σ ξe� = ξ ∶ ξ , ξ = dev(σ − β) , pβ = 1
3 tr(σ − β)

ϕ⋆ =
⎧⎪⎪⎨⎪⎪⎩

ϕ for ϕ ≤ ϕc
ϕc − ϕ⋆u−ϕc

ϕ f−ϕc (ϕ − ϕc) for ϕ > ϕc

(17.149)

and ϕ is the porosity. Final fracture occurs for ϕ = ϕ f or when ϕ⋆u = 1/q1. In this case, the derivatives of
f are

∂ f
∂σ ξe�

=
3σ ξe�
σ2y

,
∂ f
∂pβ

= 3q1q2ϕ⋆

σy
sinh( 3

2
q2 pβ
σy

) ,
∂ f
∂σy

= −
⎡⎢⎢⎢⎢⎣

3(σ ξe�)
2

σ 3y
+
3q1q2pβϕ⋆

σ2y
sinh( 3

2
q2 pβ
σy

)
⎤⎥⎥⎥⎥⎦

(17.150)

and

∂ f
∂β

= −
⎡⎢⎢⎢⎢⎣
2
∂ f
∂σ ξe�

ξ + ∂ f
∂pβ

I
⎤⎥⎥⎥⎥⎦
,

∂ f
∂εeqp

= ∂ f
∂σy

∂σy
∂εeqp

,
∂ f
∂D

= ∂ f
∂σy

∂σy
∂D

,
∂ f
∂Tp

= ∂ f
∂σy

∂σy
∂Tp

(17.151)

For the derivative with respect to ϕ,

∂ f
∂ϕ

= ∂ f
∂ϕ⋆

∂ϕ⋆

∂ϕ
+ ∂ f
∂σy

∂σy
∂ϕ

= ∂ f
∂ϕ⋆

∂ϕ⋆

∂ϕ
(17.152)

where

∂ f
∂ϕ⋆

= 2q1 cosh( 3
2
q2 pβ
σy

) − 2q3ϕ⋆ and
∂ϕ⋆

∂ϕ
=
⎧⎪⎪⎨⎪⎪⎩

1 for ϕ ≤ ϕc
− ϕ⋆u−ϕc
ϕ f−ϕc for ϕ > ϕc

(17.153)

Using an associated 
ow rule, we have

d p = λ̇ N̂ = λ̇ N
∥N∥

, N = ∂ f
∂σ

= 2 ∂ f
∂σ ξe�

ξ + ∂ f
∂pβ

I , ∥N∥ =

¿
ÁÁÁÀ4

⎛
⎝
∂ f
∂σ ξe�

∥ξ∥
⎞
⎠

2

+ 3( ∂ f
∂pβ

)
2

(17.154)
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For the evolution equation for the plastic strain we use

(σ − β) ∶ d p = (1 − ϕ)σy ε̇eqp (17.155)

where ε̇eqp is the equivalent plastic strain rate in the matrix material. Hence,

ε̇eqp = λ̇ hεp = λ̇
(pβI + ξ) ∶ N̂
(1 − ϕ) σy

Ô⇒ hεp =
3pβ

∂ f
∂pβ

+ 2 ∂ f
∂σ ξe�

ξ ∶ ξ

(1 − ϕ) σy ∥N∥
(17.156)

�e evolution equation for the porosity is assumed to be given by

ϕ̇ = (1 − ϕ) tr(d p) + A ε̇eqp (17.157)

where

A =
fn

εs
√
2π

exp
⎡⎢⎢⎢⎣
− 1
2

(εeqp − εm)2

ε2s

⎤⎥⎥⎥⎦
(17.158)

and fn is the volume fraction of void nucleating particles, εm is the mean of the normal distribution of
nucleation strains, and εs is the standard deviation of the distribution. �erefore,

ϕ̇ = λ̇ hϕ = λ̇ [(1 − ϕ) tr(N̂) + A
(pβI + ξ) ∶ N̂
(1 − ϕ) σy

] Ô⇒ hϕ = 1
∥N∥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3(1 − ϕ) ∂ f
∂pβ

+ A
3pβ

∂ f
∂pβ

+ 2 ∂ f
∂σ ξe�

ξ ∶ ξ

(1 − ϕ) σy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(17.159)

If the evolution of the backstress is given by the Prager kinematic hardening rule

β̇ = λ̇ hβ = H′ d p Ô⇒ hβ = H′

∥N∥

⎡⎢⎢⎢⎢⎣
2
∂ f
∂σ ξe�

ξ + ∂ f
∂pβ

I
⎤⎥⎥⎥⎥⎦

(17.160)

For the Armstrong-Frederick model,

β̇ = λ̇ hβ = H1 d p −H2 β ∥d p∥ Ô⇒ hβ = H1

∥N∥
⎛
⎝
2
∂ f
∂σ ξe�

ξ + ∂ f
∂pβ

I
⎞
⎠
−H2β . (17.161)

17.5 Example 3: Nonlinear elasticity and isotropic hardening

Let the 
ow stress be given by the Johnson-Cook model:

σy(εeqp , ε̇eq, T) = [A+ B(εeqp )n] [1 + C ln(ε̇⋆)] [1 − (T⋆)m] (17.162)

�e volumetric part of the stress in the intact metal is given by a Mie-Grüneisen equation of state:

p(Je , T) = −[ρ0 C
2
0 (1 − Je)[1 − Γ0(1 − Je)/2]

[1 − Sα(1 − Je)]2
+ Γ0 E] , Je = det F e , E ≈ ρCv(T − T0)

V
(17.163)

�e tangent bulk modulus of the intact metal is de�ned as

κm(p, Je , T) = V e ∂p
∂V e = V

e ∂p
∂Je

∂Je

∂V e =
V e

V0
∂p
∂Je

= Je ∂p
∂Je

≈
ρ0JeC2

0 [1 + (Sα − Γ0)(1 − Je)]
[1 − Sα(1 − Je)]3

. (17.164)
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Since the rate of deformation is unrotated in the Vaangometal plasticity implementation, we can identify
tr(εe) with ln(Je) [72] and use that quantity in the calculation. �e deviatoric part of the stress in the
intact metal is given by the Steinberg-Cochran-Guinan (SCG) shear modulus model:

µm(p, Je , T) = µ0 + p
∂µm
∂p

(Je)1/3 + ∂µm
∂T

(T − T0) (17.165)

When we include porosity-dependence for the bulk and shear moduli, we have

κ(p, Je , ϕ, T) = (1 − ϕ)κm
1 − (1 − K)ϕ

, K = 3κm + 4µm
4µm

µ(p, Je , ϕ, T) = (1 − ϕ)µm
1 − (1 −G)ϕ

, G = 5(3κm + 4µm)
9κm + 8µm

(17.166)

�e derivatives of σy, κ, and µ required for the algorithm can be calculated from these expressions.





18—Mohr-Coulombmodel

18.1 Introduction

�e classical Mohr-Coulomb model is a workhorse of rock and soil plasticity modeling. �is model is
typically hard to implement for implicit codes because of the di�culties encountered in computing tan-
gent sti�ness matrices near the corners (as viewed from the hydrostatic axis). However, that problem is
not encountered in explicit codes and corners can be handled relatively easily.

�e Vaango implementation of Mohr-Coulomb plasticity uses a linear elastic model and perfect plastic-
ity. �ere are also features that allow the shear modulus, cohesion etc. to vary with deformation and for
the e�ect of water content to be modelled without a fully coupled saturation/porosity model. A nonlocal
correction features is also included.

Stresses and the rate-of-deformation are unrotated using the beginning of the timestep deformation
gradient polar decomposition before any constitutive relations are evaluated. �e updated stress is
rotated back using the deformation gradient decomposition at the end of the time step.

�e convention used for thismodel is that stresses are positive in compression and that the principal
stresses are in the order σ1 > σ2 > σ3. �e model assumes that the plastic potential (alternatively
referred to as the dilation model) and yield function have the same form but the angles may di�er.
�e angle of the plastic potential function is denoted ψ.

�e implementation is largely in Voigt notation with stresses arranged in the sequence (σ11, σ22, σ33,
σ12, σ13, σ23).

18.2 Elasticity model

Isotropic linear hypoelastic behavior is assumed, i.e, the stress-rate σ̇ is linearly related to the rate-of-
deformation d.

σ̇ = (K − 2
3G) tr(d)I + 2Gd (18.1)

where K is the bulk modulus and G is the shear modulus. �ese are related to the Young’s modulus (E)
and the Poisson’s ratio (ν) by

K = E
3(1 − 2ν)

and G = E
2(1 + ν)

. (18.2)
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�e elastic tangent modulus at any time t is given by

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K + 4
3G K − 2

3G K − 2
3G 0 0 0

K − 2
3G K + 4

3G K − 2
3G 0 0 0

K − 2
3G K − 2

3G K + 4
3G 0 0 0

0 0 0 2G 0 0
0 0 0 0 2G 0
0 0 0 0 0 2G

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18.3)

A variable modulus model that depends on a varying cohesion can also be activated if desired. �emodel
has the form

G(t) = Mc(t)
2(1 + νy)

, K(t) = Mc(t)
3(1 − 2νy)

(18.4)

where M and νy are model parameters, and c(t) is a time-varying cohesive strength. �e model is ini-
tialized such that G(0) = G and K(0) = K when c(0) = c, the initial cohesive strength, i.e., E = Mc and
νy = ν.

18.3 Yield functions

�emodel includes two variations on the shape of the yield surface ( f (σ) = 0):
• the classical model
• the Sheng et al. variation of the yield surface [73].

�e second does not have sharp edges but is not strictly convex and should not be applied when stress
states close to the vertex of Mohr-Coulomb cone are expected. Plastic states are achieved when f (σ) ≥ 0
and elastic states when f (σ) < 0.

18.3.1 Classical Mohr-Coulomb yield surface

�e classical Mohr-Coulomb yield surface expressed in terms of the principal stresses is

±σ1 − σ2
2

= [σ1 + σ2
2

] sin(ϕ) + c cos(ϕ)

±σ2 − σ3
2

= [σ2 + σ3
2

] sin(ϕ) + c cos(ϕ)

±σ1 − σ3
2

= [σ1 + σ3
2

] sin(ϕ) + c cos(ϕ).

(18.5)

where c is the cohesive strength and ϕ is the angle of internal friction.

�e eigenvalues of the stress tensor can be computed in closed form. �e resulting expressions are

σ1 = p +
2
3
q cos θ and σ3 = p +

2
3
q cos(θ +

2π
3
) (18.6)

where

p = 1
3
I1 , q =

√
3J2 , cos 3θ = (

r
q
)
3

=
3
√
3

2
J3
J3/22

, r3 = 27
2
J3 (18.7)

and

I1 = tr(σ), J2 =
1
2
s ∶ s, J3 = det(s), s = σ −

I1
3
I . (18.8)
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Summary 18.3.1 Classical Mohr-Coulomb yield function in terms of invariants

In terms of these invariants, the Mohr-Coulomb yield function in (18.5) can be expressed as

f (σ) = R(θ) q − p sin ϕ − c cos ϕ (18.9)

where

R(θ) =
1

√
3
sin(θ +

π
3
) −

1
3
sin ϕ cos(θ +

π
3
) . (18.10)

Plots of the Mohr-Coulomb surface in the octahedral and Rendulic planes are shown in Figure 18.1.

(a) Octahedral pro�le. (b) Rendulic pro�le.

Figure 18.1: Pro�les of the classical Mohr-Coulomb yield surface.

18.3.2 Sheng et al. yield surface

�e yield function of the Mohr-Coulomb yield surface can be expressed in p–q space as

f (σ) = q −Mp − c̃ . (18.11)

Comparison with (18.9),

f (σ) = R(θ) q − p sin ϕ − c cos ϕ (18.12)

indicates that

M(θ) = sin ϕ
R(θ)

and c̃(θ) = c cos ϕ
R(θ)

(18.13)

for the classical Mohr-Coulomb model.
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Summary 18.3.2 Sheng et al. Mohr-Coulomb yield function

Sheng et al. [73] suggest a modi�ed model designed for CAMClay type models, which when ap-
plied to the Mohr-Coulomb yield function takes the form

f (σ) = q − M̃p − c̃ . (18.14)

where

M̃(θ) = M(θ = π/3)( 2α4

1 + α4 + (1 − α4) cos 3θ
)
1/4
, and α = 3 − sin ϕ

3 + sin ϕ
. (18.15)

Note that from (18.10),

R(π/3) = 3 + sin ϕ
6

Ô⇒ M(π/3) = 6 sin ϕ
3 + sin ϕ

. (18.16)

Plots of the modi�ed yield surface surface in the octahedral and front view are shown in Figure 18.2. �is
yield surface is not convex and should be avoided in computations.

Figure 18.2: Pro�les of the modi�ed Mohr-Coulomb yield surface.

Note that the angle θs in [73] is de�ned as

sin 3θs = −
27
2
J3
q3

= − cos 3θ , θs = θ − π
6 . (18.17)

For that de�nition, triaxial compression occurs at θs = π/6 whereas with our de�nition it occurs at
θ = π/3.

A variant of the model in (18.14) is implemented in Vaango :

f = q
M

− 2c
M

− p , M = M0α

[ 12 [1 + α4 − (1 − α4) sin(3θs)]]
1/4 , M0 =

6 sin ϕ
3 − sin ϕ

. (18.18)

�is model is visualized in Figure 18.3 and is not convex.
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Figure 18.3: Pro�les of the modi�ed Mohr-Coulomb yield surface as implemented in Vaango .

18.4 Variable cohesive strength

A time varying cohesive strength model can be activated if necessary. Under certain circumstances, the
cohesive strength is assumed to depend on the e�ective strain εe� (see de�nition in (2.9)) and an e�ective
strain-rate ε̇e�. �e strain is computed from the unrotated rate-of-deformation d using

ε(tn+1) = ε(tn) + d∆t where ∆t = tn+1 − tn . (18.19)

�e e�ective strain is then computed using

εe� =
√

2
3 [

1
3 [(ε11 − ε22)2 + (ε22 − ε33)2 + (ε33 − ε11)2] + 2(ε212 + ε223 + ε213)] . (18.20)

An e�ective strain-rate, ε̇e�, is also computed from

ε̇e� =
√

2
3 [

1
3 [(d11 − d22)2 + (d22 − d33)2 + (d33 − d11)2] + 2(d212 + d223 + d213)] . (18.21)

For situations duringwhich a rate-dependent undrained shear transition is important, the cohesionmodel
takes the form

c(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Sta1W−b1 for ε̇e� ≤ ε̇ref

Sta1W−b1 (
ε̇e�
ε̇ref

)
β

for ε̇e� > ε̇ref
(18.22)

where St is a so�ening parameter, a1, b1 are water in
uence parameters, ε̇ref is a reference strain-rate, and
β is a strain-rate parameter.

If the cohesion varies linearly with depth, the model that can be used to compute depth-dependent values
has the form

c(t) = c + A(xp ⋅ nd − yref) (18.23)

where A is a slope parameter and yref is a reference depth value. �e particle position is xp and nd is the
depth direction (aligned with the axes of the computational domain).

If so�ening is activated, the cohesive strength is modi�ed if the condition

εe� >
c
G

(18.24)
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where c is the cohesive strength and G is the shear modulus. �e so�ening model has the form

c(t) = c [ 1
St
+ (1 − 1

St
) 2.71εeff/ε95] (18.25)

where St is the so�ening parameter used earlier and ε95 is a reference e�ective strain.

Finally, if a water retentionmodel is used tomodify the cohesive strength, a suction valueψm is computed
and the cohesion is computed as

c(t) = c + ψm tan ϕb (18.26)

where ϕb is a water retention parameter. �e suction is computed using the van Genuchten model:

θ(ψ) = θr +
θs − θr

[1 + (α∣ψm∣)n]1−1/n
(18.27)

where θ(ψ) is the water retention curve, ∣ψm∣ is the suction pressure, θs is the saturated water content, θr
is the residual water content, α > 0 is a parameter related to the inverse of the air entry suction, and n > 1
is a measure of the pore-size distribution.

18.5 Flow rule

A non-associated 
ow rule is assumed such that the plastic strain-rate d p is given by

d p = λ̇
∂g
∂σ

(18.28)

where

g(σ) = R(θ) q − p sinψ − c cosψ (18.29)

and ψ is the dilation angle. Typically ψ is taken to be equal to ϕ, the friction angle.

�e normal to the plastic potential surface is given by

n = ∂g
∂σ

=
dR
dθ

∂θ
∂σ

q + R(θ) ∂q
∂σ

− ∂p
∂σ

sinψ . (18.30)

where

dR
dθ

= 1√
3 cos(θ +

π
3
) + 1

3 sinψ sin(θ +
π
3
)

∂θ
∂σ

= − 1
sin 3θ

[ 9
2q3

∂J3
∂σ

− r3

q4
∂q
∂σ

] = − 1
sin 3θ

[ 9
2q3

(s ⋅ s − 2
3 J2I) −

r3

q4
∂q
∂σ

]

∂q
∂σ

=
√
3

2
√
J2
∂J2
∂σ

=
√
3

2
√
J2
s

∂p
∂σ

= 1
3
∂I1
∂σ

= 1
3 I .

(18.31)

18.6 Nonlocal shear correction

�eMohr-Coulombmodel contains a nonlocal correction feature that uses neighbor information to regu-
larize solutions. Neighboring particles that contribute to the nonlocal e�ect are identi�ed using a nonlocal
length (ℓn). Let there be Nq such particles in the neighborhood of particle p.
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�e nonlocal e�ective strain (εne�) and e�ective strain rate (ε̇
n
e�) are computed as

εne� = (1 − n)εe� + n
⎛
⎝
∑Nq
q=1 V

q
w εe�

∑Nq
q=1 V

q
w

⎞
⎠

and ε̇ne� = (1 − n)ε̇e� + n
⎛
⎝
∑Nq
q=1 V

q
w ε̇e�

∑Nq
q=1 V

q
w

⎞
⎠

(18.32)

where n is a nonlocal parameter, εe�, ε̇e� are the local e�ective strain and strain-rate, respectively, and V
q
w

is a weighted volume of neighboring particle q whose local volume is Vq. �e expression for V
q
w is

V q
w = wpqVq where wpq =

ℓ
ℓn
exp(− ℓ

2

ℓ2n
) , ℓ = ∥xq − xp∥ . (18.33)

If a regularization 
ag is activated, and εne� > c/G, where c is the cohesion and G is the shear modulus, a
time-scale is included in the computation:

εne� ← εne�
tFE
tshear

, ε̇ne� ← ε̇ne�
tFE
tshear

. (18.34)

where tFE and tshear are regularization time scales. �e nonlocal e�ective strain is typically not used
directly in the model except for modifying the cohesion and the elastic moduli.

However, a�er the stress has been updated, a nonlocal correction can be applied using a similar approach:

σn = (1 − n)σ + n
⎛
⎝
∑Nq
q=1 V

q
wσ

∑Nq
q=1 V

q
w

⎞
⎠

(18.35)

where σn is the nonlocal stress.

18.7 Explicit stress integration

An additive decomposition of the unrotated rate-of-deformation into elastic and plastic parts is assumed:

d = de + d p (18.36)

Elastic and plastic strains are de�ned using

ε = ∫
t

0
d(τ)dτ = εe + εp Ô⇒ εe = ∫

t

0
de(τ)dτ , εp = ∫

t

0
d p(τ)dτ . (18.37)

�e strain increment during a timestep, ∆t = tn+1 − tn, is computed as

∆ε = d∆t . (18.38)

�e stress update begins with a check whether the stress state at the beginning of the time step is on the
yield surface. �is is necessary because the modi�cation of the cohesion and the elastic moduli may have
a�ected the shape of the yield surface. Special checks are used to determine if the strain increment leads
to unloading. Details are omitted for brevity.

An elastic trial stress state is computed

σ trial = σn +Cn ∶ ∆ε (18.39)

where C tangent elastic modulus tensor.

If the trial stress is in the plastic region, the intersection of the stress increment vector ∆σ = σ trial − σn
with the yield surface is computed using bisection. �e strain increment corresponding to this reduced
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stress increment is the increment in elastic strain and the stress on the yield surface is the stress at the end
of the elastic strain increment.

�e remainder of the strain increment is purely plastic. �e trial stress now has to be projected back to
the yield surface along the projection vector P [74], given by

P = −C ∶ ∂g
∂σ

. (18.40)

�e intersection of the projection vector with the yield surface is found via bisection. �e updated stress
is the intersection point on the yield surface.

Several Runge-Kutta schemes are implemented in the Vaango code to break-up large�e intersection of
the projection vector with the yield surface is found via bisection. strain increments into smaller steps.
However, the two-step modi�ed Euler scheme is accurate enough for our purposes.

�is procedure is repeated for each timestep.
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19.1 Introduction

�e Cam-clay plasticity model and its modi�ed ellipsoidal version [75–78] is widely considered to be an
accurate model for the prediction of the compressive and shear behavior of clays. �e Borja model [35,
79–81] extends the original Cam-claymodel to large deformations and uses a hyperelasticmodel and large
strain elastic-plastic kinematics.

�e Borja Cam-clay model and its implementation in Vaango are discussed in this chapter.

19.2 Quantities that are needed in a Vaango implementation

�e implementation of a hyperelastic-plastic model in Vaango typically (but not always) involves the
following:

1. an elasticity model factory that creates an elasticity model that provides the simulation with a pres-
sure and a deviatoric stress for a given (elastic) deformation gradient.

