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G — The Material Point Method

Introduction

The MPM component solves the momentum equations
V-0 +pb=pv (11)

using an updated Lagrangian formulation. The momentum solve for solid materials is complicated by
the fact that the equations need material constitutive models for closure. These material constitutive
models vary significantly between materials and contribute a large fraction of the computational cost of
a simulation.

The material point method (MPM) was described by Sulsky et al. [1, 2] as an extension to the FLIP (Fluid-
Implicit Particle) method of Brackbill [3], which itself is an extension of the particle-in-cell (PIC) method
of Harlow [4].

Interestingly, the name “material point method” first appeared in the literature two years later in a
description of an axisymmetric form of the method [5].

In both FLIP and MPM , the basic idea is the same: objects are discretized into particles, or material
points, each of which contains all state data for the small region of material that it represents. Particles do
not interact with each other directly, rather the particle information is accumulated to a background grid,
where the equations of motion (1.1) are integrated forward in time. This time advanced solution is then
used to update the particle state. Particle state data includes the position, mass, volume, velocity, stress,
state of deformation of that material, and a number of time-dependent internal material variables.

MPM differs from other “mesh-free” particle methods in that, while each object is primarily repre-
sented by a collection of particles, a computational mesh is also an important part of the calculation.
This mesh reduces the computational cost of searching for neighboring particles.

MPM usually uses a regular structured grid as a computational mesh. While this grid, in principle, de-
forms as the material that it is representing deforms, at the end of each timestep, it is reset to its original
undeformed position, in effect providing a new computational grid for each timestep. The use of a regu-
lar structured grid for each time step has a number of computational advantages. Computation of spatial
gradients is simplified. Mesh entanglement, which can plague fully Lagrangian techniques, such as the
Finite Element Method (FEM), is avoided.

MPM has also been successful in solving problems involving contact between colliding objects, having an
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advantage over FEM in that the use of the regular grid eliminates the need for doing costly searches for
contact surfaces[6].

In addition to the advantages that MPM brings, as with any numerical technique, it has its own set of
shortcomings. It is computationally more expensive than a comparable FEM code. Accuracy for MPM is
typically lower than FEM, and errors associated with particles moving around the computational grid
can introduce non-physical oscillations into the solution. Finally, numerical difficulties can still arise
in simulations involving large deformation that will prematurely terminate the simulation. The severity
of all of these issues (except for the expense) has been significantly reduced with the introduction of
the Generalized Interpolation Material Point Method, or GIMP [7]. Newer developments such as the
CPDI' MPM method [8] have also been incorporated into the explicit time integrated VIPM in VAANGO.
Implementation of other approaches along the line of CPDI such as CPDI2 [9] and CPTI [10] is also being
considered for future versions.

In addition, MPM can be incorporated with a multi-material CFD algorithm as the structural compo-
nent in a fluid-structure interaction formulation. This capability was first demonstrated in the CFDLIB
codes from Los Alamos by Bryan Kashiwa and co-workers[11]. There, as in the MPMICE component,
MPM serves as the Lagrangian description of the solid material in a multimaterial CFD code. Certain
elements of the solution procedure are based in the Eulerian CFD algorithm, including intermaterial
heat and momentum transfer as well as satisfaction of a multimaterial equation of state. The use of a
Lagrangian method such as MPM to advance the solution of the solid material eliminates the diffusion
typically associated with Eulerian methods.

Weak form of the momentum equation

To derive the weak form of the momentum equation (1.1), we multiply the momentum equation with a
vector-valued weighting function (w) and integrate over the domain (Q). The weighting function (w)
satisfies velocity boundary conditions on the parts of the boundary where velocities are prescribed. Then,

/Qw-[V-0+pb] dQ:/(;pw-\'fdQ. (1.2)

Using the identity v- (V- 8) = V- (ST -v) — § : Vv, where § is a second-order tensor valued field and v
is a vector valued field, we have

fQ{V-(GT-w)—G:Vw+pw-b} dQ = /pr-\"dQ.

Application the divergence theorem to the divergence of the weighted stress leads to
frn~(aT-w) dl“+[Q{—o‘:Vw+pw~b} dQ = /pr-\"dQ

where n is the outward normal to the surface I'. Rearranging,

[(a-n)-wdl"—[a:deQ+fpw-bdQ=[pw-VdQ. (1.3)
r Q Q Q

If the applied surface traction is t := ¢ -n, since w is zero on the part of the boundary where velocities/dis-
placements are specified, we get the weak form

/i-wdl“—/0:deQ+/pw-bdQ=/pw-\'rdQ. (1.4)
7 0 0 0
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Information transfer from particles to grid and back
The goal of MPM is to find a unique function f(x, t) that satisfies the governing equations (1.1) for a given
initial set of objects and a set of initial and boundary conditions.

An important underlying assumption in VIPM is that continuum field quantities have two equivalent
representations — a grid representation and a particle representation. For instance, the representation of
a vector field f can be both

f(x) = Zf(xg)Sg(x) = ngsg(x) and |[f(x) = %:f(xp))(p(x) = %:fp)(p(x) (1.5)
g g

where the subscript g indicates a grid nodal quantity and the subscript p indicates a particle quantity. A
particle centroid is at the location x,, while a grid node is at x,. The functions S, are interpolation functions
(also called shape functions) that take values from the grid nodes to points in the computational domain.
On the other hand, the functions Xp are particle characteristic functions. We assume that both these
representations are partitions of unity. In the above we have ignored time-dependence for simplicity.