2. a plasticity model factory that creates:
(a) a yield condition factory that compute the yield function for a given stress and internal vari-

able state,
(b) a 
ow rule factory that gives the value of the plastic potential for a given state of stress/inter-

nal variables. �e 
ow rule factory and yield condition factory are typically assumed to be
identical (i.e., plastic 
ow is associated),

(c) an internal variable factory that is used to update internal variables and compute hardening
moduli.

�e models returned by the various factories for Borja cam-clay are discussed below.

19.2.1 Elasticity

�e elastic strain energy density in Borja’s model has the form

W(εev , εes ) =Wvol(εev) +Wdev(εev ,Vees )
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where

Wvol(εev) = −p0κ̃ exp(−
εev − εev0

κ̃
)

Wdev(εev , εes ) =
3
2 µ (εes )2

where εev0 is the volumetric strain corresponding to a mean normal compressive stress p0 (tension posi-
tive), κ̃ is the elastic compressibility index, and the shear modulus is given by

µ = µ0 +
α
κ̃
Wvol(εev) = µ0 − αp0 exp(−

εev − εev0
κ̃

) = µ0 − µvol .

�e parameter α determines the extent of coupling between the volumetric and deviatoric responses. For
consistency with isotropic elasticity, Rebecca Brannon suggests that α = 0 (citation?).
�e stress invariants p and q are de�ned as

p = ∂W
∂εev

= p0 [1 + 3
2
α
κ̃
(εes )2] exp(−

εev − εev0
κ̃

) = p0 β exp(−
εev − εev0

κ̃
)

q = ∂W
∂εes

= 3 [µ0 − αp0 exp(−
εev − εev0

κ̃
)] εes = 3µ εes .

�e derivatives of the stress invariants are
∂p
∂εev

= − p0
κ̃

[1 + 3
2
α
κ̃
(εes )2] exp(−

εev − εev0
κ̃

) = − p
κ̃

∂p
∂εes

= ∂q
∂εev

= 3αp0εes
κ̃

exp(− ε
e
v − εev0
κ̃

) = 3αp
βκ̃

εes =
3µvol
κ̃

εes

∂q
∂εes

= 3 [µ0 − αp0 exp(−
εev − εev0

κ̃
)] = 3µ .

19.2.2 Plasticity

For plasticity we use a Cam-Clay yield function of the form

f = ( q
M

)
2
+ p(p − pc)

whereM is the slope of the critical state line and the consolidation pressure pc is an internal variable that
evolves according to

1
pc

dpc
dt

= 1
λ̃ − κ̃

dεpv
dt

.

�e derivatives of f that are of interest are

∂ f
∂p

= 2p − pc

∂ f
∂q

= 2q
M2 .

If we integrate the equation for pc from tn to tn+1, we can show that

(pc)n+1 = (pc)n exp [
(εev)trial − (εev)n+1

λ̃ − κ̃
] .

�e derivative of pc that is of interest is

∂pc
∂(εev)n+1

= −(pc)n
λ̃ − κ̃

exp [(ε
e
v)trial − (εev)n+1

λ̃ − κ̃
] .
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�e volumetric and deviatoric components of the elastic strain єe are de�ned as follows:

ee = єe − 1
3 ε
e
v 1 = єe − 1

3 tr(є
e) 1 and εes =

√
2
3 ∥e

e∥ =
√

2
3

√
ee ∶ ee .

�e stress tensor is decomposed into a volumetric and a deviatoric component

σ = p 1 +
√

2
3 q n with n =

ee

∥ee∥
=
√

2
3
ee

εes
.

�e models used to determine p and q are

p = p0β exp [−
εev − εev0

κ̃
] with β = 1 + 3

2
α
κ̃
(εes )2

q = 3µεes .

�e strains are updated using

єe = єetrial − ∆γ
∂ f
∂σ

where єetrial = є
e
n + ∆є = єen + (є − єn) .

Remark 1:�e interface with MPMICE, among other things in Vaango, requires the computation of the quantity dp/dJ. Since
J does not appear in the above equation we proceed as explained below.

J = det(F) = det(1 +∇0u) = det(1 + є)
= 1 + trє + 1

2 [(trє)
2
− tr(є2)] + det(є) . = 1 + εv + 1

2 [ε
2
v − tr(є

2
)] + det(є) .

Also,

J =
ρ0
ρ
=
V
V0

and εv =
V − V0

V0
=
V
V0
− 1 = J − 1 .

We use the relation J = 1+ εv while keeping in mind that this is true only for in�nitesimal strains and plastic incompressibility for
which ε2v , tr(є2), and det(є) are zero. Under these conditions

∂p
∂J
=
∂p
∂εv

∂εv
∂J
=
∂p
∂εv

and
∂p
∂ρ
=
∂p
∂εv

∂εv
∂J

∂J
∂ρ
= −

J
ρ
∂p
∂εv

.

Remark 2:MPMICE also needs the density at a given pressure. For the Borja model, with εv = J − 1 = ρ0/ρ − 1, we have

ρ = ρ0 [1 + εv0 + κ̃ ln(
p
p0β

)]

−1
.

Remark 3:�e quantity q is related to the deviatoric part of the Cauchy stress, s as follows:

q =
√

3J2 where J2 = 1
2 s ∶ s .

�e shear modulus relates the deviatoric stress s to the deviatoric strain e e . We assume a relation of the form

s = 2µe e .

Note that the above relation assumes a linear elastic type behavior. �en we get the Borja shear model:

q =
√

3
2 s ∶ s =

√
3
2 (2µ)

√

e e ∶ e e =
√

3
2 (2µ)

√
3
2 ε

e
s = 3µε

e
s .
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19.3.1 Elastic-plastic stress update

For elasto-plasticity we start with a yield function of the form

f = ( q
M

)
2
+ p(p − pc) ≤ 0 where

1
pc

dpc
dt

= 1
λ̃ − κ̃

dεpv
dt

.

Integrating the ODE for pc with the initial condition pc(tn) = (pc)n, at t = tn+1,

(pc)n+1 = (pc)n exp [
(εpv )n+1 − (εpv )n

λ̃ − κ̃
] .

From the additive decomposition of the strain into elastic and plastic parts, and if the elastic trial strain
is de�ned as

(εev)trial ∶= (εev)n + ∆εv

we have

εpv = εv−εev Ô⇒ (εpv )n+1−(ε
p
v )n = (εv)n+1−(εev)n+1−(εv)n+(εev)n = ∆εv+(εev)n−(εev)n+1 = (εev)trial−(εev)n+1 .

�erefore we can write

(pc)n+1 = (pc)n exp [
(εev)trial − (εev)n+1

λ̃ − κ̃
] .

�e 
ow rule is assumed to be given by

∂єp

∂t
= γ ∂ f

∂σ
.

Integration of the PDE with backward Euler gives

єpn+1 = є
p
n + ∆t γn+1 [

∂ f
∂σ

]
n+1

= єpn + ∆γ [ ∂ f
∂σ

]
n+1

.

�is equation can be expressed in terms of the trial elastic strain as follows.

єn+1 − єen+1 = єn − єen + ∆γ [ ∂ f
∂σ

]
n+1

or

єen+1 = ∆є + єen − ∆γ [ ∂ f
∂σ

]
n+1

= єetrial − ∆γ [ ∂ f
∂σ

]
n+1

.

In terms of the volumetric and deviatoric components

(εev)n+1 = tr(єen+1) = tr(єetrial) − ∆γ tr [
∂ f
∂σ

]
n+1

= (εev)trial − ∆γ tr [
∂ f
∂σ

]
n+1

and

een+1 = eetrial − ∆γ [( ∂ f
∂σ

)
n+1

− 1
3 tr(

∂ f
∂σ

)
n+1

1] .

With s = σ − p1, we have

∂ f
∂σ

= ∂ f
∂s

∶ ∂s
∂σ

+ ∂ f
∂p

∂p
∂σ

= ∂ f
∂s

∶ [I(s) − 1
3 1⊗ 1] + ∂ f

∂p
1 = ∂ f

∂s
− 1

3 tr [
∂ f
∂s

] 1 + ∂ f
∂p

1



19.3 Stress update based Rich Reguiero’s notes 139

and

1
3 tr [

∂ f
∂σ

] 1 = 1
3 (tr [

∂ f
∂s

] − tr [∂ f
∂s

] + 3∂ f
∂p

) 1 = ∂ f
∂p

1 .

Remark 4: Note that, because σ = σ(p, q, pc) the chain rule should contain a contribution from pc :

∂ f
∂σ
=
∂ f
∂q

∂q
∂σ
+
∂ f
∂p

∂p
∂σ
+
∂ f
∂pc

∂pc
∂σ

.

However, the Borja implementation does not consider that extra term. Also note that for the present model

σ = σ(p(εev , ε
e
s , ε

p
v , ε

p
s ), s(ε

e
v , ε

e
s , ε

p
v , ε

p
s ), pc(ε

p
v ))

�erefore, for situations where tr(∂ f /∂s) = 0, we have

∂ f
∂σ

− 1
3 tr [

∂ f
∂σ

] 1 = ∂ f
∂s

− 1
3 tr [

∂ f
∂s

] 1 = ∂ f
∂s

.

�e deviatoric strain update can be written as

een+1 = eetrial − ∆γ (∂ f
∂s

)
n+1

and the shear invariant update is

(εes )n+1 =
√

2
3

√
een+1 ∶ een+1 =

√
2
3

√
eetrial ∶ e

e
trial − 2∆γ [∂ f

∂s
]
n+1

∶ eetrial + (∆γ)2 [∂ f
∂s

]
n+1

∶ [∂ f
∂s

]
n+1

�e derivative of f can be found using the chain rule (for smooth f ):

∂ f
∂σ

= ∂ f
∂p

∂p
∂σ

+ ∂ f
∂q

∂q
∂σ

= (2p − pc)
∂p
∂σ

+ 2q
M2

∂q
∂σ

.

Now, with p = 1/3 tr(σ) and q =
√
3/2 s ∶ s, we have

∂p
∂σ

= ∂
∂σ

[ 13 tr(σ)] =
1
3 1

∂q
∂σ

= ∂
∂σ

[
√

3
2 s ∶ s] =

√
3
2

1√
s ∶ s

∂s
∂σ

∶ s =
√

3
2

1
∥s∥

[I(s) − 1
31⊗ 1] ∶ s =

√
3
2
s

∥s∥
.

�erefore,

∂ f
∂σ

= 2p − pc
3

1 +
√

3
2
2q
M2

s
∥s∥

.

Recall that

σ = p 1 +
√

2
3 q n = p 1 + s .

�erefore,

s =
√

2
3 q n and ∥s∥ =

√
s ∶ s =

√
2
3 q

2 n ∶ n =
√

2
3 q

2 e
e ∶ ee
∥ee∥2

=
√

2
3 q

2 =
√

2
3 q .

So we can write

∂ f
∂σ

= 2p − pc
3

1 +
√

3
2
2q
M2 n . (19.1)
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Using the above relation we have

∂ f
∂p

= 1
3 tr [

∂ f
∂σ

] = 2p − pc and
∂ f
∂s

= ∂ f
∂σ

− ∂ f
∂p

1 =
√

3
2
2q
M2 n .

�e strain updates can now be written as

(εev)n+1 = (εev)trial − ∆γ [2pn+1 − (pc)n+1]

een+1 = eetrial −
√

3
2 ∆γ (2qn+1

M2
n+1

) nn+1

(εes )n+1 =
√

2
3

¿
ÁÁÀeetrial ∶ e

e
trial −

√
6 (∆γ)2 (2qn+1

M2
n+1

) nn+1 ∶ eetrial +
3
2 (∆γ)4 (2qn+1

M2
n+1

)
2

.

From the second equation above,

nn+1 ∶ eetrial = nn+1 ∶ e
e
n+1+

√
3
2 ∆γ (2qn+1

M2
n+1

) nn+1 ∶ nn+1 =
een+1 ∶ een+1
∥een+1∥

+
√

3
2 ∆γ (2qn+1

M2
n+1

) = ∥een+1∥+
√

3
2 ∆γ (2qn+1

M2
n+1

) .

Also notice that

eetrial ∶ e
e
trial = e

e
n+1 ∶ een+1 + 2

√
3
2 ∆γ (2qn+1

M2
n+1

) een+1 ∶ nn+1 + [
√

3
2 ∆γ (2qn+1

M2
n+1

)]
2

or,

∥eetrial∥
2 = [∥een+1∥ +

√
3
2 ∆γ (2qn+1

M2
n+1

)]
2

.

�erefore,

nn+1 ∶ eetrial = ∥eetrial∥

and we have

(εes )n+1 =
√

2
3

¿
ÁÁÀ∥eetrial∥

2 −
√
6 (∆γ)2 (2qn+1

M2
n+1

)∥eetrial∥ +
3
2 (∆γ)4 (2qn+1

M2
n+1

)
2

=
√

2
3 ∥eetrial∥−∆γ (2qn+1

M2
n+1

) .

�e elastic strain can therefore be updated using

(εev)n+1 = (εev)trial − ∆γ [2pn+1 − (pc)n+1]

(εes )n+1 = (εes )trial − ∆γ (2qn+1
M2

n+1
) .

�e consistency condition is needed to close the above equations

f = (qn+1
M

)
2
+ pn+1[pn+1 − (pc)n+1] = 0 .

�e unknowns are (εev)n+1, (εes )n+1 and ∆γ. Note that we can express the three equations as

(εev)n+1 = (εev)trial − ∆γ [∂ f
∂p

]
n+1

(εes )n+1 = (εes )trial − ∆γ [∂ f
∂q

]
n+1

fn+1 = 0 .

(19.2)
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19.3.2 Newton iterations

�e three nonlinear equations in the three unknowns can be solved using Newton iterations for smooth
yield functions. Let us de�ne the residual as

r(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(εev)n+1 − (εev)trial + ∆γ [∂ f∂p]n+1
(εes )n+1 − (εes )trial + ∆γ [∂ f∂q ]n+1

fn+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=∶
⎡⎢⎢⎢⎢⎢⎣

r1
r2
r3

⎤⎥⎥⎥⎥⎥⎦
where x =

⎡⎢⎢⎢⎢⎢⎣

(εev)n+1
(εes )n+1
fn+1

⎤⎥⎥⎥⎥⎥⎦
=∶

⎡⎢⎢⎢⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎥⎥⎥⎦
.

�e Newton root �nding algorithm is :

Require: x0

k ← 0
while r(xk) ≠ 0 do

xk+1 ⇐ xk −
⎡⎢⎢⎢⎢⎣

⎛
⎝

∂r
∂x

⎞
⎠

−1⎤⎥⎥⎥⎥⎦xk
⋅ r(xk)

k ← k + 1
end while

To code the algorithmwe have to �nd the derivatives of the residual with respect to the primary variables.
Let’s do the terms one by one. For the �rst row,

∂r1
∂x1

= ∂
∂εev

[εev − (εev)trial + ∆γ (2p − pc)] = 1 + ∆γ (2
∂p
∂εev

− ∂pc
∂εev

)

∂r1
∂x2

= ∂
∂εes

[εev − (εev)trial + ∆γ (2p − pc)] = 2∆γ
∂p
∂εes

∂r1
∂x3

= ∂
∂∆γ

[εev − (εev)trial + ∆γ (2p − pc)] = 2p − pc =
∂ f
∂p

where

∂p
∂εev

= − p0 β
κ̃

exp [− ε
e
v − εev0
κ̃

] = p
κ̃

,
∂pc
∂εev

= (pc)n
κ̃ − λ̃

exp [ ε
e
v − (εev)trial
κ̃ − λ̃

] and

∂p
∂εes

= 3 p0 α εes
κ̃

exp [− ε
e
v − εev0
κ̃

] .

For the second row,

∂r2
∂x1

= ∂
∂εev

[εes − (εes )trial + ∆γ
2q
M2 ] =

2∆γ
M2

∂q
∂εev

∂r2
∂x2

= ∂
∂εes

[εes − (εes )trial + ∆γ
2q
M2 ] = 1 +

2∆γ
M2

∂q
∂εes

∂r2
∂x3

= ∂
∂∆γ

[εes − (εes )trial + ∆γ
2q
M2 ] =

2q
M2 =

∂ f
∂q

where

∂q
∂εev

= −3p0 α ε
e
s

κ̃
exp [− ε

e
v − εev0
κ̃

] = ∂p
∂εes

and
∂q
∂εes

= 3µ0 + 3p0 α exp [−
εev − εev0

κ̃
] = 3µ .



142 Cam-Claymodel based on Borja et al. 1997

For the third row,

∂r3
∂x1

= ∂
∂εev

[ q
2

M2 + p (p − pc)] =
2q
M2

∂q
∂εev

+ (2p − pc)
∂p
∂εev

− p ∂pc
∂εev

= ∂ f
∂q

∂q
∂εev

+ ∂ f
∂p

∂p
∂εev

− p ∂pc
∂εev

∂r3
∂x2

= ∂
∂εes

[ q
2

M2 + p (p − pc)] =
2q
M2

∂q
∂εes

+ (2p − pc)
∂p
∂εes

= ∂ f
∂q

∂q
∂εes

+ ∂ f
∂p

∂p
∂εes

∂r3
∂x3

= ∂
∂∆γ

[ q
2

M2 + p (p − pc)] = 0 .

We have to invert a matrix in the Newton iteration process. Let us see whether we can make this quicker
to do. �e Jacobian matrix has the form

∂r

∂x
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂r1
∂x1

∂r1
∂x2

∂r1
∂x3

∂r2
∂x1

∂r2
∂x2

∂r2
∂x3

∂r3
∂x1

∂r3
∂x2

∂r3
∂x3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎣

A B

C 0

⎤⎥⎥⎥⎥⎦

where

A =
⎡⎢⎢⎢⎢⎢⎣

∂r1
∂x1

∂r1
∂x2

∂r2
∂x1

∂r2
∂x2

⎤⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎣

∂r1
∂x3
∂r2
∂x3

⎤⎥⎥⎥⎥⎥⎦
, and C = [ ∂r3∂x1

∂r3
∂x2

] .

We can also break up the x and rmatrices:

∆x = xk+1 − xk = [
∆xvs

∆x3
] , r = [

rvs

r3
] where rvs = [r1r2

] and ∆xvs = [∆x1∆x2
] .

�en

[
∆xvs

∆x3
] = −

⎡⎢⎢⎢⎢⎣

A B

C 0

⎤⎥⎥⎥⎥⎦

−1
[
rvs

r3
] Ô⇒

⎡⎢⎢⎢⎢⎣

A B

C 0

⎤⎥⎥⎥⎥⎦
[
∆xvs

∆x3
] = −[

rvs

r3
]

or

A∆xvs +B∆x3 = −rvs and C∆xvs = −r3 .

From the �rst equation above,

∆xvs = −A−1 rvs −A−1B∆x3 .

Plugging in the second equation gives

r3 = CA−1 rvs + CA−1B∆x3 .

Rearranging,

∆x3 = xk+13 − xk3 =
−CA−1 rvs + r3

CA−1B
.

Using the above result,

∆xvs = −A−1 rvs −A−1B
⎛
⎜
⎝

−CA−1 rvs + r3
CA−1B

⎞
⎟
⎠
.

We therefore have to invert only a 2 × 2 matrix.
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19.3.3 Tangent calculation: elastic

We want to �nd the derivative of the stress with respect to the strain:

∂σ
∂є

= 1⊗ ∂p
∂є

+
√

2
3 n ⊗

∂q
∂є

+
√

2
3 q

∂n
∂є

. (19.3)

For the �rst term above,

∂p
∂є

= p0 exp [−
εev − εev0

κ̃
] ∂β
∂є

− p0
β
κ̃
exp [− ε

e
v − εev0
κ̃

] ∂ε
e
v

∂є
= p0 exp [−

εev − εev0
κ̃

](∂β
∂є

− β
κ̃
∂εev
∂є

) .

Now,

∂β
∂є

= 3α
κ̃
εes
∂εes
∂є

.

�erefore,

∂p
∂є

= p0
κ̃

exp [− ε
e
v − εev0
κ̃

](3α εes
∂εes
∂є

− β ∂ε
e
v

∂є
) .

We now have to �gure out the other derivatives in the above expression. First,

∂εes
∂є

=
√

2
3

1√
ee ∶ ee

∂ee

∂є
∶ ee =

√
2
3

1
∥ee∥

(∂є
e

∂є
− 1

31⊗
∂εev
∂є

) ∶ ee .

For the special situation where all the strain is elastic, є = єe , and (see Wikipedia article on tensor deriva-
tives)

∂єe

∂є
= ∂є
∂є

= I(s) and
∂εev
∂є

= ∂εv
∂є

= 1 .

�at gives us

∂εes
∂є

=
√

2
3

1
∥ee∥

(I(s) − 1
31⊗ 1) ∶ ee =

√
2
3

1
∥ee∥

[ee − 1
3 tr(e

e)1] .

But tr(ee) = 0 because this is the deviatoric part of the strain and we have

∂εes
∂є

=
√

2
3
ee

∥ee∥
=
√

2
3 n and

∂εev
∂є

= 1 .

Using these, we get

∂p
∂є

= p0
κ̃

exp [− ε
e
v − εev0
κ̃

] (
√
6 α εes n − β 1) . (19.4)

�e derivative of q with respect to є can be calculated in a similar way, i.e.,

∂q
∂є

= 3µ ∂ε
e
s

∂є
+ 3εes

∂µ
∂є

= 3µ ∂ε
e
s

∂є
− 3 p0

κ̃
α εes exp [−

εev − εev0
κ̃

] ∂εev
∂є

.