The MPM algorithm is particle-centered. We start with information on particles and then project that in-
formation to the grid nodes for the solution of (1.1). After the equations have been solved, the information
on the grid can be interpolated back to the particles in preparation for the next timestep. The projection
operation from particles to the grid is not as obvious as the interpolation from the grid back to particles
and requires some explanation.

Ideally we would like the two representations in (1.5) to produce identical results. However, due to ap-
proximation errors, they usually do not. Let e(x) be the error. Then we can pose a least-squares error
minimization problem as

Find f, that minimizes E = /Qw(x) le(x)|* dQ where /(;w(x) dQ =1. (1.6)

The domain of integration is the volume Q and w(x) is a weighting function. Then the minimum of the
functional E can be found using

s—ng =0 =— [Qw(x) [aa—feg-e(x)+e(x)-aa—é] dQ=o0 (1.7)
From (1.5),

de 0 of,/

_— = — f /S 7 - f = —gs ! = S I. .8

afg afg [; ¢'Og (x) Zp: po(X)] ; afg g (x) g(x) (1.8)
Therefore,

[Q w(x)Se(x)e(x)d2=0 — fQ w(x)Sg(x) [%jfg,sg,(x) - ;fpxp(x) dQ=o0. (19)

If we note that the particle characteristic function () is required to be zero outside the domain of particle
p and 1 inside, rearrangement of the above equation leads to

%fg [ w8 (x)5(x) dQ:;fp A WRSg(x) 0. (110)

Define

Agryg ::[Qw(x)Sg/(x)Sg(x)dQ and By, = fQPw(x)Sg/(x)dQ. (111)
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Equation (1.10) can now be expressed as
Z Agofy = Z Bgrpfp . (1.12)
g p

Inverting the relation, we have

p p

where A is the matrix representation of A/, in (1.12). We can rewrite the above equation as

fo = %:ngfp (1.14)

where

Vgp = [A7 g Byrp- (1.15)

The map in equation (1.14) can be used to project particle quantities to grid nodes. However, some
simplification is needed to avoid the need to invert a large matrix.

We can remove the need to invert S if we diagonalize Sy, using a lumped approximation. In that case
Ag =Y Agg = fQ w(x)Sg (%) 3 84(x) dQ = fQ w(x)Sy (x) dQ (1.16)
g g

where we have used the partition of unity property of the grid nodal interpolation function. Now note
that the integral over the domain () can be split into a sum of integrals over particles.

The particle-to-grid projection operations in equations (1.14) and (1.15) can then be expressed as

B
f, = %:wgpfp where v, = Aigp , Ag= %:ng ,» Bgp= pr w(x)S,(x) dQ). (1.17)

Going back to (1.5), recall that we had assumed that f, was the value of the function f(x) at the particle
centroid, x,. However, this requirement is not necessary for the development of the projection from
particles to the grid. We may, alternatively, define f, as

1

—Apf(x)wp(x) aQ, W,:= /(;p w,(x)dQ (1.18)

fp: Wp

where ), is the particle domain and w, (x) is a weighting function. Also recall that the grid interpolation
function has the form

f(x) = > fS,(x). (119)
g

Therefore, we can compute the value of a quantity at a particle using the grid interpolation functions by
substituting (1.19) into (1.18) to get

f, = Wpf [ZfS (x):|wp(x)dQ Zf[ PfQPSg(x)wp(x)dQ]. (1.20)

Since the particle domain Q) is never known exactly and we would like to avoid determining that domain,
we approximate the above equation as

f, ~ %fg [# /Q* Sg(x)w;(x) dQ] , Wp* = —/Q* w;(x) dQ (1.21)
P

P P
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where the alternative weight function w}, (x) is defined as
w,(X) = w,(x) x,(x) dQ. (1.22)

The function yj(x) is called the particle averaging function since it is is not identical to the particle
characteristic function y,(x). All that is needed is that the function have compact support in a neigh-
borhood Q) containing particle p.

The grid-to-particle interpolation function can then be expressed as

Jor Se(x)w}(x) dQ . .
f, ~ zg:fg (Sgp)  where (S,,) = PfQ; w}*,()f) 0 w,(X) = wy(x) x,(x) dQ. (1.23)

A more compact matrix notation is used in [12]:

fp = ng (1.24)

where f, is a particle-based quantity matrix that has size Ny, x 1 for scalars, N, x 3 for vectors, and Ny x 6
for symmetric second-order tensors. The matrix f are the corresponding grid quantities that have sizes
Ng x1 for scalars, N ¢ X3 for vectors and N %6 for symmetric 2-tensors. The S matrix has size N. » % Ng

with components (S op )

We can now make some special assumptions about the weight functions in (1.17) to reduce the projection
operation to that use in tradition MPM approaches. Let us assume that

Jo, Se(x)wp(x) dQ
Byp =V, (S = f S, (x)w(x)dQ=V,— (1.25)
8P P( 81’) Q, g p -[Qp wp(x) a0
With that assumption, the particle-to-grid projection operations in equations (1.17) become
Vp {Sep)
; Zp Vo(Ser)
The matrix notation used for the above relation in [12] is
f,=5"f, (1.27)

where S* is a Ny x N, matrix.

Traditional MPM

If we wish to recover the traditional MPM formulation [2], take w (x) = 1and x;(x) = V,6(x—x,) where
V) is the volume of QO = Q0 and § (x) is the Dirac delta function, we have

3. ~ /Qp S(x) Vp0(x - %) dQ
& ( gp) - /Qp V,8(x-x,) dQ

= Sg(xp) . (1.28)

The gradient of the interpolation function evaluated at the particle is

5 - (VS ) ) pr VS (x)V,8(x - x,) dQ
& & Jo, Vpd(x—x,) dQ

= VS(xp). (1.29)
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GIMP

To recover the GIMP formulation [7], we take wp(x) = 1 and the square pulse function y}(x) = 1 for
};}f Q and x;(x) = o otherwise. The particle domain Q7 is assumed to be a rectangular parallelepiped.
en

_ = [ Sg(x) dQ for x e Q;
Sep = (Sep) = {VP % 7 (1.30)
0 otherwise.
The gradient of the interpolation function is
_ = [or VSg(x) dQ for xe Q;
Gyp = (ngp> = {VP & e ) P (1.31)
otherwise.
CPDI

For the CPDI formulation [8], we take wy, (x) = 1and the particle domain )} is assumed to be a general
parallelepiped that deforms based on the particle deformation gradient. The expression for ¢, is similar
to that for GIMP except that a modified shape function is used for interpolation:

_ =+ [ S5 (x) dQ for x e Q;
Sep = {Sgp) = {VP % ! (1.32)
otherwise.
The gradient of the interpolation function is
_ & [0 VS (x)dQ for xe Q)
Ggp = (VSgp) = {VP S ! (1.33)
o otherwise.

Transfer to and from grid

For the interpolation from grid nodes to particles, the above relations indicate a general relation (see

(1.23))
fp= > £eSep- (1.34)
4
In matrix form (see (1.24))
f,=5f,. (135)

For the particle-to-grid projection (see (1.17)), consider the case where w(x) = p(x) where p is the mass
density. Then,

Ag = fQ p(x)Sg(x) dQ =myg, Bgp= /Q p(x)Sg(x) xp(x) 4O (1:36)

and

mefy = %:fp fQP(x)Sg(x)Xp(x) dQ = %:fpmpggp~ (1.37)

where my is the grid node mass and mp is the particle mass. In matrix form equation 1.37 can be written
as (see (1.27))

fo=S'f, where S':=m,'S"m, (1.38)



1.4

1.4 MPM discretization of the weak form 15

where m, is a N, x N, diagonal matrix that is invertible as long as my # o, m, is a N, x N, diagonal
matrix, and Sisa N » x Ny matrix.

On the other hand, if w(x) = 1, we have

Ag = /(;Sg(x) dQ=Vy, Bgp= /{;Sg(x)xp(x) aQ (1.39)

and

V= 2, [ sex)xp(x)de - Yt ViSir- (1.40)

where Vy is the grid node volume and V), is the particle volume. In matrix form equation (1.40) can be
written as

fg = S(’,fp where S} := V;STVP (1.41)

where V, isa Ny x N, diagonal matrix that is invertible as long as Vg # 0, and V, isa Nj, x N, diagonal
matrix.

In traditional MPM , the velocity (v) is projected using mass weighting as per (1.37)), i.e.,

MgVy=> mpvpSey or vy=S'v,. (1.42)
4

This implies that the mass density (p) and the momentum per unit volume (P = pv) are projected to grid
nodes using the volume-weighted approach in (1.40):

Vepg = Z Vpppggp or mg= ST”‘P
p

_ (1.43)

T

VePe =3 V,P,S,, or P, =Sp,
p

where p is a matrix of fofal momentum. Further details of the actual projection operators used in VAANGO are

discussed next.

MPM discretization of the weak form

The weak form of the momentum equation is

ff-wdl“—/0:deQ+fpw~bdQ=[pw-VdQ. (1.44)
I Q Q Q

To discretize the weak form we can use either of the assumed description of field variables shown in
(1.5). The grid node-based discretization is used in finite elements while MPM uses the particle-based
discretization but also a grid-based approximation.

Recall from (1.5) and (1.26) that

Vo (S
f(x) = > f,S,(x) and fo = vepfy, Vgp= % s Y Wgp=1. (1.45)
q P Sp VelSer)

Therefore, we can write

£(x) = D0 D VepfpSe(x) = D065 D ¥gpSe(x) = 3 £ Yp(x) (1.46)
g P P g p
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where the particle basis functions, Y), are defined as

VX (Sgp} S¢(x)
Yp(x) = 3] ygpSg(x) = —° (1.47)
g o Vo (Sep)
If we compare (1.46) with the particle representation in (1.5):
f(x) = prXp (x) (1.48)
4

we see that for the grid-based and particle-based representations to be both accurate representations of
the field we need the y, and Y, values to be related by

[ w@nm = [ v (1.49)
because they cannot be point-wise identical unless the particle characteristic functions satisfy the Kro-

necker property exactly. We will use the Y, particle basis functions to discretize the momentum equa-
tion.

The first step in the MPM discretization is to convert the integrals over Q in (1.44) into a sum of integrals
over particles using the particle basic functions, Y):

frt t(x) -w(x)drl - %: /Qp Y,(x)o,: VwdQ + %: [Qp Y,(x)ppw(x)-b, dQ
- % fQ Yy (x)ppw(x) - ¥(x) 0.