Using the expressions in the boxes above,

∂q
∂є

=
√
6 µ n − 3 p0

κ̃
exp [− ε

e
v − εev0
κ̃

] α εes 1 . (19.5)
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Also,

∂n
∂є

=
√

2
3 [ 1

εes
∂ee

∂є
− 1

(εes )2
ee ⊗ ∂εes

∂є
] .

Using the previously derived expression, we have

∂n
∂є

=
√

2
3
1
εes

[I(s) − 1
3 1⊗ 1 −

√
2
3
1
εes
ee ⊗ ee

∥ee∥
]

or

∂n
∂є

=
√

2
3
1
εes

[I(s) − 1
3 1⊗ 1 − n ⊗ n] . (19.6)

Plugging the expressions for these derivatives in the original equation, we get

∂σ
∂є

= p0
κ̃

exp [− ε
e
v − εev0
κ̃

] (
√
6 α εes 1⊗ n − β 1⊗ 1) + 2µ n ⊗ n −

√
6
p0
κ̃

exp [− ε
e
v − εev0
κ̃

] α εes n ⊗ 1+

2
3
q
εes

[I(s) − 1
3 1⊗ 1 − n ⊗ n] .

Reorganizing,

∂σ
∂є

=
√
6 p0 α εes
κ̃

exp [− ε
e
v − εev0
κ̃

] (1⊗ n + n⊗ 1) − ( p0β
κ̃

exp [− ε
e
v − εev0
κ̃

] + 2
9
q
εes

) 1⊗ 1+

2(µ − 1
3
q
εes

) n ⊗ n + 2
3
q
εes

I(s) .
(19.7)

19.3.4 Tangent calculation: elastic-plastic

From the previous section recall that

∂σ
∂є

= 1⊗ ∂p
∂є

+
√

2
3 n ⊗

∂q
∂є

+
√

2
3 q

∂n
∂є

where

∂p
∂є

= p0
κ̃

exp [− ε
e
v − εev0
κ̃

](3α εes
∂εes
∂є

− β ∂ε
e
v

∂є
) ,

∂q
∂є

= 3µ ∂ε
e
s

∂є
− 3 p0

κ̃
α εes exp [−

εev − εev0
κ̃

] ∂εev
∂є

and

∂n
∂є

=
√

2
3 [ 1

εes
∂ee

∂є
− 1

(εes )2
ee ⊗ ∂εes

∂є
] .

�e total strain is equal to the elastic strain for the purely elastic case and the tangent is relatively straight-
forward to calculate. For the elastic-plastic case we have

єen+1 = єetrial − ∆γ [
∂ f
∂σ

]
n+1

.

Dropping the subscript n + 1 for convenience, we have

∂єe

∂є
=
∂єetrial
∂є

− ∂ f
∂σ

⊗∂∆γ
∂є

−∆γ ∂
∂є

[ ∂ f
∂σ

] = I(s)−[2p − pc
3

1 +
√

3
2
2q
M2 n]⊗

∂∆γ
∂є

−∆γ ∂
∂є

[2p − pc
3

1 +
√

3
2
2q
M2 n] .

19.4 Caveats

�eCam-Clay implementation in Vaango behaves reasonably for moderate strains but is known to fail to
converge for high-rate applications that involve very large plastic strains.
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For a more detailed description and a sample of the input �le format, please see the manual in the
ArenaSoil directory.

�e convention used in Vaango is that tension is positive and compression is negative. To keep the nota-
tion simple we de�ne, for any x,

x ∶= −x , ẋ ∶= ∂x
∂t

. (20.1)

20.1 Elasticity

�e elasticity model used by Arena has the form
˙σe� = σ̇ − α̇ = Ce(σ , εp, ϕ, Sw) ∶ ε̇e − λ̇Z (20.2)

where σe� is the e�ective stress, σ is the unrotated Cauchy stress, α is the backstress,Ce is a tangent elastic
modulus which depends on the stress (and also the plastic strain εp, porosity ϕ, and water saturation Sw),
the elastic strain is εe, λ̇ is the plastic 
ow rate, and Z in an elastic-plastic coupling tensor.

�e model assumes that the tangent modulus tensor is isotropic and can be expressed as

Ce = (K − 2
3G) I ⊗ I + 2G I (20.3)

where K(σ , α, εp, ϕ, Sw) is the bulk modulus, G(σ , α, εp, ϕ, Sw) is the shear modulus, I is rank-2 identity
tensor, and I is the symmetric part of the rank-4 identity tensor.

If the e�ective stress is decomposed into volumetric and deviatoric parts:

σe� = −p I + s , p ∶= 1
3 tr(σ

e�) , s ∶= σe� − 1
3 tr(σ

e�)I (20.4)

and the elastic strain is also decomposed into volumetric and deviatoric parts

εe = − 1
3 ε
e
v I + γe , εev ∶= tr(εe) , γe ∶= εe − 1

3 tr(ε
e)I (20.5)

the elasticity model (without the coupling term), simpli�es to

ṗ = K(σ , α, εp, ϕ, Sw)ε̇ev , ṡ = 2G(σ , α, εp, ϕ, Sw) γ̇e . (20.6)

�e partially saturated Arena model assumes the moduli depend only on

I1 ∶= tr(σ) , ζ = tr(α) , εpv ∶= tr(εp) , ϕ , Sw . (20.7)
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20.1.1 Bulk modulus model: Solid matrix material

�e pressure in the solid matrix is expressed as

ps = Ksεsv ; εsv ∶= ln(Vs0
Vs

) (20.8)

where ps is the solid matrix pressure, Ks is the solid bulk modulus, εsv is the volumetric strain, Vs0 is the
initial volume of the solid, and Vs is the current volume of the solid. �e solid bulk modulus is assumed
to modeled by the Murnaghan equation:

Ks(ps) = Ks0 + ns (ps − ps0) (20.9)

where Ks0 and ns are material properties, and ps0 is a reference pressure.

20.1.2 Bulk modulus model: Pore water

�e equation of state of the pore water is

pw = Kwεwv + p0 ; εwv ∶= ln(Vw0
Vw

) (20.10)

where pw is the water pressure, Kw is the water bulk modulus, Vw0 is the initial volume of water, Vw is the
current volume of water, p0 is the initial water pressure, and εwv is the volumetric strain in the water. We
use the isothermal Murnaghan bulk modulus model for water:

Kw(pw) = Kw0 + nw (pw − pw0) (20.11)

where Kw0 and nw are material properties, and pw0 is a reference pressure.

20.1.3 Bulk modulus model: Pore air

�e isentropic ideal gas equation of state for the pore air is

pa = pr [exp(γ εav) − 1] ; εav ∶= ln(Va0
Va

) (20.12)

where the quantities with subscript a represent quantities for the air model analogous to those for the
water model in (20.10), pr is a reference pressure (101325 Pa) and γ = 1.4. �e bulk modulus of air (Ka)
varies with the volumetric strain in the air:

Ka =
dpa
dεav

= γ pr exp(γ εav) = γ (pa + pr) . (20.13)

20.1.4 Bulk modulus model: Drained soil

�e pressure model for drained soils has the form

pe�

Ks(pe�)
= b0 εev +

b1(εev)b4

b2(εev)b4 + b3
(20.14)

where the material parameters are b0 > 0, b1 > 0, b2 > 0, b3 > 0, b4 > 1. Dependence on plastic strain can
be added to the model if necessary.

�e tangent bulk modulus is de�ned as

Kd(pe�) ∶=
dpe�

dεev
. (20.15)
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�en, using (20.14),

Kd(pe�) =
[Ks(pe�)]2

[Ks(pe�) − nspe�]

⎡⎢⎢⎢⎢⎣
b0 +

b1b3b4(εev)b4−1

[b2(εev)b4 + b3]
2

⎤⎥⎥⎥⎥⎦
. (20.16)

To express (20.16) in closed-form in terms of p we have to eliminate εev . But a closed form expression
for the volumetric elastic strain cannot be derived from the pressure model. So we �nd an approximate
form of (20.14) by assuming b0 → 0. �is approximation is valid at moderate to large strains. �en, from
(20.14) with b0 = 0, we have

εev ≈ [ b3pe�

b1Ks(pe�) − b2pe�
]
1/b4

(20.17)

and (20.16) can be expressed in terms of p as

Kd(pe�) =
[Ks(pe�)]2

[Ks(pe�) − nspe�]

⎡⎢⎢⎢⎢⎢⎢⎣

b0 +
b1b3b4 ( b3peff

b1Ks(peff)−b2peff )
1−1/b4

[b2 ( b3peff
b1Ks(peff)−b2peff ) + b3]

2

⎤⎥⎥⎥⎥⎥⎥⎦

. (20.18)

20.1.5 Bulk modulus model: Partially saturated soil

�e pressure in the partially saturated soil (p) is given by

p = ∫ K(I1, ζ , εpv , ϕ, Sw) dεev . (20.19)

Note that

pe� = 1
3(I1 − ζ) . (20.20)

�e tangent bulkmodulus of the partially saturated soil is found using a variation on the Grassmanmodel
for fully saturated rocks:

K(pe�, εpv , ϕ, Sw) = Kd(pe�) +
(1 − Kd(peff)

Ks(peff) )
2

1
Ks(peff) (1 −

Kd(peff)
Ks(peff) ) + ϕ ( 1

K f (ζ)
− 1

Ks(peff))
(20.21)

where K is the e�ective bulkmodulus of the partially saturated soil, Kd is the bulkmodulus of the drained
soil, K f is the bulk modulus of the pore 
uid, and Ks is the bulk modulus of the solid grains. At partial
saturation, we compute the pore 
uid bulkmodulus using a harmonicmean (lower bound) on the air and
water bulk moduli (Ka ,K f ):

1
K f (ζ)

= Sw
Kw(ζ)

+ 1 − Sw
Ka(ζ)

. (20.22)

20.1.6 Shear modulus model: Drained soil

�e shearmodulus is typically assumed to be constant. However, a variable shearmodulusmay be needed
to �t experimental data and to prevent negative values of Poisson’s ratio in the simulations. In those
situations a variable Poisson’s ratio (ν) is de�ned as

ν = ν1 + ν2 exp
⎡⎢⎢⎢⎢⎣
−Kd(p

e�, εpv , ϕ, Sw)
Ks(pe�)

⎤⎥⎥⎥⎥⎦
(20.23)

where ν1 and ν2 are material parameters. �e shear modulus is computed using the Poisson’s ratio and
the drained bulk modulus:

G(pe�, εpv , ϕ, Sw) =
3Kd(pe�, ε

p
v , ϕ, Sw)(1 − 2ν)
2(1 + ν)

. (20.24)
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20.2 Rate-independent plasticity

20.2.1 Yield function

�e Arena yield function is

f =
√
J2 − F f (I1, ζ) Fc(I1, ζ , X , κ) =

√
J2 − F f (pe�) Fc(pe�, X , κ) (20.25)

where

F f (pe�) = a1 − a3 exp[−3a2pe�)] + 3a4pe� (20.26)

and

Fc(pe�, X , κ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 for 3pe� ≤ κ¿
ÁÁÁÀ1 −

⎛
⎝
3pe� − κ
X − κ

⎞
⎠

2

for 3pe� > κ .
(20.27)

Here X is the hydrostatic compressive strength, κ is the branch point at which the cap function Fc starts
decreasing until it reaches the hydrostatic strength point (X , 0), and

J2 = 1
2s ∶ s . (20.28)

Non-associativity is modeled using a parameter β that modi�es
√
J2 (see 20.8).

20.2.2 Hydrostatic compressive strength: Drained soil

�e drained crush curve model is used to compute X and has the form

εpv − p3 = ln

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1 − exp(−p3)

1 + ( Xd−p0
p1 )

p2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (20.29)

where p0, p1, p2, p3 aremodel parameters and ξ = X−p0 where X is the hydrostatic compressive strength.
�e parameter p3 is related to the initial porosity (ϕ0) by p3 = − ln(1 − ϕ0).
�e drained hydrostatic compressive strength (Xd/3) is found from the drained material crush curve
using

Xd(ε
p
v , ϕ0) − p0 = p1

⎡⎢⎢⎢⎢⎣

1 − exp(−p3)

1 − exp(−p3 + εpv )
− 1

⎤⎥⎥⎥⎥⎦

1/p2
, p3 ∶= − ln(1 − ϕ0) . (20.30)

20.2.3 Hydrostatic compressive strength: Partially saturated soil

�e elastic part of the volumetric strain at yield is de�ned in the model as

εe ,yieldv (εpv ) =
Xd(ε

p
v , ϕ0)

3Kd ( 1
2
Xd(εpv ,ϕ0)

3 )
(20.31)

where Xd is found from the drained material crush curve.

�e elastic volumetric strain at yield is assumed to be identical for drained and partially saturated mate-
rials. With this assumption, the compressive strength of a partially saturated sand is given by

X(εpv ) = 3K(pe�, εpv , ϕ, Sw) ε
e ,yield
v (εpv ) (20.32)

where K is the bulk modulus of the partially saturated material.
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20.2.4 Backstress: Pore pressure

�e pore pressure as an isotropic backstress (ζ) that translates the Cauchy stress to the e�ective stress:

σe� = σ − ζI , ζ ∶= −[(1 − Sw)pa + Sw pw] . (20.33)

In the elastically unloaded state (where the e�ective stress is zero) we assume that the pore pressure (ζ) is
related to the volumetric plastic strain by

exp(−εpv ) = ϕ0 (1− S0) exp [−
1
γ
ln( ζ

pr
+ 1)]+ϕ0 S0 exp(−

ζ − p0
Kw

)+(1−ϕ0) exp(−
ζ
Ks

) . (20.34)

�is equation can be solved for ζ(εpv ) using a root �nding algorithm.
Alternatively, this equation can be converted into rate form and integrated using an explicit time stepping
method if a Newton solve is too expensive or fails to converge:

ζ = ∫
dζ

dεpv
dεpv . (20.35)

where

dζ

dεpv
= exp(−εpv )

B
, (20.36)

and

B ∶= [ϕ0 (1 − S0)
γ(pr + ζ)

] exp [− 1
γ
ln( ζ

pr
+ 1)] + ϕ0 S0

Kw
exp( p0 − ζ

Kw
) + 1 − ϕ0

Ks
exp(− ζ

Ks
) . (20.37)

20.3 Rate-dependent plasticity

20.4 Porosity and saturation

�e total volumetric strain is given by

exp(εv) = (1 − S0)ϕ0 exp(εav) + S0ϕ0 exp(εwv ) + (1 − ϕ0) exp(εsv) (20.38)

where ϕ0, S0 are the initial porosity and saturation, and

εwv (εv) = −
p(εv) − p0

Kw
, εav(εv) = −

1
γ
ln [1 + p(εv)

pr
] , εsv(εv) = −

p(εv)
Ks

. (20.39)

We can combine (20.38) and (20.39) to solve for p(εv) and then compute the volumetric strain in the air
in terms of the total volumetric strain.

20.4.1 Saturation

�e saturation function Sw(εv), is given by

Sw(εv) =
C(εv)

1 + C(εv)
, C(εv) ∶= ( S0

1 − S0
) exp(εwv ) exp(−εav) . (20.40)

20.4.2 Porosity

�e porosity evolution equation (in the elastically unloaded state) for partially saturated sand has the
form

ϕ(εv) = ϕ0 (
1 − S0

1 − Sw(εv)
) [exp(ε

a
v)

exp(εv)
] . (20.41)



150 Arena: Partially Saturated Soils

20.5 Summary of partially saturated soil model

Summary 20.5.1 Bulkmodulusmodel

Drained soil:
�e equation of state of the drained soil is

Kd =
[Ks]2

[Ks − nspe�]

⎡⎢⎢⎢⎢⎣
b0 +

b1b3b4(εev)b4−1

[b2(εev)b4 + b3]
2

⎤⎥⎥⎥⎥⎦
, εev ≈ [ b3pe�

b1Ks − b2pe�
]
1/b4

.

Partially saturated soil:
�e bulk modulus model is

K = Kd +
(1 −

Kd
Ks

)
2

1
Ks

(1 −
Kd
Ks

) + ϕ (
Sw
Kw

+
1 − Sw
Ka

−
1
Ks

)

where

Ks(p) = Ks0 + ns (p − ps0) , Kw(p) = Kw0 + nw (p − pw0) , Ka(p) = γ (p + pr)

Summary 20.5.2 Shearmodulusmodel

�e shear modulus is either a constant (G0) or determined using a variable Poisson’s ratio (ν)

ν = ν1 + ν2 exp
⎡⎢⎢⎢⎢⎣
−Kd(p

e�, εpv , ϕ, Sw)
Ks(pe�)

⎤⎥⎥⎥⎥⎦

G(pe�, εpv , ϕ, Sw) =
3Kd(pe�, ε

p
v , ϕ, Sw)(1 − 2ν)
2(1 + ν)

.
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Summary 20.5.3 Yield function

�e Arena yield function is

f =
√
J2 − F f (I1, ζ) Fc(I1, ζ , X , κ) =

√
J2 − F f (pe�) Fc(pe�, X , κ) (20.42)

where

F f (pe�) = a1 − a3 exp[−3a2pe�)] + 3a4pe� (20.43)

and

Fc(pe�, X , κ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 for 3pe� ≤ κ¿
ÁÁÁÀ1 −

⎛
⎝
3pe� − κ
X − κ

⎞
⎠

2

for 3pe� > κ .
(20.44)

Non-associativity is modeled using a parameter β that modi�es
√
J2.

Summary 20.5.4 Hydrostatic strengthmodel

Drained soil:

Xd(ε
p
v ) − p0 = p1

⎡⎢⎢⎢⎢⎣

1 − exp(−p3)

1 − exp(−p3 + εpv )
− 1

⎤⎥⎥⎥⎥⎦

1/p2
, p3 = − ln(1 − ϕ0) .

Partially saturated soil:

X(εpv ) = 3K(I1, εpv , ϕ, Sw) ε
e ,yield
v (εpv )

where

εe ,yieldv (εpv ) =
Xd(ε

p
v )

3Kd
⎛
⎜
⎝

Xd(ε
p
v )

6
, εpv

⎞
⎟
⎠
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Summary 20.5.5 Pore pressuremodel

Solve g(ζ , εpv ) = 0 for ζ.

g(ζ , εpv ) = − exp(−ε
p
v )+ϕ0 (1−S0) exp [−

1
γ
ln( ζ

pr
+ 1)]+ϕ0 S0 exp(−

ζ − p0
Kw

)+(1−ϕ0) exp(−
ζ
Ks

) .

Alternatively, integrate

ζ = ∫
dζ

dεpv
dεpv .

where

dζ

dεpv
= exp(−εpv )

B
,

and

B ∶= [ϕ0 (1 − S0)
γ(pr + ζ)

] exp [− 1
γ
ln( ζ

pr
+ 1)] + ϕ0 S0

Kw
exp( p0 − ζ

Kw
) + 1 − ϕ0

Ks
exp(− ζ

Ks
) .

Summary 20.5.6 Saturation and porosity evolution

Saturation:

Sw(εv) =
C(εv)

1 + C(εv)
, C(εv) ∶= ( S0

1 − S0
) exp(εwv ) exp(−εav) .

where ϕ0, S0 are the initial porosity and saturation, and

εwv (εv) = −
p(εv) − p0

Kw
, εav(εv) = −

1
γ
ln [1 + p(εv)

pr
] , εsv(εv) = −

p(εv)
Ks

.

Porosity:

ϕ(εv) = ϕ0 (
1 − S0

1 − Sw(εv)
) [exp(ε

a
v)

exp(εv)
] . (20.45)

Note that

exp(εv) = (1 − S0)ϕ0 exp(εav) + S0ϕ0 exp(εwv ) + (1 − ϕ0) exp(εsv)

20.6 Computing the stress and internal variables

�e partially saturated soil model uses Michael Homel’s “consistency bisection” algorithm to �nd the
plastic strain direction and to update the internal state variables. A closest-point return algorithm in
transformed stress space is used to project the trial stress state on to the yield surface. Because of the
nonlinearities in the material models, it is easier to solve the problem by dividing the strain increment to
substeps.



20.6 Computing the stress and internal variables 153

�e partially saturated soil model treats the porosity (ϕ) and saturation (Sw) as internal variables in ad-
dition to the hydrostatic compressive strength (X), the isotropic backstress (ζ), and the plastic strain (εp)
which are used by the fully saturated model.

�e inputs to the rate-independent stress update algorithm for a single material point are:

• dn : the rate of deformation at time t = tn; de�ned as d ∶= 1
2(l + l

T) where l = ∇v and v is the
velocity �eld.

• ∆t : the time step
• σn : the unrotated Cauchy step at time t = tn.
• ϕn : the porosity at time t = tn.
• Snw : the saturation at time t = tn.
• Xn : the hydrostatic compressive strength at time t = tn.
• ζn : the trace of the backstress at time t = tn.
• εp,n : the plastic strain at time t = tn.

A�er the return algorithm has been exercised, the outputs from the algorithm are:

• σn+1 : the unrotated Cauchy step at time t = tn+1 = tn + ∆t.
• ϕn+1 : the porosity at time t = tn+1.
• Sn+1w : the saturation at time t = tn+1.
• Xn+1 : the hydrostatic compressive strength at time t = tn+1.
• ζn+1 : the trace of the backstress at time t = tn+1.
• εp,n+1 : the plastic strain at time t = tn+1.