(1.50)

The weighting function, the velocity, and the material time derivative of v are approximated as (see [2]):

w(x) = Y WgSe(x), v(x)= Zh:vhSh(x) , V(x) = Zh:\"hSh(x) . (1.51)
g

Plugging these into the left hand side of (1.50) we get

LHS = fri(x)-[ngsg(x)] dr—zp:fg Yp(x)apzlzwgcavsg] dQ
! g p g
(1.52)

+ %: /Qp Y, (x)pp lzg:wgsg(x):l b, dQ

Rearranging,

LHS - zgng-lfrt £(x)S, (x) dr—zpjfﬂp Y,(x)0, - VS, dQ)

(1.53)

+; A N ORI dQ]

Similarly, the right hand side of (1.50) can be written as

RHS = )" /(; Y,(x)pp [ngsg(x)] : [thSh(x)] aQ. (1.54)
P ? g h
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Rearrangement leads to

RHS=ng-Z[Z | a8, (x)Sh(x) dﬂ]. (1.55)
h | P P

4

Combining the left and right hand sides and invoking the arbitrariness of wy, for N, grid points we get
equations for g =1,2,... s Ng:

frt £(x)S,(x) dT - ; fQP Y,(x)0, VSy dQ + ; pr pYy(%)Sg(x)b, dO

(1.56)

_ ; [; /QP ppYp(X)Sg(X) ) (X)¥ dQ] .

We can simplify the above equations further by taking the particle variables outside the integral by as-
suming they are constant over a particle domain:

[Fri(x)Sg(x) dr - gap - [fop Y,(x)VS, dQ] N Zp:ppbp [fop Y, (x)S,(x) dQ]
N [[QP Y, (%) S(x) S (x) dQ]vh.

Recalling that Y}, has the same effect as y, when integrated over a particle volume, we can write
1
(Sgp) i=— / Y, (x) Sy(x) dQ2. (1.58)
Vy, Ja,
Then (1.57) can be expressed as

[, 1098,(x) ar - 2 Vo (Ve ) + 2 Vopsby (Sor)

(1.57)

(1.59)

_ Zhjgpp[fﬂp Y5 (X)Sg ()i (x) dQ [,

Define the mass matrix (M), the internal force vector (ffgnt), the body force vector (fEOdy), and the
external force vector (f;"t) at grid node g as

Mg, ::Z Py [Q Y,(x) Sg(x) Sy(x) dQ

£t = ZVp‘fp (VSgp)

b : (1.60)
T Z mpby ( )
£t o /r E(x) Sy(x) drT
Then, from (1.59) we get the semi-discrete system of equations
Z M fgext _ flnt fbody _ N (1.6
ghVin = f; ; §=1... Ny 1.61)
The mass matrix is typically lumped such that
my = ZMgh - pr [Q Yy(x) Sg(x) [2 Sh(x)] i0=5"p, fQ Y,(x) Sg(x) dQ
h P 4 (1.62)

_ZPPVP< gp) Zmp< Sgp) -
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In that case the semi-discrete system of equations simplifies to

. i bod
mgvg:f§Xt—f;nt+fg° v g=1...Ng (1.63)

The external force at grid nodes is more difficult to estimate and is typically computed from particle values

using

f?t - Zfzeft (SgP> : (1.64)
p

Damping
Two types of artificial damping are implemented in VAANGoO . The first approach modifies the acceleration
in (1.63) such that

MgV = f?t - f;nt + fEOdY —agve; g=1...N, (1.65)

where «, is a damping coefficient.

The second approach uses Richtmyer-von Neumann artificial viscosity to damp out large oscillations in
high strain-rate simulations. VAANGO uses a three-dimensional form of the Richtmyer-von Neumann
artificial viscosity ([13, 14], p.29). The viscosity factor takes the form

q=Copl \/K|trd| +Cpl? (trd)? (1.66)
p

where C, and C, are constants, p is the mass density, K is the bulk modulus, d is the rate of deformation
tensor, and [ is a characteristic length (usually the grid cell size). Typical values of the coefficients are
C, =0.2and C, = 2.0.

The factor q is used to decrease the particle stress:
op,=0,—qI (1.67)

before it is projected to grid nodes for internal force calculations.

Algorithm Description

The interested reader should consult [1, 2] for the development of the discrete equations in MPM discussed
in this section, and [7] for the development of the equations for the GIMP method. These end up being
very similar, the differences in how the two developments affect implementation will be described in
Section 1.6.

In solving a structural mechanics problem with MPM , one begins by discretizing the object of interest
into a suitable number of particles, or “material points”.

What constitutes a suitable number is something of an open question, but it is typically advisable to
use at least two particles in each computational cell in each direction, i.e. 4 particles per cell (PPC)
in 2-D, 8 PPC in 3-D.

In choosing the resolution of the computational grid, similar considerations apply as for any compu-
tational method (trade-off between time to solution and accuracy, use of resolution studies to ensure
convergence in results, etc.).) Each of these particles will carry, minimally, the following variables:

* position - x,
s mass - m,
+ volume - V,
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« velocity - v,
o stress - 0
+ deformation gradient - F),

The description that follows is a recipe for advancing each of these variables from the current (discrete)
time ¢, to the subsequent time t,,,,. Note that particle mass, 1, typically remains constant throughout a
simulation unless solid phase reaction models are utilized, a feature that is not present in Vaango MPM .
(Such models are available in MPMICE, see Section 25.) It is also important to point out that the algorithm
for advancing the timestep is based on the so-called Update Stress Last (USL) algorithm.

The superiority of this approach over the Update Stress First (USF) approach was clearly demon-
strated by Wallstedt and Guilkey [15]. USF was the formulation used in Uintah until mid-2008.

The discrete momentum equation that results from the weak form is given as:

Ma = £t _ gint | gbody (1.68)

where M is the mass matrix, a is the acceleration vector, f*' is the external force vector (sum of the body

forces and tractions), and '™ is the internal force vector resulting from the divergence of the material
stresses. The construction of each of these quantities, which are based at the nodes of the computational
grid, will be described below.

The solution begins by projecting the particle state to the nodes of the computational grid, to form the
mass matrix M and to find the nodal external forces £, and velocities, v. In practice, a lumped mass
matrix is used to avoid the need to invert a system of equations to solve Eq. (1.68) for acceleration. These

quantities are calculated at individual nodes by the following equations, where the ) represents a sum-
p
mation over all particles:

Mg = Z mpggp , Vg = M , f;m = Zf;’“ggp (1.69)
p p

and g refers to individual nodes of the grid, m, is the particle mass, v, is the particle velocity, and f;"t
is the external force on the particle. The external forces that start on the particles typically the result of
tractions, the application of which is discussed in the VaaNGo User manual. Sg, = (Sgp) is the shape
function of the g-th node evaluated at the particle p as discussed in the section 1.3 equation (1.23). The
functional form of the shape functions differs between MPM , GIMP , and CPDI . Further details of the
difference are given in Section 1.6.

Following the operations in Eq. 1.69, f™ is still required in order to solve for acceleration at the nodes. This
is computed at the nodes as a volume integral of the divergence of the stress on the particles, specifically:

fjgnt = Z Vpo'p(_;gp (1.70)
p

where Gy, is the gradient of the shape function of the g-th node evaluated at the particle p, and ¢, and
V), are the time t,, values of particle stress and volume respectively.

Equation (1.68) can then be solved for a.

ext int body
~ £ - + £,
ag= (1.71)
Mg
In the explicit version of MPM implemented in VAANGO, a forward Euler method is used for the time
integration:

vé =vg+agAt where At=t,,—t,. (1.72)
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The time advanced grid velocity, V§ is used to compute a velocity gradient at each particle according to:
=
g

This velocity gradient is used to update the particle’s deformation gradient, volume and stress. First, an
incremental deformation gradient is computed using the velocity gradient:

AFy™ = (I+VvyAt) (1.74)
Particle volume and deformation gradient are updated by:

VI = det(AF) V)

n+1 _ n+i n
o> Fp ' =AF;"-Fp. (1.75)

Finally, the velocity gradient, and/or the deformation gradient are provided to a constitutive model, which
outputs a time advanced stress at the particles.

At this point in the timestep, the particle position and velocity are explicitly updated by:

vo(t+At) =vy(t) + Y Sgpaght
g

_ (1.76)
g

This completes one timestep, in that the update of all six of the variables enumerated above (with the
exception of mass, which is assumed to remain constant) has been accomplished. Conceptually, one can
imagine that, since an acceleration and velocity were computed at the grid, and an interval of time has
passed, the grid nodes also experienced a displacement. This displacement also moved the particles in an
isoparametric fashion. In practice, particle motion is accomplished by Equation 1.76, and the grid never
deforms. So, while the MPM literature will often refer to resetting the grid to its original configuration,
in fact, this isn’t necessary as the grid nodes never leave that configuration. Regardless, at this point, one
is ready to advance to the next timestep.

The algorithm described above is the core of the VAaNGo MPM implementation. However, it neglects a
number of important considerations. The first is kinematic boundary conditions on the grid for velocity
and acceleration. Next, is the use of advanced contact algorithms. By default, MPM enforces no-slip,
no-interpenetration contact. This feature is extremely useful, but it also means that two bodies initially
in “contact” (meaning that they both contain particles whose data are accumulated to common nodes)
behave as if they are a single body. To enable multi-field simulations with frictional contact, or to impose
displacement based boundary conditions, e.g. a rigid piston, additional steps must be taken. These steps
implement contact formulations such as that described by Bardenhagen, et al.[16]. The use of the contact
algorithms is described briefly in this manual, but the reader will be referred to the relevant literature for
their development. Lastly, heat conduction is also available in the explicit MPM code, although it may be
neglected via a run time option in the input file. Explicit MPM is typically used for high-rate simulations
in which heat conduction is negligible.

Deformation gradient computation

The deformation gradient computation involves the solution of a first-order differential equation:
F=1-F=Vv-F (177)
which, for constant I and initial condition F = F,, has the exact solution

F(t) =exp(tl)-F, =exp(tVv)-F,. (1.78)
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Expanded in series form, and considering only the time step Af with initial condition F = F}, we have
1 1
F,(t) = [I +AtVv, + ;(Az‘va)2 + ;(AtVVp)3 +.. ] -Fp. (1.79)

The approach in (1.74) is a first-order approximation of the Taylor series expansion for the deformation
gradient:

Fj™ = (I+VvpAt)F). (1.80)

This is the most commonly used method of computing the deformation gradient. VAANGoO also allows
for an alternative estimate of the deformation gradient by subcycling after dividing At into k smaller
increments:

FZH - I:l;[([ + vaAtk)] F; . (1.81)

Alternatively, multiple terms of the expansion in (1.79) can be evaluated by choosing an appropriate flag
in the input file.