�e update algorithm uses the standard predictor-corrector approach of hypoelastic-plasticity where a
trial predictor stress is computed �rst and then a corrector return algorithm is used to locate the position
of the correct stress on the yield surface. �is approach requires that the trial stress (σ trial) is computed
using the relation

σ trial = σn +Ce ∶ (d∆t) (20.46)

where Ce is an elastic modulus that is typically assumed to be constant over the time step ∆t. �ough
this assumption su�ces for nonlinear elastic materials if the rate of deformation is small or the timestep
is small or both, for large d∆t signi�cant errors can enter the calculation. �e Vaango implementation
assumes that Ce is the tangent modulus at the beginning of a timestep (or load substep).

Caveat:

�e partially saturated soil model has been developed for an explicit dynamics code where tiemsteps are
typically very small. Care should be exercised if the application domain requires timesteps to be large.

Remark:

Note that in the Kayenta model (which is the basis for Arenisca and Arena), the bulk modulus has a high pressure limit. �is
limit was used by Michael Homel in Arenisca3 and Arenisca4 to de�ne conservative elastic properties during the stress and
internal variable update. However, the bulk modulus model used by the partially saturated version of Arena does not have this
limit. �erefore the trial stress for the partially saturated model is computed using an alternative approach that assumes that the
elastic moduli are those at the beginning of the timestep (or load substep).

A�er the trial stress is computed, the timestep is subdivided into substeps based on the characteristic
dimension of the yield surface relative to the magnitude of the trial stress increment (σ trial − σn). �e
substep size is then recomputed by comparing the elastic properties at σ trial with those at σn to make sure
that the nonlinear elastic solution is accurate.

�e pseudocode for the algorithm is given below.

Algorithm 15�e stress and internal variable update algorithm
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1: procedure rateIndependentPlasticUpdate(dn, ∆t, σn, ϕn, Snw , Xn, ζn, εp,n)
2: Kn,Gn ← computeElasticModuli(σn, εp,n, ϕn, Snw) ▷Compute tangent bulk and shear
modulus

3: σ trial ← computeTrialStress(σn, Kn, Gn, dn, ∆t) ▷Compute trial stress
4: nsub ← computeStepDivisions(σn, εp,n, ϕn, Snw , σ trial) ▷Compute number of substeps

5: δt ←
∆t
nsub

▷Substep timestep

6: σold ← σn, εp,old ← εp,n, ϕold ← ϕn, Soldw ← Snw , Xold ← Xn, ζold ← ζn

7: χ ← 1, tlocal ← 0.0 ▷Initialize substep multiplier and accumulated time increment
8: isSuccess← FALSE
9: repeat
10: isSuccess, σnew, εp,new, ϕnew, Sneww , Xnew, ζnew ← computeSubstep(σold, εp,old, ϕold, Soldw ,

Xold, ζold, dn, δt) ▷Compute updated stress and internal variable for the current substep
11: if isSuccess = TRUE then
12: tlocal ← tlocal + δt
13: σold ← σnew, εp,old ← εp,new, ϕold ← ϕnew, Soldw ← Sneww Xold ← Xnew, ζold ← ζnew

14: else
15: χ ← 2χ
16: δt ← δt/2 ▷Halve the timestep
17: if χ > CHI MAX then
18: return IsSuccess, σn, ϕn, Snw , Xn, ζn, εp,n ▷Algorithm has failed to converge
19: end if
20: end if
21: until tlocal ≥ ∆t
22: return IsSuccess, σnew, ϕnew, Sneww , Xnew, ζnew, εp,new ▷Algorithm has converged
23: end procedure

Algorithm 16 Computing the elastic moduli
1: procedure computeElasticModuli(σn, εp,n, ϕn, Snw)
2: K ← 0, G ← 0
3: I1 ← −tr(σn), εpv ← −tr(εp,n)
4: if Snw > 0 then
5: K ,G ← computePartialSaturatedModuli(I1, ε

p
v , ϕn, Snw)

6: else
7: K ,G ← computeDrainedModuli(I1, ε

p
v )

8: end if
9: return K ,G
10: end procedure

Algorithm 17 Computing the partially saturated elastic moduli
Require: Ks0, ns, ps0, Kw0, nw , pw0, γ, pr
1: procedure computePartialSaturatedModuli(I1, ε

p
v , ϕn, Snw)

2: if I1 > 0 then
3: p ← I1/3
4: Ks ← Ks0 + ns(p − ps0)
5: Kw ← Kw0 + nw(p − pw0)
6: Ka ← γ(p + pr)
7: Kd ,G ← computeDrainedModuli(I1, ε

p
v )

8: K f ← 1.0/ [Snw/Kw + (1.0 − Snw)/Ka] ▷Bulk modulus of air + water mixture
9: numer← (1.0 − Kd/Ks)2
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10: denom← (1.0/Ks) (1.0 − Kd/Ks) + ϕn (1.0/K f − 1.0/Ks)
11: K ← Kd + numer/denom ▷Bulk modulus of partially saturated material (Biot-Grassman
model)

12: else
13: K ,G ← computeDrainedModuli(I1, ε

p
v )

14: end if
15: return K ,G
16: end procedure

Algorithm 18 Computing the drained elastic moduli
Require: Ks0, ns, ps0, b0, b1, b2, b3, b4, G0, ν1, ν2
1: procedure computeDrainedModuli(I1, ε

p
v )

2: if I1 > 0 then
3: p ← I1/3
4: Ks ← Ks0 + ns(p − ps0)
5: Kratios ← Ks/(1.0 − ns ∗ p/Ks)
6: εev ← pow((b3 ∗ p)/(b1Ks − b2p), (1.0/b4));
7: y ← pow(εev , b4)
8: z ← b2y + b3
9: K ← Kratios [b0 + (1/εev)b1b3b4y/z2]; ▷ Compute compressive bulk modulus
10: ν = ν1 + ν2 exp(−K/Ks)
11: G ← G0
12: if ν > 0 then
13: G ← 1.5K (1.0 − 2.0ν)/(1.0 + ν) ▷Update the shear modulus (if nu1, ν2 > 0)
14: end if
15: else
16: K ← b0Ks0 ▷Tensile bulk modulus = Bulk modulus at p = 0
17: G ← G0 ▷Tensile shear modulus
18: end if
19: return K ,G
20: end procedure

Algorithm 19 Computing the trial stress
1: procedure computeTrialStress(σn, Kn, Gn, dn, ∆t)
2: ∆ε ← dn ∆t ▷Total strain increment
3: ∆εiso ← 1

3 tr(∆ε)I
4: ∆εdev ← ∆ε − ∆εiso
5: σ trial ← σn + 3Kn∆εiso + 2Gn∆εdev
6: return σ trial
7: end procedure

Algorithm 20 Computing the initial number of substeps

Require: nmax , Ipeak1 , STREN, є ← 10−4

1: procedure computeStepDivisions(σn, εp,n, ϕn, Snw , σ trial, Xn)
2: Kn,Gn ← computeElasticModuli(σn, εp,n, ϕn, Snw)
3: Ktrial,Gtrial ← computeElasticModuli(σ trial, εp,n, ϕn, Snw)
4: nbulk ← ⌈∣Kn − Ktrial∣ /Kn⌉ ▷Compute change in bulk modulus
5: ∆σ ← σ trial − σn
6: L ← 1

2(I
peak
1 − Xn)
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7: if STREN > 0.0 then
8: L ← min(L, STREN)
9: end if
10: nyield ← ⌈є × ∥∆σ∥ /L⌉ ▷Compute trial stress increment relative to yield surface size
11: nsub ← max(nbulk, nyield) ▷nsub is the maximum of the two values
12: if nsub > nmax then
13: nsub ← −1
14: else
15: nsub ← min(max(nsub, 1), nmax)
16: end if
17: return nsub
18: end procedure

Algorithm 21 Computing the stress and internal variable update for a substep

1: procedure computeSubstep(σold, εp,old, ϕold, Soldw , Xold, ζold, dn, δt)
2: Kold,Gold ← computeElasticModuli(σold, εp,old, ϕold, Soldw ) ▷Compute tangent bulk and
shear modulus

3: δε ← dnδt ▷Compute strain increment
4: σ trial ← computeTrialStress(σold, Kold, Gold, dn, ∆t) ▷Compute trial stress
5: Itrial1 ,

√
Jtrial2 ← stressInvariants(σ trial) ▷Compute invariants of the trial stress

6: isElastic← evalYieldCondition(Itrial1 ,
√
Jtrial2 , Xold, ζold, Kold, Gold, β)

7: if isElastic = TRUE then
8: σnew ← σ trial, εp,new ← εp,old, ϕnew ← ϕold, Sneww ← Soldw , Xnew ← Xold, ζnew ← ζold

9: isSuccess = TRUE
10: return isSuccess, σnew, εp,new ϕnew, Sneww , Xnew, ζnew

11: end if
12: σ0, δεp,0 ← nonHardeningReturn(σold, σ trial, δε, Xold, ζold, Kold, Gold, β, Ipeak1 ) ▷Compute
return to updated yield surface (no hardening)

13: isSuccess, σnew, εp,new, Xnew, ζnew, Kmid, Gmid ← consistencyBisection(εp,old, δεp,0, ζold, σ0,
σ trial, Kold, Gold, β, Ipeak1 )

14: if iSuccess = FALSE then
15: return isSuccess, σold, εp,old, ϕold, Soldw , Xold, ζold
16: end if
17: return isSuccess, σnew, εp,new, ϕnew, Sneww , Xnew, ζnew

18: end procedure

20.7 The consistency bisection algorithm

20.7.1 Fixed (nonhardening) yield surface

Let the stress at the beginning of the load step be σold and let the trial stress be σ trial. Assume the yield
surface is �xed and let the correct projection of the trial stress on to the �xed yield surface be σnew,0.

�e increment of stress for the load step (∆σ0) is related to the elastic strain increment (∆εe,0)by

∆σ0 = σnew,0 − σold = C ∶ ∆εe,0 (20.47)

whereC is a constant elastic modulus tensor. �e elastic modulus tensor can be assumed to be an average
value of the nonlinear tangent modulus for the load step.

If we know C, we can compute the elastic strain increment using

∆εe,0 = C−1 ∶ ∆σ0 . (20.48)
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For a strain driven update algorithm, the total strain increment ∆ε is known. Assuming that the total
strain increment can be additively decomposed into an elastic and a plastic part, we can �nd the plastic
strain increment (∆εp,0) using

∆εp,0 = ∆ε − ∆εe,0 . (20.49)

20.7.2 Hardening yield surface

Now, if we allow the yield surface to harden, the distance between the trial stress point and its projection
on to the yield surface decreases compared to that for a �xed yield surface. If ∆εp is the plastic strain
increment for a hardening yield surface, we have

∆εp > ∆εp,0 (20.50)

where the inequality can be evaluated using an appropriate Euclidean norm. Note that this distance is
proportional to the consistency parameter λ̇.

Fully saturatedmodel

In the fully saturated version of the Areniscamodel, the internal variables are the hydrostatic compressive
strength (X) and the scalar isotropic backstress (ζ). �ese depend only on the volumetric plastic strain
increment

∆εpv = tr(∆εp) . (20.51)

Because

∆εpv > ∆ε
p,0
v (20.52)

we can de�ne a parameter, η ∈ (0, 1), such that

η ∶=
∆εpv
∆εp,0v

. (20.53)

Because the solution is bounded by the �xed yield surface, a bisection algorithm can be used to �nd the
parameter η.

Partially saturatedmodel

TODO

20.7.3 Bisection algorithm: Fully saturated

Algorithm 22�e consistency bisection algorithm for fully saturated materials

1: procedure consistencyBisection(εp,old, δεp,0, ζold, σ0, σ trial, Kold, Gold, β, Ipeak1 )
2: σnew ← σ0, δεp ← δεp,0

3: εp,oldv ← tr(εp,old), δεp,oldv ← tr(δεp,old)
4: i ← 1
5: ηin ← 0, ηout ← 1
6: repeat
7: j ← 1
8: isElastic← TRUE
9: while isElastic = TRUE do
10: ηmid ← 1

2(η
out + ηin)
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11: Xnew ← computeHydrostaticStrength(εp,oldv + ηmid δεp,0v ) ▷Update the hydrostatic
compressive strength

12: ∂ζ
∂εpv

← computeDerivativeOfBackstress(Arguments?)

13: ζnew ← ζold + ( ∂ζ
∂εpv

) × (ηmid δεp,0v ) ▷Update the isotropic backstress

14: Itrial1 ,
√
Jtrial2 ← stressInvariants(σ trial) ▷Compute invariants of the trial stress

15: isElastic← evalYieldCondition(Itrial1 ,
√
Jtrial2 , Xnew, ζnew, Kold, Gold, β)

16: ηout ← ηmid ▷Too much plastic strain
17: j ← j + 1
18: if j ≥ jmax then
19: isSuccess← FALSE
20: return isSuccess
21: end if
22: end while
23: σmid ← 1

2(σ
old + σnew)

24: εp,mid ← εp,old + 1
2η
mid δεp,0

25: Kmid,Gmid ← computeElasticModuli(σmid, εp,mid)
26: σnew, δεp,new ← nonHardeningReturn(σold, σ trial, δεnew, Xnew, ζnew, Kmid, Gmid, β, Ipeak1 )

▷Compute return to updated yield surface (no hardening)
27: if sign(tr(σ trial − σnew)) ≠ sign(tr(σ trial − σ0)) or ∥δεp,new∥2 > ηmid ∥δεp,0∥2 then
28: ηout ← ηmid ▷Too much plastic strain
29: else
30: if ∥δεp,new∥2 < ηmid ∥δεp,0∥2 then
31: ηin ← ηmid ▷Too little plastic strain
32: end if
33: end if
34: i ← i + 1
35: if i ≥ imax then
36: isSuccess← FALSE
37: return isSuccess
38: end if
39: until abs(∥δεp,new∥2 − ηmid ∥δεp,0∥2) < TOLERANCE
40: εp,new = εp,old + δεp,new ▷Update the plastic strain
41: Xnew ← computeHydrostaticStrength(tr(εp,new)) ▷Update the hydrostatic compressive
strength

42: ∂ζ
∂εpv

← computeDerivativeOfBackstress(Arguments?)

43: ζnew ← ζold + ( ∂ζ
∂εpv

) × (tr(δεp,new)) ▷Update the isotropic backstress
44: isSuccess← TRUE
45: return isSuccess, σnew, εp,new, Xnew, ζnew, Kmid, Gmid
46: end procedure

20.8 The nonhardening return algorithm

Let the plastic 
ow direction be M. �en

ε̇p = λ̇M . (20.54)
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�e nonhardening return algorithm uses a transformed space where the computation is carried out in
special Lode coordinates (z′, r′) where

z′ = z −
ζ
√
3
, z ∶=

I1
√
3
and r′ =

¿
ÁÁÀ 3K

2G
r , r ∶=

√
2J2 . (20.55)

If the 
ow rule is non-associative, the yield surface parameter β ≠ 1. In that case,

r′ ← βr′ . (20.56)

�e quantities needed by the non-hardening return algorithm are:
Require: as input

• σ trial ▷Trial stress
• σold ▷Stress at the start of the substep
• δεnew ▷Increment of total strain
• Xold ▷Hydrostatic compressive strength
• ζold ▷Isotropic backstress (trace)
• Kold ▷Tangent bulk modulus
• Gold ▷Tangent shear modulus
• Ipeak1 ▷�e location of the yield surface vertex
• β ▷�e yield surface non-associativity parameter

�e nonhardening return algorithm pseudocode is listed below:

Algorithm 23 Non-hardening return algorithm

1: procedure nonHardeningReturn(σold, σ trial, δεnew, Xold, ζold, Kold, Gold, β, Ipeak1 )
2: Itrial1 , Jtrial2 ← stressInvariants(σ trial) ▷Compute invariants of the trial stress

3: rtrial ← β
√
2Jtrial2 , ztrial ←

Itrial1√
3

▷Compute Lode coordinates of the trial stress

4: (r′)trial ← rtrial
√

3Kold

2Gold
▷Transform the trial r coordinate

5: I01 ← ζold + 1
2(X

old + Ipeak1 ), J02 ← 0 ▷Compute interior point

6: r0 ← β
√
2J02 , z0 ←

I01√
3

▷Compute Lode coordinates of the interior point

7: (r′)0 ← r0
√

3Kold

2Gold
▷Transform the interior point r coordinate

8: θ ← 0
9: repeat
10: znew, (r′)new ← applyBisectionAlgorithm(z0, (r′)0, ztrial, (r′)trial, Xold, ζold, Kold,Gold, β)

▷Find intersection point on the non-hardening yield surface
11: θ, zrot, (r′)rot ← findNewInternalPoint(ztrial,(r′)trial, znew, (r′)new, θ, Xold, ζold, Kold,

Gold, β) ▷Apply rotation algorithm to �nd new internal point
12: (r′)0 ← (r′)rot, z0 ← zrot

13: until θ ≤ TOLERANCE

14: Inew1 = √
3 znew,

√
Jnew2 =

¿
ÁÁÀ2Gold

3Kold
(r′)new
√
2 β

▷Compute updated stress invariants

15: strial ← σ trial − 1
3 I
trial
1 I ▷Compute deviatoric trial stress

16: σnew = 1
3 I
new
1 I +

√
Jnew2√
Jtrial2

strial ▷Compute updated stress

17: δεp,new = δε −C−1 ∶ (σnew − σold) ▷Compute plastic strain increment
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18: return Outputs:
• σnew ▷Updated stress tensor
• δεp,new ▷Increment in plastic strain

19: end procedure

Algorithm 24 Apply bisection algorithm to �nd point on yield surface.

1: procedure applyBisectionAlgorithm(z0, (r′)0, ztrial, (r′)trial, Xold, ζold, Kold, Gold, β)
2: ηin ← 0, ηout ← 1
3: while ηout − ηin ≥ TOL do
4: ηmid = 1

2(η
in + ηout)

5: [ zmid

(r′)mid] ← ηmid [ ztrial − z0
(r′)trial − (r′)0] + [ z0

(r′)0]

6: isElastic← evalYieldCondition(zmid, (r′)mid, Xold, ζold, Kold, Gold, β)
7: if isElastic = TRUE then
8: ηin ← ηmid

9: else
10: ηout ← ηmid

11: end if
12: end while
13: znew ← zmid, (r′)new ← (r′)mid
14: return znew, (r′)new
15: end procedure

Algorithm 25 Rotation around trial state to �nd internal point inside yield surface

1: procedure findNewInternalPoint(ztrial, (r′)trial, znew, (r′)new, θ, Xold, ζold, Kold, Gold, β)
2: n ← 0
3: repeat
4: n ← n + 1

5: θ ← (−1)n ×
π
2
× ( 12)

floor(n)
2

6: [Q] ← [cos θ − sin θ
sin θ cos θ ]

7: [ zrot

(r′)rot] ← [Q] ⋅ [ znew − ztrial
(r′)new − (r′)trial] + [ ztrial

(r′)trial]

8: isElastic← evalYieldCondition(zrot, (r′)rot, Xold, ζold, Kold, Gold, β)
9: until isElastic = FALSE
10: return θ, zrot, (r′)rot
11: end procedure

Algorithm 26 Evaluate the yield condition

1: procedure evalYieldCondition(znew, (r′)new, Xold, ζold, Kold, Gold, β)

2: Inew1 ←√
3 znew,

√
Jnew2 ←

¿
ÁÁÀ2Gold

3Kold
×

1
√
2 β

× (r′)new ▷Transform back into stress space

3: isElastic← evalYieldCondition(Inew1 ,
√
Jnew2 , Xold, ζold, Kold, Gold, β)

4: return isElastic
5: end procedure
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At present we allow only three independent variables in Vaango .

MPM tabular material data is o�en of the form shown in Figure 21.1. In this particular data set, we have
three independent variables: the plastic strain (β), the saturation (α), and the strain (ε). Pressure (p) is
the dependent variable. �e data represents a function of the form p = p(ε, α, β). We are given an input
point in the three-dimensional independent variable space, (ε0, α0, β0), and we would like to �nd the
corresponding value of the pressure, p0.

Figure 21.1: Schematic of tabular material data for MPM constitutive models. �e circle in blue is the
input data point for which we would like to �nd the pressure.

As we can see from the �gure, the data are largely unstructured. However, there is some structure to
the data. For instance, the data are provided for three values of saturation, [α1, α2, α3]. For each value
of α, we have data for a few plastic strain values: α1 : [β11, β12, β13], α2 : [β21, β22, β23, β24, . . . ], and α3 :
[β31, β32, . . . ]. Finally, for each value of the plastic strain, we have a pressure-strain curve, for example,
for α1, β11 : [ε111, ε112, ε113, . . . , ε11N] and [p111, p112, p113, . . . , p11N], or for α3, β32 : [ε321, ε322, ε323, . . . , ε32M]
and [p321, p321, p321, . . . , p32M]. Clearly, the data become quite complex as the number of dimensions is
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increased.

21.1 Linear interpolation

�e procedure below assumes that the α values are sorted in ascending order. If α0 ∉ [α1, αN],
Vaangowill throw an exception and exit. Also observe that at least two sets of data are needed for
the interpolation procedure to work.

In this section we describe the process used in Vaango to interpolate the data. For simplicity, we only
consider two independent variables, the saturation (α) and the strain (ε) as shown in Figure 21.2.