Finally, VAANGoO also provides an option to compute the matrix exponential using the Cayley-Hamilton
theorem . However, all these approaches assume that the velocity gradient remains constant over a time
step.

Pressure stabilization

A pressure stabilization step may be required during the computation of deformation gradients of mate-
rials that are nearly incompressible. The algorithm involves computing a the particle volumes inside each
grid cell (ignoring volume that may extend outside cell boundaries):

Mp

Vco:Z_a VCZZVP (1.82)

pec pO pec

where V., is an estimate of the initial volume in a cell and V. is the current volume in the cell. The initial
density is p,. An estimate of the volume change is computed using

c
=—<. 8
Je= (1.83)

A correction is applied to the particle deformation gradient using

] 1/3
F, < (det(Fp)) F,. (1.84)

Shape functions for MPM, GIMP, and CPDI

In both MPM and GIMP , the basic idea is the same: objects are discretized into particles, or material
points, each of which contains all state data for the small region of material that it represents. In MPM ,
these particles are spatially Dirac delta functions, meaning that the material that each represents is as-
sumed to exist at a single point in space, namely the position of the particle. Interactions between the
particles and the grid take place using weighting functions, also known as shape functions or interpola-
tion functions. These are typically, but not necessarily, linear, bilinear or trilinear in one, two and three
dimensions, respectively.

Bardenhagen and Kober [7] generalized the development that gives rise to MPM , and suggested that
MPM may be thought of as a subset of their “Generalized Interpolation Material Point” (GIMP ) method.
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As discussed in Section 1.3, in the family of GIMP methods one chooses a characteristic function y, to
represent the particles and a shape function S, as a basis of support on the computational nodes. An
effective shape function S, is found by the convolution of y, and Sy which is written as:

1

3 =
gp(xp) Vp Qpﬂ

o Xp(X = %,)Sg(x) dx. (1.85)

While the user has significant latitude in choosing these two functions, in practice, the choice of S is
usually given (in one-dimension) as,

1+ (x-xg)/h -h<x-x4<0
Se(x) = 1—(x—xg)/h o<x-x4<h (1.86)
o otherwise,
where x, is the vertex location, and & is the cell width, assumed to be constant in this formulation, al-
though this is not a general restriction on the method. Multi-dimensional versions are constructed by

forming tensor products of the one-dimensional version in the orthogonal directions. In three dimen-
sions,

Sg (7,5, t)=%(1+rra)(1+ssa)(1+tta) (1.87)

and r,s,t € [-1,1] are the natural coordinates of the support domain. A plot of the basis function in
two-dimensions is shown in Figure 1.1.

Figure 1.1: Linear grid node shape functions for 2D traditional MPM .

MPM
When the choice of characteristic function is the Dirac delta,
Xp (x) =08(x- Xp) Vps (1.88)

where x,, is the particle position, and V), is the particle volume, then traditional MPM is recovered. In
that case, the effective shape function is still that given by Equation (1.86). Its gradient is given by:

1/h -h<x-xg<o0
Ge(x)=1-1/h o<x-x4<h (1.89)
0 otherwise,

Plots of Equations 1.86 and 1.89 are shown below. The discontinuity in the gradient gives rise to poor
accuracy and stability properties.
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(a) Effective shape function when using traditional MPM . (b) Gradient of the effective shape function when using
traditional MPM .

GIMP

Typically, when an analyst indicates that they are “using GIMP ” this implies use of the linear grid basis
function given in Eq. 1.86 and a “top-hat” characteristic function, given by (in one-dimension),

Xp(x):H(x‘(xp‘lp))‘H(x‘(xp"‘lp))’ (1.90)

where H(x) is the Heaviside function (H(x) = oifx < oand H(x) = 1if x > 0) and I, is the half-length of
the particle. When the convolution indicated in Eq. 1.85 is carried out using the expressions in Eqns. 1.86
and 1.90, a closed form for the effective shape function can be written as:

(h+1p+(xp=x¢))"
(xP‘xg)
1+ﬁ2 —h+1,<xp-x4<-1,
Xp—Xg +l;
- 1———2—t | <x,—x,<1
_ hl P p g ="'p
Sep (xp) = (xpfxg‘)’ (1.91)
htlp—(xp—xg 2
T h—lp<Xp—XgSh+lp
o) otherwise,
The gradient of which is:
htlp+(xp—xg)
T —h—lp<Xp—XgS—h+lp
1
_ %% 1, <x,—x,<1
Ggp(xp) = ) hly N (1.92)
h+lp—(xp—xg
o} otherwise,

Plots of Equations 1.91 and 1.92 are shown in Figure 1.3. The continuous nature of the gradients are largely
responsible for the improved robustness and accuracy of GIMP over MPM .

UGIMP and cpGIMP

The GIMP effective shape functions in (1.91) are valid only for particle sizes that are smaller than the grid
spacing. In Figure 1.4 we see that discontinuities appear in the effective shape function for particles for
which [, > o.5h.
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(¢) Two-dimensional shape function. (d) Two-dimensional GIMP compared to MPM (blue).

Figure 1.3: GIMP effective shape functions and their gradients.

Figure 1.4: Two-dimensional GIMP effective shape functions (§gp) forl, =o0.7h .
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There is one further consideration in defining the effective shape function, and that is whether or
not the size (length in 1-D) of the particle is kept fixed (denoted as UGIMP here) or is allowed to
evolve due to material deformations (“Finite GIMP” or “Contiguous GIMP” and cpGIMP here). In
one-dimensional simulations, evolution of the particle (half-)length is straightforward,

I, =Folps (1.93)

where F} is the deformation gradient at time n. A similar approach is used in CPDI.

In multi-dimensional simulations, a similar approach can be used, assuming an initially rectangular or
cuboid particle, to find the current particle shape. The difficulty arises in evaluating Eq. (1.85) for these
general shapes. One approach, apparently effective, has been to create a cuboid that circumscribes the
deformed particle shape [17]. Alternatively, one can assume that the particle size remains constant (insofar
as it applies to the effective shape function evaluations only).

CPDI

The CPDI formulation [8] is a more recent method for calculating the quantities

(sgp):vip A () $5(x) 4 and (vsgp):vip A p(x) V5(x) dO (1.94)

where Y, are the particle basis functions and Sg are approximate grid basis functions. Figure 1.5 shows
examples of two-dimensional grid and particle basis functions that are used in CPDI .

(a) CPDI grid basis functions (S,(x)). (b) CPDI particle basis functions (N, (x)).

Figure 1.5: Two-dimensional CPDI grid and particle basis functions.

In the reference state, the domain Q, for particle p is assumed to be a parallelepiped spanned by the three
vectors r}o, i =1,2,3 with origin at the centroid. In the deformed state, these vectors become r;, =F,- r}o
where F, is the deformation gradient. The corners of the deformed parallelepiped are used in CPDI to
create the grid basis functions:

Sg(x) = ZS:Ng(x)Sg(xg) on Q, (1.95)
a=1
where « are the indices of the vertices of the particle parallelepiped,
Ny (r,s,t) = %(1+rr(x)(1+ssa)(1+tt“) (1.96)
and r, s, t the natural coordinates of the parallelepiped that range from -1 to 1. The functions S,(x) are

typically chosen to be the hat functions of classical MPM. Figure 1.6 shows the particle domains and the
effective grid shape functions produced by the CPDI relation in (1.95).
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1

(a) Particle domains . (b) Effective grid basis functions (S ¢(X)).

Figure 1.6: Two-dimensional CPDI particle domains and effective grid basis functions.

We can compute the quantities in (1.94) as follows.

Let
F, F, F13
s;=[r},° 1> 1] and s,=[r, r; r)] and F,=|F, F, Fy]. (1.97)
Fy Fn Py
Thens, = Fpsj. Let
Sgpz[sg(x}) Sg(xf;) Sg(X;) Sg(x?;) Sg(X;J) Sg(Xf,) Sg(xi;) Sg(xg)]- (1.98)
Also, let
-1 1 1 -1 -1 1 1 -1
R=f-1 -1 1 1 -1 -1 1 1 (1.99)
-1 -1 -1 -1 1 1 1 1
Then,
— — 1 _
Sep = (Sgp> =mean(Sg,) and Ggp = (VSgp> = gspTRTSgTP. (1.100)
Contact algorithms

The default behavior of MIPM is to handle interactions between objects using velocities on the background
grid. However, beyond some simple situations, contact requires the application of contact laws. In the
VAaANGO implementation of friction contact, Coulomb friction is assumed. Alternative types of contact,
such as adhesive contact. could also be implemented by changing the contact law.

The purpose of the various contact algorithms in VAANGO is to correct the grid velocities such that a
particular set of contact assumptions are satisfied. Many of these algorithms require the computaion of
surface normals.

Definitions

Let m,, v,, pp be the mass, velocity, and momentum of particle p. Also, let mg, v, p, be the mass, velocity,
and momentum at a grid point g due to nearby particles in the region of influence. Consider N, objects
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that can potentially be in contact and index then by the superscript a. Then, from (1.43), we have
o _ a o @ _agQ _ agQ o _ ag
my=Vypg = Z Vo ppSep = Z m,Sep and  pg = prsgp. (1.101)
p p p
In matrix notation,
T
my,=S'm, and p;= STp;. (1.102)
Similarly, from (1.42), we have
[ a_aQ _ a_AQ
MgV, = zp:mpvpsgp = Vv, = ;mpvagp. (1.103)

In matrix form,
o _ S+ o h S+ _ a1 ST «
Ve =SV, where S = (mg) m,. (1.104)

Based on a local conservation of momentum, we define a center-of-mass velocity, vi™, at grid node g
for all the contacting objects:

Za meve
v?n = —g“g (1.105)
Yo Mg
We also define an effective grid mass, mzﬁ, as
1 1
=) —. 1.106)
eff Z [ (
m myg

Computing surface normals and tractions

Surface normals are typically estimated from the gradient of mass at grid nodes. If m, is the mass of
particle p, then the normal at grid node g due to the particles in its region of influence is

n, = Zmpvggp. (1.107)
p

Normals are converted to unit vectors before they ar used in VAANGO computations.

Surface tractions at the nodes are computed by projecting particle stresses (o) to grid nodes:
to=ng- (Z apggp) . (1.108)
p

Basic contact algorithm

The most basic contact algroithm in VAANGoO is called “single-velocity contact” The center-of-mass ve-
locity is computed using (1.105). Upon contact detection, grid nodes that participate are assigned this
velocity:

Vg = Vz,m. (1.109)

Contact with a specified master

A slightly more complex algorithm is the “master”-based contact which is called “specified-velocity con-
tact” in VAANGO . In this model, a selected master material is assigned velocities, vy' = v"(t), where m is
the index of the master material. The grid node velocities of the materials are then adjusted according to

Vg < Vg — [n;” (vg - v;”)] ng' (1.110)

where ng' is the normal for the master material computed using (1.107). This type of contact is useful for
imposing boundary conditions on objects.
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Frictional contact algorithms

The two main frictional contact algorithms are friction_bard, which is based on [16], and friction LR,
which is described in [12].