Figure 21.2: Schematic of a three variable table of material data. �e circle in blue is the input point for
which we would like to �nd the pressure.

�e �rst step in the process is to �nd the pressure-strain data that are needed for the interpolation process.
�is can be accomplished by iterating through the αs and �nding a value of the parameter s ∈ [0, 1]where

s = α0 − αk
αk+1 − αk

, k = 1, 2, . . . ,N − 1 (21.1)

where N is the number of values of α for which data area available.

Once the two curves needed for interpolation have been identi�ed, the next step is to �nd the segments of
the pressure-strain curves that correspond to the input variable ε0. �ese segments are highlighted with
thick lines in Figure 21.3. �e two associated parameters t1 and t2 are calculated using

t1 =
ε0 − ε j,k

ε j,k+1 − ε j,k
, k = 1, 2, . . . ,M j − 1

t2 =
ε0 − ε j+1,k

ε j+1,k+1 − ε j+1,k
, k = 1, 2, . . . ,M j+1 − 1

(21.2)

where ε j,k is a point on the pressure-strain curve for saturation α j, andM j is the number of points on the
curve.

We can now compute the pressures at these two points, using

p1 = (1 − t1)p j,k + t1p j,k+1
p2 = (1 − t2)p j+1,k + t2p j+1,k+1

(21.3)



21.2 The tabular equation of state 163

Figure 21.3: Second stage of interpolation of a three variable table of material data. �e circle in blue is
the input point for which we would like to �nd the pressure.

�e �nal step of the process is to compute the interpolated pressure p0 using

p0 = (1 − s)p1 + sp2 . (21.4)

A schematic of this operation is shown in Figure 21.4.

Figure 21.4: Final stage of interpolation of a three variable table of material data. �e circle in blue is the
input point and the red circle is the interpolated value.

21.2 The tabular equation of state

For the tabular equation of state, we assume that there is only one independent variable, the density ratio
η = ρ/ρ0 where ρ is the current mass density and ρ0 is its reference value. �e dependent variable is
the pressure, p = p(η), which is positive in compression. A linear interpolation is done to compute the
pressure for a given state of deformation.

�e bulk modulus is computed using

K = ρ [ p(η + є) − p(η − є)
2є

] (21.5)
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�e tolerance є is hardcoded to 10−6 in Vaango but may not be adequate for some problems.

21.3 The tabular plasticity model

�e tabular plasticity model was designed for materials that have almost no tensile strength, and the
inputs are expected in the compression positive convention. Note that the general convention used in
the Vaango code is that tension is positive and compression is negative. Conversions are done internally
in the code to make sure that signs are consistent.

�e model uses isotropic elasticity, with a shear modulus that is either a constant (G0) or determined
using a Poisson’s ratio (ν) from the tabular bulk modulus, K(p):

G = 3K(1 − 2ν)
2(1 + ν)

(21.6)

�is relation is activated if ν ∈ [−1.0, 0.5), otherwise the constant shear modulus is used.
�e tangent bulk modulus is determined from a table of unloading curves (see Figure 21.5 of the mean
stress, p, as a function of the total Hencky volumetric strain, εp. Each unloading curve is associated with
a Hencky plastic volumetric strain (εpv ). Additive decomposition of the volumetric strains is assumed.
�e plastic volumetric strain is subtracted from the total volumetric strain to compute the elastic volu-
metric strain (εev). �e data stored in the table is therefore of the form p(εpv , εev) and the bulk modulus is
computed, a�er interpolation, using the central di�erence scheme:

K(εpv 0, εev0) =
p(εpv 0, εev0 + є) − p(ε

p
v 0, εev0 − є)

2є
(21.7)

�e tolerance є is hardcoded to 10−6 in Vaango and may not be adequate for some problems.

Figure 21.5: Unloading curves uses to determine the tangent bulkmodulus for the tabular plasticitymodel
at various plastic strain value.

�e tabular yield condition has the form

f =
√
J2 − g(p) = 0 (21.8)
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�e function g(p) is provided in tabular form and is depicted in Figure 21.6(a). To ensure convexity of
the tabular data, a convex hull of the data points is computed �rst as shown in Figure 21.6(b).

(a) Yield function (b) Computed hull of the input data

Figure 21.6: Yield function used by the tabular plasticity.

Linear interpolation is used to determine is a stress state is inside the yield surface. We also compute
a normal to the yield surface using linear interpolation and a central di�erence scheme (similar to that
used to compute the bulk modulus). However, the actual return algorithm uses a geometric closest point
computation rather than the derivative of the yield function with respect to the stress. �e approach is
similar to that used in the Arenamaterial model.

If the number of points in the input table is equal to 2, the yield function is either a von Mises model or
a linear Drucker-Prager model. In that can we �nd the closest point to the tabular data directly.

For tables with more than two input points, we �t a quadratic B-spline to the closest segment of the input
tabular data and �nd the closest distance to that spline. Approximating, rather than interpolating, splines
are used to retain the convexity of the yield function.

�e B-splines are computed using

sx = a ⋅ (M j ⋅ px) , sy = a ⋅ (M j ⋅ py) (21.9)

where a = (1, t, t2), t ∈ [0, 1] parameterizes each segment of the tabular data, px = (xk , xk+1, xk+2),
py = (yk , yk+1, yk+2), and (xk , yk) are the input 0, . . . ,N − 1 tabular data points. �e associated matrices
that are used are:

M j=0 = 0.5
⎡⎢⎢⎢⎢⎢⎣

2 0 0
−4 4 0
2 −3 1

⎤⎥⎥⎥⎥⎥⎦
, M j = 0.5

⎡⎢⎢⎢⎢⎢⎣

1 1 0
−2 2 0
1 −3 2

⎤⎥⎥⎥⎥⎥⎦
, M j=N−1 = 0.5

⎡⎢⎢⎢⎢⎢⎣

1 1 0
−2 2 0
1 −2 1

⎤⎥⎥⎥⎥⎥⎦
(21.10)

Closest point projections of stress states outside the yield surface to �tted B-splines along the yield surface
are shown in Figure 21.7.

21.4 Theory behind closest-point projection

�e ideas behind the closest-point projection approach were made rigorous in the mid-to-late 1980s by a
group of researchers in
uenced by developments in convex optimization.
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(a) Closest points to yield function (b) Zoomed view showing B-splines

Figure 21.7: Closest point projections to yield function used by the tabular plasticity.

21.4.1 Background

In nonlinear optimization, themethod of Lagrangemultipliers has been used since themid 1800s to solve
minimization problems with *equality* constraints. In 1950, this approach was generalized by Kuhn and
Tucker to allow for *inequality* constraints. Later it was discovered that W. Karush from the University
of Chicago had reached the same conclusions in his MSc thesis from 1939.

Primal form

�e primal form of the optimization problem is

minimize f (x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

h j(x) = 0, j = 1, . . . , p
(21.11)

Note that there is no convexity requirement for this problem.

The Lagrangian

�e Lagrangian (L) associated with the primal form is just the weighted sum of the objective function f0
and the constraint functions gi and h j. �us

L(x, λ, ν) = f (x) + λ ⋅ g(x) + ν ⋅ h(x) (21.12)

where

λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1
λ2
⋮
λm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

g1
g2
⋮
gm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, ν =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ν1
ν2
⋮
νp

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, h =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h1
h2
⋮
hp

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (21.13)

�e vectors λ and ν are called *Lagrange multiplier vectors* or, more frequently, the *dual variables* of
the primal problem.
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Dual function

�e dual function (F(λ, ν)) to the primal problem is de�ned as

F(λ, ν) = inf
x
L(x, λ, ν) = inf

x
[ f (x) + λ ⋅ g(x) + ν ⋅ h(x)] (21.14)

Note that the dual function is the minimum of a family of a�ne functions (linear + a constant term) in
(λ, ν). �ismakes the dual problem concave. Note also that since the dual function is a�ne, it is bounded
from below by −∞ when the value of x is unbounded.

Simpli�ed forms for F can be found for many problems, including problems that can be expressed as
quadratic forms.

Dual form

Since the dual function is the largest lower bound on the Lagrangian, the *Lagrange dual form* of the
primal minimization can be expressed as

maximize F(λ, ν)
subject to λ ⪰ 0

(21.15)

We don’t have any constraint on ν because h(x) = 0.

Karush-Kuhn-Tucker optimality conditions

Let x⋆ be the optimal solution for the primal problem and let (λ⋆, ν⋆) be the optimal solution of the dual
problem. When these two solutions lead to a zero duality gap, i.e.,

f (x⋆) = F(λ⋆, ν⋆) (21.16)

the Lagrangian at that optimal point is

L(x⋆, λ⋆, ν⋆) = f (x⋆) + λ⋆ ⋅ g(x⋆) + ν⋆ ⋅ h(x⋆) (21.17)

Also, since λ⋆ ≥ 0 and h = 0,

f (x⋆) = F(λ⋆, ν⋆) = inf
x
L(x, λ⋆, ν⋆) ≤ L(x⋆, λ⋆, ν⋆) ≤ f (x⋆) (21.18)

�e only way for the above to be true is when

λ⋆ ⋅ g(x⋆) = 0 ↔ λ⋆i gi(x⋆) = 0 . (21.19)

Also, since x⋆ minimizes the Lagrangian, its gradient is zero at that point:

∂
∂x
L(x⋆, λ⋆, ν⋆) = 0 = ∂ f (x⋆)

∂x
+ λ⋆ ⋅ ∂g(x

⋆)
∂x

+ ν⋆ ⋅ ∂h(x
⋆)

∂x
(21.20)

�ese results, along with the original constraints of the primal and dual problems, are collected together
into the *Karush-Kuhn-Tucker optimality conditions*:

gi(x⋆) ≤ 0 h j(x⋆) = 0
λ⋆i ≥ 0 λ⋆i gi(x⋆) = 0
∂ f (x⋆)
∂x

+ λ⋆ ⋅ ∂g(x
⋆)

∂x
+ ν⋆ ⋅ ∂h(x

⋆)
∂x

= 0
(21.21)
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21.4.2 Similarity with plasticity

�e plastic loading-unloading conditions are similar to the Karush-Kush-Tucker optimality conditions
in that we have

g(σ) ≤ 0 , λ̇ ≥ 0 , λ̇g(σ) = 0 (21.22)

where g(σ) is the yield surface constraining the values of σ . We may also interpret the 
ow rule as the
last Karush-Kuhn-Tucker condition:

−ε̇p + λ̇ ∂g
∂σ

= 0 where − ε̇p =∶ ∂ f
∂σ

(21.23)

and f (σ) is the quantity that is minimized in the primal problem. We can interpret f as the negative of
the maximum plastic dissipation, i.e.,

f (σ) = −σ ∶ ε̇p . (21.24)

If we use a �rst-order update approach, the discretized equations for perfect plasticity are

σn+1 = C ∶ (εn+1 − εpn+1) = σ trialn+1 −C ∶ (εpn+1 − ε
p
n)

εpn+1 = ε
p
n + ∆λ

∂g
∂σ

∣
σn

or εpn+1 = ε
p
n + ∆λ

∂g
∂σ

∣
σn+1

g(σn+1) ≤ 0 , ∆λ ≥ 0 , ∆λg(σn+1) = 0

(21.25)

Note that if we interpret the 
ow rule as an optimality condition a backward Euler update is con-
sistent with the Karush-Kuhn-Tucker conditions and a forward Euler update is ruled out.

21.4.3 Closest point return

Let σ trial be the trial stress and let g(σ trial) be the value of the yield function at that state. Let σn+1 be
actual stress and let g(σn+1) = 0 be the value of the yield function at the actual stress state.
Let us assume the actual stress state on the yield surface is at the closest distance from the trial stress.
�en we can devise the primal minimization problem:

minimize f (σ) = ∥σ trial − σ∥2

subject to g(σ) ≤ 0
(21.26)

where

∥σ∥ =
√
σ ∶ σ (21.27)

�e Lagrangian for this problem is

L(σ , λ) = f (σ) + ∆λg(σ) = ∥σ trial − σ∥2 + ∆λg(σ) (21.28)

�e Karush-Kuhn-Tucker conditions for this problem at the optimum value σn+1 are

g(σn+1) ≤ 0 , ∆λ ≥ 0 , ∆λg(σn+1) = 0
∂ f (σn+1)

∂σ
+ ∆λ ∂g(σn+1)

∂σ
= −2(σ trial − σn+1) + ∆λ

∂g(σn+1)
∂σ

= 0
(21.29)

From the last condition we see that the closest distance using this criterion leads to a stress value of

σn+1 = σ trial − 1
2∆λ

∂g(σn+1)
∂σ

(21.30)
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But we have seen previously that the �rst-order stress update with backward Euler leads to

σn+1 = σ trial − ∆λC ∶ ∂g(σn+1)
∂σ

(21.31)

�e similarity between the two indicates that we are on the right track, i.e., the actual stress is at the closest
distance from the trial stress to the yield surface. But the correct closest distance is not in the standard
standard stress space, but in a space where the norm to be minimized is given by

∥σ∥C−1 =
√
σ ∶ C−1 ∶ σ (21.32)

�is can be veri�ed by repeating the above exercise with the new de�nition of the norm. More specif-
ically, the correct updated stress is at the shortest distance from the trial stress to the yield surface in a
9-dimensional space that has the Euclidean distance measure

∥σ∥C−1 =
√
σ ∶ C−1 ∶ σ (21.33)

where C is the sti�ness tensor. We will explore some of the implications of this idea in this article.

Note that this particular closest-point interpretation applies only for *perfect plasticity* and only
*associative* 
ow rules. For hardening plasticity, the space in which the actual stress is closest to
the trial stress is di�erent. For non-associative plasticity, it is unclear whether any closest-point
approach can be rigorously justi�ed.

21.4.4 Eigendecompositions in linear elasticity

�e sti�ness tensor for an isotropic elastic material is

C = λ I⊗ I + 2µ Is (21.34)

where λ, µ are the Lamé elastic constants, I is the rank-2 identity tensor, and Is is the symmetric rank-4
identity tensor. �e inverse of C is the compliance tensor

C−1 = S = − λ
2µ(3λ + 2µ)

I⊗ I + 1
2µ

Is (21.35)

Eigendecompositions of the sti�ness and compliance tensors are de�ned via

C ∶ V = λV , S ∶ V = 1
λ
V (21.36)

where λ are the eigenvalues (not to be confused with the Lamé modulus) and V are rank-2 tensors that
form the eigenbasis. Because of the symmetries of the sti�ness matrix, there are six or less unique eigen-
values and the corresponding eigentensors are orthogonal, i.e.,

Vi ∶ Vi = 1 and Vi ∶ V j = 0 . (21.37)

�e sti�ness and compliance tensors may then be represented as:

C =
m
∑
i=1
λiVi ⊗Vi , S =

m
∑
i=1

1
λi
Vi ⊗Vi (21.38)

where m is the number of non-zero and distinct eigenvalues. Note also that, in this eigenbasis, the sym-
metric rank-4 identity tensor is

Is =
m
∑
i=1
Vi ⊗Vi . (21.39)
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Eigenprojectors are de�ned as rank-4 tensors that have the property (for i ≠ j)

Pi ∶ Vi = Vi , Pi ∶ V j = 0 (21.40)

If we apply the eigenprojector to the rank-4 identity tensor, we get

Pk = Pk ∶ Is =
m
∑
i=1

Pk ∶ (Vi ⊗Vi) =
m
∑
i=1

(Pk ∶ Vi) ⊗Vi = (Pk ∶ Vk) ⊗Vk = Vk ⊗Vk (21.41)

�erefore we may also write the eigendecomposition in terms of the eigenprojectors

C =
m
∑
i=1
λiPi , S =

m
∑
i=1

1
λi
Pi , Is =

m
∑
i=1

Pi . (21.42)

For isotropic materials, a small amount of algebra shows that there are two unique eigenvectors which
lead to the decomposition

C = λ1P1 + λ2P2 where S = 1
λ1
P1 +

1
λ2
P2 (21.43)

and

P1 = 1
3I⊗ I , P2 = Is − P1 . (21.44)

We can now express the sti�ness and compliance tensors in terms of these eigenprojections:

C = (κ − 2
3 µ) I⊗ I + 2µ I

s

= 3κ ( 13I⊗ I) + 2µ (Is − 1
3I⊗ I)

(21.45)

where κ is the bulk modulus and µ is the shear modulus. Also,

S = 1
3
( 1
3κ

− 1
2µ

) I⊗ I + 1
2µ

Is

= 1
3κ

( 13I⊗ I) +
1
2µ

(Is − 1
3I⊗ I)

(21.46)

�erefore, we can write

C = 3κPiso + 2µPsymdev and S = 1
3κ

Piso + 1
2µ

Psymdev (21.47)

where Piso = P1 and Psymdev = P2.

It is also worth noting that if

C1/2 ∶ C1/2 ∶= C and S1/2 ∶ S1/2 ∶= S (21.48)

then, using the property that P1 ∶ P2 = 0,

C1/2 =
√
λ1P1 +

√
λ2P2 where S1/2 = 1√

λ1
P1 +

1√
λ2
P2 (21.49)

In that case, we have

C1/2 =
√
3κPiso +√

2µPsymdev and S1/2 = 1
√
3κ

Piso + 1
√2µ

Psymdev (21.50)
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21.4.5 The transformed space for isotropic linear elasticity

Details of the transformed space for isotropic linear elasticity were worked out by M. Homel in his 2014
PhD dissertation. We will follow his approach in this section.

�e distance measure

∥σ∥S =
√
σ ∶ S ∶ σ (21.51)

can be interpreted as a standard Euclidean distance measure in a transformed stress space by observing
that

∥σ∥S =
√

(σ ∶ S1/2) ∶ (S1/2 ∶ σ) where S1/2 ∶ S1/2 ∶= S

=
√

(S1/2 ∶ σ) ∶ (S1/2 ∶ σ) using the major symmetry of S

=
√
σ⋆ ∶ σ⋆ = ∥σ⋆∥

(21.52)

We would like to calculate the transformed stress tensor.

The Lode invariants and the Lode basis

�eLode basis (described by R.M. Brannon in 2009) is an alternative basis that can be used to decompose
the stress tensor. Let us de�ne the following deviatoric quantities:

s = dev(σ) = σ − 1
3 tr(σ)I and t = dev(s ⋅ s) = s ⋅ s − 1

3 tr(s ⋅ s)I (21.53)

�e quantity t is also called the *Hill tensor*.

�e Lode invariants of a stress tensor are

z = 1√
3 tr(σ) , r = ∥s∥ , sin 3θ = 3

√
6det( s

∥s∥
) (21.54)

�ese invariants are associated with an orthonormal set of unit tensors

Ez = 1√
3 I , Er =

s
∥s∥

, Eθ =
t
∥t∥ − sin 3θ

s
∥s∥

cos 3θ
(21.55)

�e stress can be expressed in terms of the Lode basis as

σ = z Ez + r Er . (21.56)

The transformed stress tensor

We can now compute the transformed stress tensor:

σ⋆ = S1/2 ∶ σ = [ 1
√
3κ

Piso + 1
√2µ

Psymdev] ∶ (z Ez + r Er) . (21.57)

We can show that

Piso ∶ Ez = Ez , Piso ∶ Er = 0 , Psymdev ∶ Ez = 0 , Psymdev ∶ Er = Er (21.58)

�erefore,

σ⋆ = z
√
3κ
Ez +

r
√2µ

Er (21.59)
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We can also show that the transformed stress vector remains geometrically unchanged (in the sense that
angles are unchanged) if we express it as

σ⋆ = z Ez +
√

3κ
2µ

r Er =∶ z Ez + r′ Er (21.60)

So we have a straightforward way of computing stresses in the transformed space and use this idea in the
geometrical closest point return algorithm.
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22.1 Shell theory

�e continuum-based approach to shell theory has been chosen because of the relative ease of implemen-
tation of constitutive models in this approach compared to exact geometrical descriptions of the shell. In
order to include transverse shear strains in the shell, a modi�ed Reissner-Mindlin assum �e major as-
sumptions of the shell formulation are [82, 83]

1. �e normal to the mid-surface of the shell remains straight but not necessarily normal. �e direc-
tion of the initial normal is called the “�ber” direction and it is the evolution of the �ber that is
tracked.

2. �e stress normal to the mid-surface vanishes (plane stress)
3. �e momentum due to the extension of the �ber and the momentum balance in the direction of
the �ber are neglected.

4. �e curvature of the shell at a material point is neglected.

�e shell formulation is based on a plate formulation by Lewis et al. [83]. A discussion of the formulation
follows.

�e velocity �eld in the shell is given by

w(α, β) = u(α, β) + z ω(α, β) × n(α, β) + ż n(α, β) (22.1)

where w is the velocity of a point in the shell, u is the velocity of the center of mass of the shell, n is the
normal or director vector, ω is the angular velocity of the director, (α, β) are orthogonal co-ordinates on
the mid-surface of the shell, z is the perpendicular distance from the mid-surface of the shell, and ż is the
rate of change of the length of the shell director.

Since momentum balance is not enforced for the motion in the direction of the director n, the terms
involving ż are dropped in constructing the equations of motion. �ese terms are also omitted in the
deformation gradient calculation. However, the thickness change in the shell is not neglected in the com-
putation of internal forces and moments. Equation (22.1) can therefore be written as

w(α, β) = u(α, β) + z r(α, β) (22.2)

where r, the rotation rate of n, is a vector that is perpendicular to n.

�e velocity gradient tensor for w is used to compute the stresses in the shell. If the curvature of the shell
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is neglected, i.e., the shell is piecewise plane, the velocity gradient tensor for w can be written as

∇w = [∇(s)u + z ∇(s)r] + r⊗ n (22.3)

where r⊗ n represents the dyadic product, and ∇(s) is the in-surface gradient operator, de�ned as,

∇
(s) = [∇( )] ● I(s) . (22.4)

�e ● represents a tensor inner product and I(s) is the in-surface identity tensor (or the projection oper-
ator), de�ned as,

I(s) = I − n⊗ n. (22.5)

It should be noted that, for accuracy, the vector n should not deviate signi�cantly from the actual normal
to the surface (i.e., the transverse shear strains should be small).

�edetermination of the shell velocity tensor∇w requires the determination of the center ofmass velocity
u of the shell. �is quantity is determined using the balance of linear momentum in the shell. �e local
three-dimensional equation of motion for the shell is, in the absence of body forces,

∇ ● σ = ρ a (22.6)

where sigma is the stress tensor, ρ is the density of the shell material, and a is the acceleration of the shell.
�e two-dimensional form of the linear momentum balance equation (22.6) with respect to the surface
of the shell is given by

∇
(s) ● ⟨σ⟩ = ρ a . (22.7)

�e acceleration of the material points in the shell are now due to the in-surface divergence of the average
stress ⟨σ⟩ in the shell, given by

⟨σ⟩ ∶ = 1
h ∫

h+

−h−
σ(z) dz (22.8)

where h+ is the “thickness” of the shell (along the director) from the center of mass to the “top” of the
shell, h− is the thickness from the center of mass to the “bottom” of the shell, and h = h+ + h−. �e point
of departure from the formulation of Lewis et al. [83] is that instead of separate linear momentum balance
laws for shell and non-shell materials, a single global momentum balance is used and the “plane stress”
condition σzz = 0 is enforced in the shell stress update, where the subscript zz represents the direction of
the shell director.

�e shell director n and its rotation rate r also need to be known before the shell velocity gradient tensor
∇w can be determined. �ese quantities are determined using an equation for the conservation of angular
momentum [84], given by

∇
(s) ●M − n ● ⟨σ⟩ ● I(s) = 1

12
ρ h2 ṙ (22.9)

where ṙ is the rotational acceleration of n, ρ is the density of the shell material, and M is the average
moment, de�ned as

M∶ = I(s) ● [ 1
h ∫

h+

−h−
σ(z) z dz] ● I(s) . (22.10)

�e center-of-mass velocity u, the director n and its rate of rotation r provide a means to obtain the
velocity of material points on the shell. �e shell is divided into a number of layers with discrete values of
z and the layer-wise gradient of the shell velocity is used to compute the stress and deformation in each
layer of the shell.
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22.2 Shell Implementation for theMaterial Point Method

�e shell description given in the previous section has been implemented such that the standard steps of
the material point method [1] remain the same for all materials. Some additional steps are performed for
shell materials. �ese steps are encapsulated within the shell constitutive model.

�e steps involved for each time increment ∆t are discussed below. �e superscript n represents the value
of the state variables at time n ∆t while the superscript n + 1 represents the value at time (n + 1) ∆t. Note
that ∆t need not necessarily be constant. In the following, the subscript p is used to index material point
variables while the subscript v is used to index grid vertex variables. �e notation∑p denotes summation
over material points and∑v denotes summation over grid vertices. Zeroth order interpolation functions
associated with each material point are denoted by S(0)p,v while �rst order interpolation functions are de-
noted by S(1)p,v .

22.2.1 Interpolate state data frommaterial points to the grid.

�e state variables are interpolated from the material points to the grid vertices using the contiguous
generalized interpolation material point (GIMP) method [85]. In the GIMP method material points are
de�ned by particle characteristic functions χp(x) which are required to be a partition of unity,

∑
p
χp(x) = 1 ∀ x ∈ Ω (22.11)

where x is the position of a point in the body Ω. A continuous representation of the property f (x) is
given by

f (x) = ∑
p
fp χp(x) (22.12)

where fp is the value at a material point. Similarly, a continuous representation of the grid data is given
by

g(x) = ∑
v
gv Sv(x) (22.13)

where

∑
v
Sv(x) = 1 ∀ x ∈ Ω . (22.14)

To interpolate particle data to the grid, the interpolation (or weighting functions) S(1)p,v are used, which are
de�ned as

S(1)p,v =
1
Vp
∫
Ωp∩Ω

χp(x) Sv(x) dx (22.15)

where Vp is the volume associated with a material point, Ωp is the region of non-zero support for the
material point, and

∑
v
S(1)p,v = 1 ∀ xp ∈ Ωp . (22.16)

�e state variables that are interpolated to the grid in this step are themass (m), momentum (mu), volume
(V ), external forces (fext), temperature (T), and speci�c volume (v) using relations of the form

mv = ∑
p
mp S

(1)
p,v . (22.17)
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In our computations, bilinear hat functions Sv were used that lead to interpolation functions S
(1)
p,v with

non-zero support in adjacent grid cells and in the next nearest neighbor grid cells. Details of these func-
tions can be found in reference [85].

For shell materials, an additional step is required to inhabit the grid vertices with the interpolated normal
rotation rate from the particles. However, instead of interpolating the angular momentum, the quantity
pp = mprp is interpolated to the grid using the relation

pv = ∑
p
pp S

(1)
p,v . (22.18)

At the grid, the rotation rate is recovered using

rv = pv/mv (22.19)

�is approximation is required because the moment of inertia contains h2 terms which can be very small
for thin shells. Floating point errors are magni�ed when mp is multiplied by h2. In addition, it is not
desirable to interpolate the plate thickness to the grid.

22.2.2 Compute heat andmomentum exchange due to contact.

In this step, any heat and momentum exchange between bodies inside the computational domain is per-
formed through the grid. Details of contact algorithms used my the material point method can be found
in references [1, 6, 16]. subsection Compute the stress tensor. �e stress tensor computation follows the
procedure for hyperelastic materials cited in reference [23]. However, some extra steps are required for
shell materials. �e stress update is performed using a forward Euler explicit time stepping procedure.
�e velocity gradient∇w at a material point is required for the stress update. �is quantity is determined
using equation (22.3). �e velocity gradient of the center of mass of the shell (∇u) is computed from the
grid velocities using gradient weighting functions of the form

∇S(1)p,v =
1
Vp
∫
Ωp∩Ω

χp(x) ∇Sv(x) dx (22.20)

so that

∇up = ∑
v
uv ∇S

(1)
p,v . (22.21)

�e gradient of the rotation rate (∇r) is also interpolated to the particles using the same procedure, i.e.,

∇rp = ∑
v
rv ∇S

(1)
p,v . (22.22)

�e next step is to calculate the in-surface gradients ∇(s)up and ∇(s)rp. �ese are calculated as

∇
(s)up = ∇up ● (I − nnp ⊗ nnp) (22.23)

∇
(s)rp = ∇rp ● (I − nnp ⊗ nnp) (22.24)

�e superscript n represents the values at the end of the n-th time step. �e shell is now divided into a
number of layers with di�erent values of z (these can be considered to be equivalent to Gauss points to be
used in the integration over z). �e number of layers depends on the requirements of the problem. �ree
layers are used to obtain the results that follow. �e velocity gradient ∇wp is calculated for each of the
layers using equation (22.3). For a shell with three layers (top, center and bottom), the velocity gradients
are given by

∇wtopp = [∇(s)up + h+ ∇(s)rp] + rnp ⊗ nnp (22.25)

∇wcenp = ∇(s)up + rnp ⊗ nnp (22.26)

∇wbotp = [∇(s)up − h− ∇(s)rp] + rnp ⊗ nnp (22.27)
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�e increment of deformation gradient (∆F) in each layer is computed using

∆Fp = ∆t ∇wp + I (22.28)

�e total deformation gradient (F) in each layer is updated using

F̃n+1p = ∆Fp ● Fnp (22.29)

where F̃n+1p is the intermediate updated deformation gradient prior to application of the “plane stress”
condition.

�e stress in the shell is computed using a stored energy function (W) of the form

W = 1
2
K [ 1

2
(J2 − 1) − ln J] + 1

2
G [tr(b) − 3] (22.30)

where K is the bulk modulus, G is the shear modulus, J is the Jacobian (J = det F), and b is the volume
preserving part of the le� Cauchy-Green strain tensor, de�ned as

b∶ = J−
2
3 F ● FT (22.31)

�e Cauchy stress then has the form

σ = 1
2
K (J − 1

J
) I + G

J
[b − 1

3
tr(b)] . (22.32)

�e “plane stress” condition in the thickness direction of the shell is applied at this stage using an iterative
Newton method. To apply this condition, the deformation gradient tensor has to be rotated such that its
(33) component is aligned with the (zz) direction of the shell. �e rotation tensor is the one required to
rotate the vector e3 ≡ (0, 0, 1) to the direction nnp about the vector e3 × nnp. If θ is the angle of rotation
and a is the unit vector along axis of rotation, the rotation tensor is given by (using the derivative of the
Euler-Rodrigues formula)

R = cos θ (I − a⊗ a) + a⊗ a − sin θ A (22.33)

where

A =
⎡⎢⎢⎢⎢⎢⎣

0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤⎥⎥⎥⎥⎥⎦
. (22.34)

�e rotated deformation gradient in each layer is given by

Frotp = R ● F̃n+1p ●RT . (22.35)

�e updated stress (σ rotp ) is calculated in this rotated coordinate system using equation (22.32). �us,

σ rotp = 1
2
K (Jrotp − 1

Jrotp
) I + G

Jrotp
[b
rot
p − 1

3
tr(b

rot
p )] . (22.36)

An iterative Newton method is used to determine the deformation gradient component F33 for which

the stress component σ33 is zero. �e “plane stress” deformation gradient is denoted
○
F and the stress is

denoted
○
σ .

At this stage, the updated thickness of the shell at a material point is calculated from the relations

h+n+1 = h+0 ∫
1

0

○
Fzz(+z) dz (22.37)

h−n+1 = h−0 ∫
1

0

○
Fzz(−z) dz (22.38)
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where h+0 and h−0 are the initial values, and h+n+1 and h−n+1 are the updated values, of h+ and h−, respectively.

In the next step, the deformation gradient and stress values for all the layers at each material point are
rotated back to the original coordinate system. �e updated Cauchy stress and deformation gradient are

Fn+1p = RT ●
○
F ●R (22.39)

σn+1p = RT ● ○
σ ●R . (22.40)

�e deformed volume of the shell is approximated using the Jacobian of the deformation gradient at the
center of mass of the shell

V n+1
p = V0

p J
n+1
p . (22.41)

22.2.3 Compute the internal force andmoment.

�e internal force for general materials is computed at the grid using the relation

f intv = ∑
p
[σn+1p ●∇S(1)p,v] V n+1

p (22.42)

For shell materials, this relation takes the form

f intv = ∑
p
[⟨σn+1p ⟩ ●∇S(1)p,v] V n+1

p (22.43)

In addition to internal forces, the formulation for shell materials requires the computation of internal
moments in order to solve for the rotational acceleration in the rotational inertia equation (22.9). To
obtain the discretized form of equation (22.9), the equation is integrated over the volume of the shell
leading to [83]

−∑
p
[(Mp ●∇S(1)p,v ● I(s)) + (np ● ⟨σ p⟩ ● I(s)) S(0)p,v ] Vp =

⎛
⎝
1
12∑p

S(0)p,v mp h2p
⎞
⎠
ṙv . (22.44)

�e average stress over the thickness of the shell is calculated using equation (22.8) and the average mo-
ment is calculated using equation (22.10). �e trapezoidal rule is used in both cases. �us,

⟨σn+1p ⟩ = 1
hn+1
∫

h+n+1

−h−n+1
σn+1p (z) dz (22.45)

Mn+1
p = I(s) ● [ 1

hn+1
∫

h+n+1

−h−n+1
σn+1p (z) z dz] ● I(s) (22.46)

where

I(s) = I − nnp ⊗ nnp (22.47)

�ese are required in the balance of rotational inertia that is used to compute the updated rotation rate
and the updated director vector. �e internal moment for the shell material points can therefore the
calculated using

mintv = ∑
p
[(Mn+1

p ●∇S(1)p,v ● I(s)) + (nnp ● ⟨σn+1p ⟩ ● I(s)) S(0)p,v ] V n+1
p (22.48)

In practice, only the �rst term of equation (22.48) is interpolated to the grid and back to the particles. �e
equation of motion for rotational inertia is solved on the particles.
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22.2.4 Solve the equations of motion.

�e equations of motion for linear momentum are solved on the grid so that the acceleration at the grid
vertices can be determined. �e relation that is used is

u̇v =
1
mv

(fextv − f intv ) (22.49)

where fext are external forces.

�e angular momentum equations are solved on the particles a�er interpolating the term

m̃v = ∑
p
(Mn+1

p ●∇S(1)p,v ● I(s)) (22.50)

back to the material points to get m̃p. �e rotational acceleration is calculated using

ṙp = (
12 Vp
mp h2p

) [mextp − m̃p − np ● ⟨σ p⟩ ● I(s)] (22.51)

22.2.5 Integrate the acceleration.

�e linear acceleration in integrated using a forward Euler rule on the grid, giving the updated velocity
on the grid as

un+1v = unv + ∆t u̇v (22.52)

For the rotational acceleration, the same procedure is followed at each material point to obtain an inter-
mediate increment

∆r̃p = ∆t ṙp (22.53)

�e factor mp h2p in the denominator of the right hand side of equation (22.51) makes the di�erential
equation sti�. An accurate solution of the equation requires an implicit integration or extremely small
time steps. Instead, an implicit correction is made to ∆r̃p by solving the equation [86]

[I + β (I − nnp ⊗ nnp)]∆
○
rp = ∆r̃p (22.54)

where ∆
○
rp is the corrected value of ∆r̃p and

β = 6 E
Vp mp

(∆t
h

)
2

(22.55)

which uses the Young’s modulus E of the shell material. �e intermediate rotation rate is updated using
the corrected increment. �us,

⋆
r
n+1
p = rnp + ∆

○
rp . (22.56)

22.2.6 Update the shell director and rotate the rotation rate

At this stage, the shell director at each material point is updated. �e incremental rotation tensor ∆R is
calculated using equation (22.33) with rotation angle θ = ∣r∣∆t and axis of rotation

a =
nnp ×

⋆
r
n+1
p

∣nnp ×
⋆
r
n+1
p ∣

. (22.57)

�e updated director is

nn+1p = ∆R ● nnp . (22.58)

In addition, the rate of rotation has to be rotated so that the direction is perpendicular to the director
using,

rn+1p = ∆R ● ⋆r
n+1
p . (22.59)
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22.2.7 Interpolate back to thematerial points and update the state variables.

In the �nal step, the state variables at the grid are interpolated back to the material points using relations
of the form

un+1p = ∑
v
un+1v S(1)p,v (22.60)

22.3 Typical simulation results

�ree tests of the shell formulation have been performed on di�erent shell geometries - a plane shell, a
cylindrical shell, and a spherical shell.

22.3.1 Punched Plane Shell

�is problem involves the indentation of a plane, circular shell into a rigid cylindrical die of radius 8 cm.
�e shell is made of annealed copper with the properties and dimensions shown in Table 22.1.

Table 22.1: Circular plane shell properties and dimensions.

ρ0 K G �ickness Radius Velocity
(kg/m3) (GPa) (GPa) (cm) (cm) (m/s)
8930 136.35 45.45 0.3 8 100

Snapshots of the deformation of the shell are shown in Figure 22.1. Substantial deformation of the shell

Figure 22.1: Deformation of punched circular plane shell.

occurs before particles at the edges tend to tear o�. �e tearing o� of particles is due to the presence
of large rotation rates (r) which are due to the sti�ness of the rotational acceleration equation (22.51).
�e implicit correction does not appear to be adequate beyond a certain point and a fully implicit shell
formulation may be required for accurate simulation of extremely large deformations.

Particles in the �gure have been colored using the equivalent stress at the center-of-mass of the shell.
�e stress distribution in the shell is quite uniform, though some artifacts in the form of rings appear. An
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implicit formulation has been shown to remove such artifacts in the stress distribution inmembranes [87].
�erefore, an implicit formulationmay be useful for the shell formulation. Another possibility is that these
artifactsmay be due tomembrane and shear locking, a knownphenomenon in �nite element formulations
of shells based on a continuum approach [82, 88]. Such locking e�ects can be reduced using an addition
hour glass control step [82] in the simulation.

22.3.2 Pinched Cylindrical Shell

�e pinched cylindrical shell is one of the benchmark problems proposed by MacNeal and Harder [89].
�e cylindrical shell that has been simulated in this work has dimensions similar to those used by Li et
al. [90]. �e shell is pinched by contact with two small rigid solid cylinders placed diametrically opposite
each other and located at the midpoint of the axis of the cylinder. Each of the solid cylinders is 0.25 cm in
radius, 0.5 cm in length, and moves toward the center of the pinched shell in a radial direction at 10 ms−1.
�e material of the shell is annealed copper (properties are shown in Table 22.1). �e cylindrical shell is
2.5 cm in radius, 5.0 cm long, and 0.05 cm thick.

Snapshots of the deformation of the pinched cylindrical shell are shown in Figure 22.2. �e deformation

Figure 22.2: Deformation of pinched cylindrical shell.

of the shell proceeds uniformly for 60 ms. However, at this time the increments of rotation rate begin
to increase rapidly at each time step, even though the velocity of the center-of-mass of the shell still re-
mains stable. �is e�ect can be attributed to the sti�ness of the rotational inertia equation. �e e�ect is
that extremely large rotation rates are produced at 70 ms causing high velocities and eventual numerical
fracture of the cylinder. �e problem may be solved using an implicit shell formulation.

22.3.3 In
ating Spherical Shell

�e in
ating spherical shell problem is similar to that used tomodel lipid bilayers by Ayton et al. [91]. �e
shell is made of a so� rubbery material with a density of 10 kg m−3, a bulk modulus of 60 KPa and a shear
modulus of 30 KPa. �e sphere has a radius of 0.5 m and is 1 cm thick. �e spherical shell is pressurized
by an initial internal pressure of 10 KPa. �e pressure increases in proportion to the internal surface area
as the sphere in
ates.

�e deformation of the shell with time is shown in Figure 22.3. �e particles in the �gure are colored on
the basis of the equivalent stress. �ough there is some di�erence between the values at di�erent latitudes
in the sphere, the equivalent stress is quite uniform in the shell. �e variation can be reduced using the
implicit material point method [92].
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Figure 22.3: Deformation of in
ating spherical shell.

22.4 Problems

A shell formulation has been developed and implemented for the explicit time stepping material point
method based on the work of Lewis et al. [83]. �ree di�erent shell geometries and loading conditions
have been tested. �e results indicate that the sti� nature of the equation for rotational inertiamay require
the use of an implicit time stepping scheme for shell materials.

1. Shells and solids cannot interact easily.
2. Shell interpolations should be on a shell-based grid.

22.5 Alternative approaches

�e approach discussed in the previous section su�ers from the defect that particle data from the surface
of the shell are projected on to grid points that are not on the surface of the shell.

�is shortcoming has been addressed by Jiang et al. [93] by representing the shell with a surfacemeshwith
quadrature points rather than with unstructured particles. Particles in a given simulation are represented
either as:

1. standard MPM particles,
2. particles that represent Lagrangian mesh nodes, and
3. particles that represent Lagrangian mesh element quadrature points.

�e particle state at time tn includes the position xnp , the velocity vnp , the mass mp, the volume Vp, the
elastic deformation gradient F e ,np , an a�ne velocity cnp, and the material directions Dp. Note that the
deformation gradient is stored only in the standard MPM particles and at the shell mesh quadrature
points. �e material directions are stored only at the mesh quadrature points. �ese approaches are
being explored in the research version of Vaango .
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23.1 Introduction

�e ICE (Implicit Compressible Eulerian) code for 
uid simulations in Vaango uses a multi-material
CFD approach designed to solve “full physics” simulations of dynamic 
uid structure interactions in-
volving large deformations and material transformations (e.g., phase change). “Full physics” refers to
problems involving strong interactions between the 
uid �eld and solid �eld temperatures and velocities,
with a full Navier Stokes representation of 
uid materials and the transient, nonlinear response of solid
materials. �ese interactions may include chemical or physical transformation between the solid and

uid �elds.

�e theoretical and algorithmic basis for the multi-material CFD algorithm presented here is based on
a body of work of several investigators at Los Alamos National Laboratory, primarily Bryan Kashiwa,
Rick Rauenzahn and Matt Lewis. Several reports by these researchers are publicly available and are cited
herein. It is largely through our personal interactions that we have been able to bring these ideas to bear
on the simulations described herein.

An exposition of the governing equations is given in the next section, followed by an algorithmic descrip-
tion of the solution of those equations. �is description is �rst done separately for the materials in the
Eulerian and Lagrangian frames of reference, before details associated with the integrated approach are
given.

23.1.1 Governing Equations

�e governing multi-material model equations are stated and described, but not developed, here. �eir
development can be found in [11]. Here, our intent is to identify the quantities of interest, of which there
are eight, as well as those equations (or closure models) which govern their behavior. Consider a collec-
tion of N materials, and let the subscript r signify one of the materials, such that r = 1, 2, 3, . . . ,N . In an
arbitary volume of space V(x, t), the averaged thermodynamic state of a material is given by the vector
[Mr, ur, er, Tr, vr, θr, σ r, p], the elements of which are the r-material mass, velocity, internal energy, tem-
perature, speci�c volume, volume fraction, stress, and the equilibration pressure. �e r-material averaged
density is ρr = Mr/V . �e rate of change of the state in a volume moving with the velocity of r-material
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is:

1
V
DrMr

Dt
=

N
∑
i=1
Γrs (23.1)

1
V
Dr

Dt
(Mrur) = θr∇ ⋅ σ +∇ ⋅ θr(σ r − σ) + ρrg +

N
∑
i=1
frs +

N
∑
i=1
u+rsΓrs (23.2)

1
V
Dr

Dt
(Mrer) = −ρrp

Drvr
Dt

+ θrτr ∶ ∇ur −∇ ⋅ jr +
N
∑
i=1
qrs +

N
∑
i=1
h+rsΓrs (23.3)

Equations (23.1-23.3) are the averaged model equations for mass, momentum, and internal energy of r-
material, in which σ is the meanmixture stress, taken here to be isotropic, so that σ = −pI in terms of the
hydrodynamic pressure p. �e e�ects of turbulence have been explicitly omitted from these equations,
and the subsequent solution, for the sake of simplicity. However, including the e�ects of turbulence is not
precluded by either the model or the solution method used here.

In Eq. (23.2) the term∑N
s=1 frs signi�es a model for the momentum exchange among materials. �is term

results from the deviation of the r-�eld stress from the mean stress, averaged, and is typically modeled
as a function of the relative velocity between materials at a point. (For a two material problem this term
might look like f12 = K12θ1θ2(u1 − u2) where the coe�cient K12 determines the rate at which momentum
is transferred between materials). Likewise, in Eq. (23.3), ∑N

s=1 qrs represents an exchange of heat energy
among materials. For a two material problem q12 = H12θ1θ2(T2 − T1) where Tr is the r-material temper-
ature and the coe�cient Hrs is analogous to a convective heat transfer rate coe�cient. �e heat 
ux is
jr = −ρrbr∇Tr where the thermal di�usion coe�cient br includes both molecular and turbulent e�ects
(when the turbulence is included).

In Eqs. (23.1-23.3) the term Γrs is the rate of mass conversion from s-material into r-material, for example,
the burning of a solid or liquid reactant into gaseous products. �e rate at which mass conversion occurs
is governed by a reaction model. In Eqs. (23.2) and (23.3), the velocity u+rs and the enthalpy h+rs are those
of the s-material that is converted into r-material. �ese are simply the mean values associated with the
donor material.

�e temperature Tr, speci�c volume vr, volume fraction θr, and hydrodynamic pressure p are related to
the r-material mass density, ρr, and speci�c internal energy, er, by way of equations of state. �e four
relations for the four quantites (Tr, vr, θr, p) are:

er = er(vr, Tr) (23.4)
vr = vr(p, Tr) (23.5)

and

θr = ρrvr (23.6)

0 = 1 −
N
∑
i=1
ρsvs (23.7)

Equations (23.4) and (23.5) are, respectively, the caloric and thermal equations of state. Equation (23.6)
de�nes the volume fraction, θ, as the volume of r-material per total material volume, and with that def-
inition, Equation (23.7), referred to as the multi-material equation of state, follows. It de�nes the unique
value of the hydrodynamic pressure p that allows arbitrary masses of the multiple materials to identically
�ll the volume V . �is pressure is called the “equilibration” pressure [94].

A closure relation is still needed for the material stress σ r. For a 
uid σ r = −pI + τr where the deviatoric
stress is well known for Newtonian 
uids. For a solid, the material stress is the Cauchy stress. �e Cauchy
stress is computed using a solid constitutive model and may depend on the the rate of deformation, the
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current state of deformation (E), the temperature, and possibly a number of history variables. Such a
relationship may be expressed as:

σ r ≡ σ r(∇ur, Er, Tr, . . . ) (23.8)

�e approach described here imposes no restrictions on the types of constitutive relations that can be
considered. More speci�c discussion of some of the models used in this work can be found in the section
on ICE models.

Equations (23.1-23.8) form a set of eight equations for the eight-element state vector,
[Mr, ur, er, Tr, vr, θr, σ r, p], for any arbitrary volume of space V moving with the r-material velocity. �e
approach described here uses the reference frame most suitable for a particular material type. As such,
there is no guarantee that arbitrary volumes will remain coincident for materials described in di�erent
reference frames. �is problem is addressed by treating the speci�c volume as a dynamic variable of the
material state which is integrated forward in time from initial conditions. In so doing, at any time, the
total volume associated with all of the materials is given by:

Vt =
N
∑
r=1

Mrvr (23.9)

so the volume fraction is θr = Mrvr/Vt (which sums to one by de�nition). An evolution equation for the
r-material speci�c volume, derived from the time variation of Eqs. (23.4-23.7), has been developed in [11].
It is stated here as:

1
V
Dr

Dt
(Mrvr) = f θr ∇ ⋅ u + [vrΓr − f θr

N
∑
i=1
vsΓs] + [θrβr

DrTr
Dt

− f θr
N
∑
i=1
θsβs

DsTs
Dt

] . (23.10)

where

f θr =
θrκr
∑N
s=1 θsκs

(23.11)

and κr is the r-material bulk compressibility.

�e evaluation of the multi-material equation of state (Eq. (23.7) is still required in order to determine an
equilibrium pressure that results in a common value for the pressure, as well as speci�c volumes that �ll
the total volume identically.

A description of the means by which numerical solutions to the equations in Section 23.2 are found is
presented next. �is begins with separate, brief overviews of the methodologies used for the Eulerian and
Lagrangian reference frames. �e algorithmic details necesssary for integrating them to achieve a tightly
coupled 
uid-structure interaction capability is provided in Sec. 25.

23.2 AlgorithmDescription

�eEulerianmethod implemented here is a cell-centered, �nite volume,multi-material version of the ICE
(for Implicit, Continuous 
uid, Eulerian) method [95] developed by Kashiwa and others at Los Alamos
National Laboratory [96]. “Cell-centered” means that all elements of the state are colocated at the grid
cell-center (in contrast to a staggered grid, in which velocity components may be centered at the faces
of grid cells, for example). �is colocation is particularly important in regions where a material mass
is vanishing. By using the same control volume for mass and momentum it can be assured that as the
material mass goes to zero, the mass and momentum also go to zero at the same rate, leaving a well-
de�ned velocity. �e technique is fully compressible, allowing wide generality in the types of problems
that can be addressed.
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Our use of the cell-centered ICEmethod employs time splitting: �rst, a Lagrangian step updates the state
due to the physics of the conservation laws (i.e., right hand side of Eqs. 23.1-23.3); this is followed by an
Eulerian step, in which the change due to advection is evaluated. For solution in the Eulerian frame, the
method is well developed and described in [96].

In the mixed frame approach used here, a modi�cation to the multi-material equation of state is needed.
Equation (23.7) is unambiguous when all materials are 
uids or in cases of a 
ow consisting of dispersed
solid grains in a carrier 
uid. However in 
uid-structure problems the stress state of a submerged struc-
ture may be strongly directional, and the isotropic part of the stress has nothing to do with the hydrody-
namic (equilibration) pressure p. �e equilibrium that typically exists between a 
uid and a solid is at the
interface between the two materials: there the normal part of the traction equals the pressure exerted by
the 
uid on the solid over the interface. Because the orientation of the interface is not explicitly known
at any point (it is e�ectively lost in the averaging) such an equilibrium cannot be computed.

�e di�culty, and the modi�cation that resolves it, can be understood by considering a solid material in
tension coexisting with a gas. For solid materials, the equation of state is the bulk part of the constitutive
response (that is, the isotropic part of the Cauchy stress versus speci�c volume and temperature). If one
attempts to equate the isotropic part of the stress with the 
uid pressure, there exist regions in pressure-
volume space for which Eq. (23.7) has no physical solutions (because the gas pressure is only positive).
�is can be seen schematically in Fig. 23.1, which sketches equations of state for a gas and a solid, at an
arbitrary temperature.

Recall that the isothermal compressiblity is the negative slope of the speci�c volume versus pressure. Em-
bedded structures considered here are solids and, at low pressure, possess a much smaller compressibility
than the gasses in which they are submerged. Nevertheless the variation of condensed phase speci�c vol-
ume can be important at very high pressures, where the compressibilities of the gas and condensed phase
materials can become comparable (as in a detonation wave, for example). Because the speed of shock
waves in materials is determined by their equations of state, obtaining accurate high pressure behavior is
an important goal of our FSI studies.

To compensate for the lack of directional information for the embedded surfaces, we evaluate the solid
phase equations of state in two parts. Above a speci�ed postive threshold pressure (typically 1 atmo-
sphere), the full equation of state is respected; below that threshold pressure, the solid phase pressure
follows a polynomial chosen to be C1 continuous at the threshold value and which approaches zero as the
speci�c volume becomes large. �e e�ect is to decouple the solid phase speci�c volume from the stress
when the isotropic part of the stress falls below a threshold value. In regions of coexistence at states be-
low the threshold pressure, p tends to behave according to the 
uid equation of state (due to the greater
compressibility) while in regions of pure condensed phase material p tends rapidly toward zero and the
full material stress dominates the dynamics as it should.
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Figure 23.1: Speci�c volume vs pressure for a gas phase material and a solid phase material. Light dashed
line re
ects an altered solid phase equation of state to keep all materials in positive equilibration pressure
space.
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ICE use standard Newtonian 
uid models for the simulation of 
uids. However, since it was designed for
shock-compression applications, we focus on some of the high energy material models that are used by
ICE in Vaango .

24.1 High EnergyMaterial ReactionModels

Two types of High Energy (HE) reactionmodels were considered here. �e �rst is amodel for detonation,
inwhich the reaction front proceeds as a shockwave through the solid reactant, leaving highly pressurized
product gases behind the shock. �e second is a de
agrationmodel, in which the reaction proceeds more
slowly through the reactant in the form of a thermal burn. Each is described here.

24.1.1 The JWL++ DetonationModel

�e detonation model used in two of the calculations discussed in Section 25.3 is a reactive 
ow model
known as JWL++[97]. JWL++ consists of equations of state for the reactant and the products of reaction
as well as a rate equation governing the transformation from product to reactant. In addition, the model
consists of a “mixer” which is a rule for determining the pressure in a mixture of product and reactant,
as found in a partially reacted cell. Because pressure equilibration among materials is already part of the
multi-material CFD formulation described in Section 25.1, the mixer was not part of the current imple-
mentation. Lastly, two additional rules apply. �e �rst is that reaction begins in a cell when the pressure
in that cell exceeds 200 MPa. Finally, no more than 20% of the explosive in a cell is allowed to react in a
given timestep.

�e Murnaghan equation of state [21] used for the solid reactant material is given by:

p = 1
nκ

( 1
vn

− 1) (24.1)

where v = ρ0/ρ, and n and κ are material dependent model parameters. Note that while the reactants are
solid materials, they are assumed to not support deviatoric stress. Since a detonation propagates faster
than shear waves, the strength in shear of the reactants can be neglected. Since it is not necessary to track
the deformation history of a particular material element, in this case, the reactant material was tracked
only in the Eulerian frame, i.e. not represented by particles within MPM.
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�e JWL C-term form is the equation of state used for products, and is given by:

P = Aexp(−R1v) + B exp(−R2v) +
C

ρ0κvn−1
(24.2)

where A, B, C, R1, R2, ρ0 and κ are all material dependent model parameters.

�e rate equation governing the transformation of reactant to product is given by:

dF
dt

= G(p + q)b(1 − F) (24.3)

where G is a rate constant, and b indicates the power dependence on pressure. q is an arti�cial viscosity,
but was not included in the current implementation of the model. Lastly:

F =
ρproduct

ρreactant + ρproduct
(24.4)

is the burn fraction in a cell. �is can be di�erentiated and solved for a mass burn rate in terms of dF:

Γ =
dF
dt

(ρreactant + ρproduct) (24.5)

24.1.2 De
agrationModel

�e rate of thermal burning, or de
agration, of a monopropellant solid explosive is typically assumed to
behave as:

D = Apn (24.6)

where D can be thought of as the velocity at which the burn front propagates through the reactant (with
units of length/time) and p is the local pressure [98]. A and n are parameters that are empirically de-
termined for particular explosives. Because de
agration is a surface phenomenon, our implementation
requires the identi�cation of the surface of the explosive. �e surface is assumed to lie within those cells
which have the highest gradient of mass density of the reactant material. Within each surface cell, an
estimate of the surface area a is made based on the direction of the gradient, and the rate D above is
converted to a mass burn rate by:

Γ = aDρreactant (24.7)

where ρreactant is the local density of the explosive. While the reaction rate is independent of temperature,
initiation of the burn depends on reaching a threshold temperature at the surface.

Since the rate at which a de
agration propagates is much slower than the shear wave speed in the reac-
tant, it is important to track its deformation as pressure builds up within the container. �is deformation
may lead to the formation of more surface area upon which the reaction can take place, and the change
to the shape of the explosive can a�ect the eventual violence of the explosion. Because of this, for de-

agration cases, the explosive is represented by particles in the Lagrangian frame. �e stress response
is usually treated by an implementation of ViscoSCRAM [99], which includes representation of the ma-
terial’s viscoelastic response, and considers e�ects of micro-crack growth within the granular composite
material.
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Approaches to 
uid structure interaction (FSI) problems are typically divided into two classes. “Sep-
arated” approaches treat individual materials as occupying distinct regions of space, with interactions
occurring only at material interfaces. �e details of those interactions vary between implementations,
and are o�en a function of the degree, or “strength” of the coupling between the 
uid and solid �elds.
Because of the separated nature of the materials, only one set of state variables is needed at any point in
space, since only one material is allowed to exist at that point. “Averaged” model approaches allow all
materials to exist at any point in space with some probability. Variables describing the material state vary
continuously throughout the computational domain, thus, the state of every material is de�ned at every
point in space. Distinct material interfaces are not de�ned, rather the interaction between materials is
computed in an average sense, and, as such, interactions among materials may take place anywhere.

While both the separated model and averaged model approaches have their respective merits, the aver-
aged model, when carried out on an Eulerian grid, allows arbitrary distortion of materials and material
interfaces. However, these distortions can be catastrophic for the solid material, as the deformation his-
tory of the solid must be transported through the Eulerian grid. �is transport can lead to non-physical
stresses and the interface between materials is also subject to di�usion. �e latter problem can be miti-
gated via surface tracking and the use of a single valued velocity �eld [100, 101], but this does not eliminate
the problems of stress transport.

�e approach described here uses the averagedmodel approach, and addresses the issue of stress transport
by integrating the state of the solid �eld in the “material” frame of reference through use of the Material
Point Method (MPM) [1, 2]. MPM is a particle method for solid mechanics that allows the solid �eld
to undergo arbitrary distortion. Because the 
uid state is integrated in the Eulerian frame, it can also
undergo arbitrary distortion. MPM uses a computational “scratchpad” grid to advance the solution to
the equations of motion, and by choosing to use the same grid used in the Eulerian frame of reference,
interactions among the materials are facilitated on this common computational framework. By choosing
to use an in�nitely fast rate of momentum transfer between the materials, the single velocity �eld limit is
obtained, and the interface between materials is limited to, at most, a few cells. �us, in the di�erential
limit, the separated model can be recovered. �is means that with su�cient grid resolution, the accuracy
of the separated model and the robustness of the averaged model can be enjoyed simultaneously.

An exposition of the governing equations of the CFD approach are given in Chapter 23 while those for
MPM can be found in Chapter 1. Algorithmic description of the solution of those equations can also be
found in those chapters, but a summary is provided here. �e reader is encouraged to browse Section 25.3
to better appreciate the direction that the subsequent development is headed.
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25.1 Numerical Implementation

A description of the means by which numerical solutions to the equations in the preceding section are
found is presented next. �is begins with separate, brief, overviews of the methodologies used for the
Eulerian and Lagrangian reference frames. �e algorithmic details necesssary for integrating them to
achieve a tightly coupled 
uid-structure interaction capability is provided in Sec. 25.1.3.

25.1.1 ICE EulerianMulti-Material Method

�e Eulerian method implemented here is a cell-centered, �nite volume, multi-material version of the
ICE (for Implicit, Continuous 
uid, Eulerian) method [102] developed by Kashiwa and others at Los
Alamos National Laboratory [103]. “Cell-centered” means that all elements of the state are colocated at
the grid cell-center (in contrast to a staggered grid, in which velocity components may be centered at
the faces of grid cells, for example). �is colocation is particularly important in regions where a material
mass is vanishing. By using the same control volume for mass and momentum it can be assured that as
the material mass goes to zero, the mass and momentum also go to zero at the same rate, leaving a well
de�ned velocity. �e technique is fully compressible, allowing wide generality in the types of problems
that can be e�ciently computed.

Our use of the cell-centered ICEmethod employs time splitting: �rst, a Lagrangian step updates the state
due to the physics of the conservation laws (i.e., right hand side of Eqs. 23.1-23.3); this is followed by an
Eulerian step, in which the change due to advection is evaluated. For solution in the Eulerian frame, the
method is well developed and described in [103].

In the mixed frame approach used here, a modi�cation to the multi-material equation of state is needed.
Equation 23.7 is unambiguous when all materials are 
uids or in cases of a 
ow consisting of dispersed
solid grains in a carrier 
uid. However in 
uid-structure problems the stress state of a submerged struc-
ture may be strongly directional, and the isotropic part of the stress has nothing to do with the hydrody-
namic (equilibration) pressure p. �e equilibrium that typically exists between a 
uid and a solid is at the
interface between the two materials: there the normal part of the traction equals the pressure exerted by
the 
uid on the solid over the interface. Because the orientation of the interface is not explicitly known
at any point (it is e�ectively lost in the averaging) such an equilibrium cannot be computed.

�e di�culty, and the modi�cation that resolves it, can be understood by considering a solid material in
tension coexisting with a gas. For solid materials, the equation of state is the bulk part of the constitutive
response (that is, the isotropic part of the Cauchy stress versus speci�c volume and temperature). If
one attempts to equate the isotropic part of the Cauchy stress with the 
uid pressure, there exist regions
in pressure-volume space for which Eq. 23.7 has no physical solutions (because the gas pressure is only
positive). �is can be seen schematically in Fig. 23.1, which sketches equations of state for a gas and a
solid, at an arbitrary temperature.

Recall that the isothermal compressiblity is the negative slope of the speci�c volume versus pressure. Em-
bedded structures considered here are solids and, at low pressure, possess a much smaller compressibility
than the gasses in which they are submerged. Nevertheless the variation of condensed phase speci�c vol-
ume can be important at very high pressures, where the compressibilities of the gas and condensed phase
materials can become comparable (as in a detonation wave, for example). Because the speed of shock
waves in materials is determined by their equations of state, obtaining accurate high pressure behavior is
an important goal of our FSI studies.

To compensate for the lack of directional information for the embedded surfaces, we evaluate the solid
phase equations of state in two parts. Above a speci�ed postive threshold pressure (typically 1 atmo-
sphere), the full equation of state is respected; below that threshold pressure, the solid phase pressure
follows a polynomial chosen to be C1 continuous at the threshold value and which approaches zero as the
speci�c volume becomes large. �e e�ect is to decouple the solid phase speci�c volume from the stress
when the isotropic part of the stress falls below a threshold value. In regions of coexistence at states be-
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low the threshold pressure, p tends to behave according to the 
uid equation of state (due to the greater
compressibility) while in regions of pure condensed phase material p tends rapidly toward zero and the
full material stress dominates the dynamics as it should.

25.1.2 TheMaterial Point Method

Solid materials with history dependent constitutive relations are more conveniently treated in the La-
grangian frame. Here we brie
y describe a particle method known as the Material Point Method (MPM)
which is used to evolve the equations of motion for the solid phase materials. MPM is a powerful tech-
nique for computational solid mechanics, and has found favor in applications involving complex geome-
tries [104], large deformations [105] and fracture [106], to name a few. A�er the description of MPM, its
incorporation within the multi-material solution is described in Sec. 25.1.3.

Originally described by Sulsky, et al., [1, 2], MPM is a particle method for structural mechanics simu-
lations. MPM is an extension to solid mechanics of FLIP [3], which is a particle-in-cell (PIC) method
for 
uid 
ow simulation. �e method typically uses a cartesian grid as a computational scratchpad for
computing spatial gradients. �is same grid also functions as an updated Lagrangian grid that moves
with the particles during advection and thus eliminates the di�usion problems associated with advection
on an Eulerian grid. At the end of a timestep, the grid is reset to the original, regularly ordered, position.
Details of the theory ofMPM can be found in Chapter 1.

By describing and implementing MPM in an independent fashion, validation of the method itself as well
as submodels (e.g., constitutivemodels and contact) is simpli�ed. However, we emphasize that its use here
is for selected material �eld description within the general multi-material formulation. �is integration
is described next.

25.1.3 Integration of MPMwithin the EulerianMulti-Material Formulation

An important feature of this work is the ability to represent amaterial in either the Lagrangian or Eulerian
frame. �is allows treating speci�c phases in their traditionally preferred frame of reference. �eMaterial
Point Method, is used to time advance solid materials that are best described in a Lagrangian reference
frame. By choosing the background grid used to update the solidmaterials to be the same grid used in the
multi-material Eulerian description, all interactions among materials can be computed in the common
framework, according to themomentum and heat exchange terms in Eqs 23.2-23.3. �is results in a robust
and tightly coupled solution for interacting materials with very di�erent responses.

To illustrate how the integration is accomplished in an algorithmic fashion the explicit steps for advancing
a 
uid-structure interaction problem from time t to time t + ∆t are described below.

1. Project particle state to grid: A simulation timestep begins by interpolating the particle descrip-
tion of the solid to the grid. �is starts with a projection of particle data to grid vertices, or nodes, as
described in Eq. 1.69, and is followed by a subsequent projection from the nodes to the cell-centers.
Since our work uses a uniform structured grid, each node has equal weight in its contribution to
the cell-centered value. �e exception to this is near computational boundaries where symmetric
boundary conditions are used. �e weight of those nodes on the boundary must be doubled in
order to achieve the desired e�ect.

2. Compute the equilibrium pressure:While Eq. 23.7 and the surrounding discussion describes the
basic process, one speci�c point warrants further explanation. In particular, the manner in which
each material’s volume fraction is computed is crucial. Because the solid and 
uid materials are
evolved in di�erent frames of reference, the total volume of material in a cell is not necessarily
equal to the volume of a computational cell. Material volume is tracked by evolving the speci�c
volume for each material according to Eq. 23.10. �e details of this are further described in step 11.
With thematerials’masses and speci�c volumes,material volume can be computed (Vr = Mrvr) and
summed to �nd the total material volume. �e volume fraction θr is then computed as the volume
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of r-material per total material volume. With this, the solution of Eq. 23.7 can be carried out at
each cell using a Newton-Raphson technique[107], which results in new values for the equilibrium
pressure, peq, volume fraction, θr and speci�c volume, vr .

3. Compute face-centered velocities, u∗r , for the Eulerian advection: At this point, 
uxing velocities
are computed at each cell face. �e expression for this is based on a time advanced estimate for the
cell-centered velocity. A full development can be found in [103] and [11] but here, only the result is
given:

u∗r =
ρrLurL + ρrRurR

ρrL + ρrR
− (

2vrLvrR∆t
vrL + vrR

)(
peqR − peqL

∆x
) + g∆t (25.1)

�e �rst term above is amass weighted average of the logically le� and right cell-centered velocities,
the second is a pressure gradient acceleration term, and the third is acceleration due to the com-
ponent of gravity in the face normal direction. Not shown explicitly is the necessary momentum
exchange at the face-centers. �is is done on the faces in the same manner as described subse-
quently in step 10 for the cell-centered momentum exchange.

4. Multiphase chemistry: Compute sources of mass, momentum, energy and speci�c volume as a
result of phase changing chemical reactions for each r-material, Γr , urΓr , erΓr , and vrΓr . Speci�cs of
the calculation of Γr are model dependent, and examples are given in Sec. 24.1.
Care must be taken to reduce the momentum, internal energy and volume of the reactant by an
amount proportional to the mass consumed each timestep, so that those quantities are depleted
at the same rate as the mass. When the reactant material is described by particles, decrementing
the particle mass automatically decreases the momentum and internal energy of that particle by
the appropriate amount. �is mass, momentum, and internal energy is transferred to the product
material’s state, and the volume fraction for the reactant and product materials is recomputed.

5. Compute an estimate of the time advanced pressure, p: Based on the volume of material being
added to (or subtracted from) a cell in a given timestep, an increment to the cell-centered pressure
is computed using:

∆p = ∆t

N
∑
r=1
vrΓr −

N
∑
r=1
∇ ⋅ (θ∗r u∗r )

N
∑
r=1
θrκr

(25.2)

p = peq + ∆p (25.3)
where κr is the r-material bulk compressibility. �e�rst term in the numerator of Eq. 25.2 represents
the change in volume due to reaction, i.e., a given amount of mass would tend to occupy more
volume in the gas phase than the solid phase, leading to an increase in pressure. �e second term
in the numerator represents the net change in volume of material in a cell due to 
ow into or out of
the cell. �e denominator is essentially the mean compressibility of the mixture of materials within
that cell. �is increment in pressure is added to the equilibrium pressure computed in step 2 and
is the pressure used for the remainder of the current timestep. Again, the details leading to this
equation can be found in [103].

6. Face Centered Pressure p∗:�e calculation of p∗ is discussed at length in [11]. For this work, it is
computed using the updated pressure by:

p∗ = ( pL
ρL

+ pR
ρR

)/( 1
ρL

+ 1
ρR

) (25.4)

where the subscripts L and R refer to the logically le� and right cell-centered values, respectively,
and ρ is the sum of all material’s densities in that cell. �is will be used subsequently for the com-
putation of the pressure gradient, ∇p∗.

7. Material Stresses: For the solid, we calculate the velocity gradient at each particle based on the
grid velocity (Eq. 1.73) for use in a constitutive model to compute particle stress. Fluid stresses are
computed on cell faces based on cell-centered velocities.
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8. Accumulate sources ofmass, momentumand energy at cell-centers:�ese terms are of the form:

∆(m)r = ∆t V
N
∑

s=1,s≠r
Γs (25.5)

∆(mu)r = −∆t V [θr∇p∗ +∇⋅θr(σ r − σ) +
N
∑

s=1,s≠r
usΓs] (25.6)

∆(me)r = −∆t V [ f θrp
N
∑
s=1
∇ ⋅ (θ∗r u∗r ) +

N
∑

s=1,s≠r
esΓs] (25.7)

Note that the only source of internal energy being considered here is that due to “
ow work”. �is
is required for the compressible 
ow formulation, but other terms, such as heat conduction are at
times included.

9. Compute Lagrangian phase quantities at cell-centers:�e increments in mass, momentum and
energy computed above are added to their time t counterparts to get the Lagrangian values for
these quantities. Note that here, some Lagrangian quantities are denoted by an L− superscript. �is
indicates that all physical processes have been accounted for except for inter-material exchange of
momentum and heat which is described in the following step.

(m)Lr = (m)tr + ∆(m)r (25.8)
(mu)L−r = (mu)tr + ∆(mu)r (25.9)
(me)L−r = (me)tr + ∆(me)r (25.10)

10. Momentum and heat exchange:�e exchange of momentum and heat between materials is com-
puted according to:

(mu)Lr = (mu)L−r + ∆t mr

N
∑
s=1
θrθsKrs(uLs − uLr ) (25.11)

(me)Lr = (me)L−r + ∆t mr cvr
N
∑
s=1
θrθsHrs (TL

s − TL
r ) (25.12)

�ese equations are solved in a pointwise implicit manner that allows arbitrarily large momentum
transfer to take place betweenmaterials. Typically, in FSI solutions, very large (1015) values of K are
used, which results in driving contactingmaterials to the same velocity. Intermaterial heat exchange
is usually modeled at a lower rate. Again, note that the same operationmust be done following Step
3 above in the computation of the face-centered velocities.

11. Speci�c volume evolution: As discussed above in step 2, in order to correctly compute the equilib-
rium pressure and the volume fraction, it is necessary to keep an accurate accounting of the speci�c
volume for each material. Here, we compute the evolution in speci�c volume due to the changes in
temperature and pressure, as well as phase change, during the foregoing Lagrangian portion of the
calculation, according to:

∆(mv)r = ∆t V [vrΓr + f θr∇ ⋅
N
∑
s=1
θ∗s u

∗
s + θrβr Ṫr − f θr

N
∑
s=1
θsβsṪs] (25.13)

(mv)Lr = (mv)nr + ∆(mv)r (25.14)
where β is the constant pressure thermal expansivity and Ṫ = TL−T t

∆t is the rate of change of each
material’s temperature during the Lagrangian phase of the computation.

12. Advect Fluids: For the 
uid phase, use a suitable advection scheme, such as that described in [108],
to transport mass, momentum, internal energy and speci�c volume. As this last item is an intensive
quantity, it is converted tomaterial volume for advection, and then reconstituted as speci�c volume
for use in the subsequent timestep’s equilibrium pressure calculation.

13. Update Nodal Quantities for Solid Materials: �ose changes in solid material mass, momen-
tum and internal energy that are computed at the cell-centers are interpolated to the nodes as �eld
quantities, e.g., changes in momentum are expressed as accelerations, for use in Eq. 1.72.

14. Advect Solids: For the solid phase, interpolate the time advanced grid velocity and the correspond-
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ing velocity increment (acceleration) back to the particles, and use these to advance the particle’s
position and velocity, according to Eqs. 1.76.

�is completes one timestep. In the preceding, the user has a number of options in the implementation.
�e approach taken here was to develop a workingMPM code and a separate workingmulti-material ICE
code. In addition, some routines speci�c to the integration are required, for example, to transfer data from
grid nodes to cell-centers. We note, however, that the 
uid structure interaction methodology should not
be looked at in the context of a “marriage” between an Eulerian CFD code andMPM.�e underlying the-
ory is a multi-material description that has the 
exibility to incorporate di�erent numerical descriptions
for solid and 
uid �elds within the overarching solution process. To have 
exibility in treating a widest
range of problems, it was our desire that in the integration of the two algorithms, each of the components
be able to function independently. As described here, this method is fully explicit in time. To make this
implicit with respect to the propagation of pressure waves, a Poisson equation is solved in the calculation
of ∆p, which is in turn used to iteratively update the face-centered velocities [103].

25.2 Models

�e governing equations given in Section 23.1.1 are incomplete without closure equations for quantities
such as pressure, stress, and rate of exchange of mass between materials. Equations of state, constitutive
models and reaction models provide the needed closure. Some ICEmaterial models have been discussed
in Chapter 24. Materials used by the MPM component are discussed elsewhere in the Vaango �eory
Manual.

25.3 Numerical Results

�e simulation results presented here are intended to serve two purposes, to validate the method pre-
sented above, and to demonstrate its capabilities. While results from some very basic validation tests can
be found in [109], the validation tests presented here are targeted toward exploding energetic devices.
Extensive experimental data have been collected for the �rst two cases, and these data are compared with
simulation results.

�e �rst test, detonation of a series of cylinders of explosive, validates both the general multi-material
framework, including material transformation, as well as the detonation model itself. In the second test,
a cylinder of explosive con�ned in a copper tube is detonated. �ere, the con�dence gained from the �rst
test is built upon and extended to include the interaction of the highly pressurized product gases with the
con�ning copper cylinder. Wall velocity of the copper tube is comparedwith experimentalmeasurements.

For the last case, a steel cylinder �lled with PBX-9501 is heated to the critical temperature to commence
a de
agration. �e simulation continues through the rupture of the case when product gases are free to
interact with the surrounding air. �is simulation demonstrates a unique capability of this approach, in
which initially separate 
uid regions are allowed to interact following the failure of the steel container.

25.3.1 Rate Stick Simulations

Awell known phenomenon of detonating solid high explosives is the so-called “size e�ect”. �e size e�ect
refers to the change of the steady state detonation velocity of explosives, Us with size R0 [97]. In order
to validate our implementation of the JWL++ detonation model within our multi-material framework, a
parameter study was conducted for cylinders of Ammonium Nitrate Fuel Oil (ANFO-K1) with length of
10 cm and radii ranging from 4 mm to 20 mm. In addition, a one-dimensional simulation provided for
the “in�nite radius” case. In each of the �nite radius cases, the cylinder was initially surrounded by air.
Detonation was initiated by impacting the cylinder at 90 m/s against the boundary of the computational
domain, at which a zero velocity Dirichlet boundary condition was imposed. �is impact was su�cient
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Figure 25.1: Uncon�ned 12 mm “rate-stick”. �emass density of the reactant material is volume rendered,
and shows evidence of the curvature of the reaction front, and the compression of the reactant just ahead
of the reaction. Behind the detonation, most of the reactant material is consumed.

to raise the pressure within the cylinder to above the threshold for initiation of reaction. �e detonation
velocity was determined by comparing the arrival time of the detonation at two points along the cylinder,
su�ciently into the far �eld that the detonation had reached a steady state.

Material properties for these cases included the following: �e reactant was described by a Murnaghan
equation of state with parameters n = 7.4, κ = 3.9×1011 Pa−1 and ρ0 = 1160.0 kg/m3. �e products of
reaction were described by a JWL C-term form equation of state with parameters A = 2.9867×1011 Pa, B
= 4.11706×109 Pa, C = 7.206147×108 Pa, R1 = 4.95, R2 = 1.15, ω = 0.35 and ρ0 = 1160.0 kg/m3. �e JWL++
parameters were taken as: G = 3.5083×10−7 s−1Pab, b = 1.3, ρ0 = 1160.0 kg/m3. In all, this simulation
included 3 materials; the reactant material, the products of reaction and the surrounding air.

Simulations were carried out on uniform meshes with cell sizes of 1.0 mm, 0.5 mm and 0.25 mm. A one-
quarter symmetry was assumed in all cases. A qualitative representation is shown in Figure 25.1, which
depicts a volume rendering of the density of the reactant as the detonation has progressed about halfway
into the material for the 12 mm radius case at the �nest resolution. �e curvature of the burn front and
the elevated density just ahead of it are evident in this view.

Figure 25.2 is a plot of detonation velocity versus the inverse of the sample radius. Experimental data are
represented by open squares, while results of the simulations are shown with �lled circles (h = 1.0 mm),
�lled diamonds (h = 0.5 mm) and �lled triangles (h = 0.25 mm). Connecting lines for the numerical
data are in place to guide the eyes of the reader. Evident from this plot is the convergence of detonation
velocities with grid resolution, and the generally good agreement between experimental and computed
detonation velocities at the �ner grid resolutions, particularly at the larger radii, where both the experi-
mental data and the model are considered more reliable.

Again, while this set of tests doesn’t validate the full 
uid-structure interaction approach, it does give
credibility to the underlying multi-material formulation, including the pressure equilibration and the
exchange of mass between materials, in this case as governed by the JWL++ detonation model, as well as
momentum and energy.

25.3.2 Cylinder Test Simulation

�e cylinder test is an experiment which is frequently used to calibrate equations of state for detonation
products of reaction [110]. In this case, the test consists of an OFHC copper tube with an inner radius of
2.54 cm, an outer radius of 3.06 cm and a length of 35 cm. �e tube is �lled with QM-100, an Ammonium
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Figure 25.2: Detonation velocity vs. inverse radius. Experimental and numerical data are presented, and
indicate good agreement of themodel with experiment, as well as convergence of detonation velocity with
grid resolution.

Nitrate emulsion and a detonation is initiated at one end of the tube. Measurements of the wall velocity
wall are made at individual points along the length of the tube using Fabry-Perot interferometry or streak
cameras.

A simulation of this con�gurationwas performed andwall velocity data were collected at an axial location
25 cm from the point of initiation. �e reactantwas again described by aMurnaghan equation of statewith
parameters n = 7.0, κ = 1.02×10−9 Pa−1 and ρ0 = 1260.0 kg/m3. �e products of reaction were described
by a JWL C-term form equation of state with parameters A = 4.8702×1011 Pa, B = 2.54887×109 Pa, C =
5.06568×108 Pa, R1 = 5.0, R2 = 1.0, ω = 0.3 and ρ0 = 1260.0 kg/m3. �e JWL++ parameters were taken as:
G = 9.1×10−5s−1 Pa, b = 1.0, ρ0 = 1260.0 kg/m3. �e copper tube wasmodeled as an elastic-perfectly plastic
material with a density of 8930.0 kg/m3, bulk and shearmoduli of 117.0GPa and 43.8 GPa, respectively,and
a yield stress of 70.0 MPa. �e copper tube was surrounded by air. In all, 4 materials are present in this
simulation, the reactant, the products of reaction, the copper tube, and the surrounding air.

Again, a one-quarter symmetry section of the full cylinderwasmodeled using a cell size of h = 0.5mmand
a total domain size of 35 cm × 6 cm × 6 cm. Zero gradient conditions described the exterior boundaries,
which allowed material to exit the domain.

Figure 25.3 shows a snapshot of this test midway through the simulation, at t = 18.8 µs. �e copper tube is
depicted using an iso-surface of the cell-centered mass density (the two surfaces are the inner and outer
walls of the tube) that is colored by velocity. A volume rendering of the pressure �eld is also present.
Alternating bands of high and low velocity of the tube wall are evidently due to the re
ection of the
impulse provided by the shock between the inner and outer surfaces of the tube.

Velocity data was collected from those particles which were both initially at an axial location of 25 cm,
and upon the exterior surface of the tube. �e velocity from this collection of particles was averaged over
the circumference and plotted vs. time in Figure 25.4. In addition, experimental results (LLNL, Shot No.
K260-581) are also shown. Both datasets are time shi�ed to coincide with the arrival of the detonation.
Good agreement is evident between the experimental and numerical data, further indicating the validity
of the approach described here.

25.3.3 Fast Cooko� Simulation

Cooko� tests, generally speaking, refer to experiments in which energetic material is heated until it
reaches ignition. �e rate of heating typically di�erentiates these tests in to “fast” or “slow” cooko�. In
slow cooko� tests, the temperature is usually increased very slowly, perhaps a few degrees per hour, so
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Figure 25.3: Copper cylinder test simulation. �e walls of the copper tube are depicted as an isosurface
of density of the copper material and are colored by velocity magnitude. Pressure is represented by a vol-
ume rendering, and indicates the progress of the detonation, as well as the interaction of the pressurized
products of reaction with the con�ning walls.
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Figure 25.4: Copper cylinder test simulation. Experimental and computational velocities of the cylinder
vs. time. Data was collected at a point 25 cm from the point of initiation of the detonation.
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Table 25.1: Material constants for 4340 steel.

ρ K µ T0 Tm C0 Γ0 Sα
(kg/m3) (GPa) (GPa) (K) (K) (m/s)
7830.0 173.3 80.0 294.0 1793.0 3574 1.69 1.92

A B C n m D1 D2 D3 D4 D5

(MPa) (MPa)
792.0 510.0 0.014 0.26 1.03 0.05 3.44 -2.12 0.002 0.61

that the entire sample is able to equilibrate and is nearly isothermal when ignition occurs. In fast cooko�
tests, heat is added to the system quickly, which is likely to lead to relatively local ignition at the surface of
the sample. Fast cooko� is more likely to occur in an accident scenario, where ordinance may be subject
to heating by a �re, as occurred on the USS Forrestal in 1967.

�e scenario considered here consists of a cylindrical 4340 steel container with both inner diameter and
length of 10.16 cm, and wall thickness of 0.635 cm, �lled with PBX-9501. �e temperature of the container
was initialized to be 1o K above the ignition temperature in the de
agration model for PBX-9501. In
this way, the entire outer surface of the explosive is ignited simultaneously. �is is, of course, somewhat
unrealistic for an accident scenario, but rather is an idealization.

Mechanical properties for PBX 9501 were obtained from the literature [99], while the material constants
used in the modeling of 4340 steel are shown in Table 25.1. A temperature-dependent speci�c heat model
[111] was used to compute the internal energy and the rate of temperature increase in the material. We
assumed an initial mean porosity of 0.005 with a standard deviation of 0.001. �e critical porosity was
0.3. �e mean strain at void nucleation was assumed to be 0.3 with a standard deviation of 0.1. �e scalar
damage variable was initialized with a mean of 0.005 and a standard deviation of 0.001.

�ree planes of symmetry are assumed, which allows modeling only 1/8th of the total geometry. Each
dimension of the computational domain was 9.0 cm discretized into 180 computational cells, for a grid
spacing of h = 0.5 mm. Four materials were present, the steel container and the PBX-9501, each of which
are treated in the Lagrangian frame of reference, as well as the air initially surrounding the container, and
the products of reaction from the de
agration, both of which are represented in the Eulerian frame of
reference. Neumann zero gradient boundary conditions are used on the exterior domain boundaries to
allow material to 
ow out of the domain, as the explosion progressed.

Because of the size and complexity of this simulation, signi�cant computational resources were required
to obtain a solution. Namely, the simulation ran for about 48 hours on 600 processors of a Linux cluster
at Lawrence Livermore National Laboratory, which resulted in 0.31 milliseconds of simulated time.

Results from this simulation are shown in Fig. 25.5. In each panel, the container and explosive are depicted
by isosurfaces, blue and red, respectively. In Fig. 25.5b-25.5e, a volume rendering of the mass density of
the product material of the reaction is also included. Fig. 25.5a shows the initial state of the geometry,
while the remaining panels show the progression of the simulation at the times indicated in the captions.
�e last two panels depict the same time, with the product gas removed in the �nal panel, to more clearly
show the state of the container at that time. Close comparison of the initial and �nal panels also reveals the
reduction in size of the explosive pellet, due to the reaction. Product gas �rst begins to leave the container
through a rupture where the side and end of the container meet(Fig. 25.5c), and ultimately also through
a rupture in middle (Fig. 25.5e). �e formation of these openings is governed by material localization.

Since no surface tracking is required in this method, there is no requirement to track the creation of the
new surfaces that occur due tomaterial failure. Gas is free to escape through the openings simply because
there is no longer anything in those computational cells to prevent it once the gap is su�ciently wide.
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(a) t=0 ms (b) t=.137 ms (c) t=.203 ms

(d) t=.259 ms (e) t=.312 ms (f) t=.312 ms

Figure 25.5: Time series of a steel container (blue) �lled with de
agrating plastic bonded explosive(red). A
volume rendering of the mass density of the products of reaction is also shown, except in the �nal panel,
where it is removed to more clearly show the regions where the container has failed.
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