Bardenhagen et al. algorithm

In the algorithm developed in [16], a contact interface is defined as the set of nodes for which individual
grid velocities associated with each object differ from the center of mass velocity:

+0. (1.111)

Once this condition is identified, the surface normal ng is computed from the mass distribution around
node g, and the surface normal traction t; is computed from the stresses in surrounding material points.

The contact condition is

o cm o o o
(vg—vg ) mg>o0 and t;-ng<o. (1.112)

This condition indicates compressive stress at node g. If this condition is not satisfied, the objects are
assumed to have separated.

To enforce (1.112), the grid node velocities are adjusted such that momentum is conserved, i.e.,

« o « 24 o o Avg X ng
A(vp)g =Avg-ng and  A(v;)g = Avg - [ ng X W (1.113)
g "1y
where
o ._ o0 cm
Avg =V, -V, . (1.114)

Normal contact is enforced by adjusting material velocities by A(v,)g. The tangential contact is enforced
using Coulomb friction with the tangential velocity determined using uA(v,)g where y is the friction
coefficient. If A(v;)g < pA(vn)g, the no-slip condition is enforced. Otherwise, the tangential components
of the nodal velocities are updated with a reduced friction coefficient

(1.115)

, [A(ve)g]
‘“red:mln M) |A(V )(X| .
n’g

Returning to the problem of computing object outward normals at a grid point, the traditional approach
is to compute volume gradients using the set of particles influencing a node:

gg = Z(_;ngp (1.116)
e

where the gradients Ggp are as defined in (1.29), (1.31), and (1.33). The normal to an object is calculated
using

o

o _ gg )
|5

n (1117)

For multiple objects, an average gradient can be computed for better accuracy.
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Nairn et al. algorithm

The more recent algorithm by [12] uses a logistic regression step to determine contact. The underlying
approach is similar to that used in [16]. Since the approach is at its simplest when only two objects are
involved at a grid point, we will describe only that case below. Most situations with contact between
multiple objects see [12].

Let the two objects be indexed by a and . Let pg° and pgo be the particle momenta projected to the grid.

We would like to compute the momentum correction Ap so that momentum is conserved after contact.
Let the corrected momenta be

Py =P,° +Ap and p'g = p'go - Ap. (1.118)

If we restrict relative motion between objects at a grid point to the tangent plane, and let t be the direction
of relative motion, then

B o
Vg ~Vg = kt — p—‘; - p—‘i =kt — mgplg; - mypy = membkt. (1.119)
m mgy

g

From the definition of the center-of-mass velocity in (1.105) and the effective grid mass (1.106), we have

Ve + mPvP p* +pﬂ memb
Vz,m =28 z £E-22 gﬂ and mzﬁ: . gﬁ. (1.120)
mg + myg myg + myg myg + myg
Therefore,
chmlxmﬁ
a, B_ "8 g8
Py + Py = Rl (1.121)
g
Solving for pg, pﬁ from equations (1.119) and (1.121), we have
a _ _a_cm __ effy s B B.cm eff7 2
Pg =mgVy —mgkt and  pg=mgv," +mg kt. (1.122)
Therefore, from (1.118),
Ap =pg —pg° = mgvy" — m‘egﬂkf —mgvg® = mg (V" —vg°) - mzﬁkf. (1.123)
The quantity
Ap® := mg(vy™ = vg°) (1.124)

is the initial change of momentum before tangential correction. Since the contact force (f°) is given by
the rate of change of momentum due to contact, we have

eff1.2
Ap° A mSkt
fo- 2P and fe=ZP oo 8T (1.125)
At At

where At is the timestep size. The contact compressive traction is found from the normal component of
the contact force needed to prevent interpenetration:

c _ 1 o
T, = _Ff -n (1.126)

where A€ is the contact area. The tangential contact traction can be found using a contact law:
mefik

c _ 1 L 1 co  } g
Tt—zf -t-; £f°-t- A7 | (1.127)
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Therefore, if Tf = T/ (T} ) is a contact law,

A CcO | 2 cc c
k= mgff [f-t- AT (T5)] - (1.128)

We can compute k using the contact law Ty (T ) and then adjust v and vg using (1.118). Note that this

process is identical to that used in the Bardenhagen at al. algorithm. The main difficulty is in finding
where contact has occurred and the quantities n, t, and A°.

The basic contact identification condition used in this approach, and in the Bardenhagen et al. approach,
is

g§

where g, is the volume gradient defined in (1.116). This condition is a variation of (1.112) and is a necessary,
but not sufficient, condition to detect whether the two objects are approaching each other and in contact.
However, T, > o even when the objects are not touching and a separation condition is needed to correctly
identify contact.

<o and T;>o0 (1.129)

(Ve g)‘

The logistic regression approach developed in [12] attempts to identify contact without having to rely
purely on grid information. This approach requires a set of particles (point-cloud) in the neighborhood
of a grid point that satisfies (1.129). The aim of this technique is to identify a plane within the point-cloud
that best separates the two objects. The normal to this plane is the contact normal ng. The logistic function
penalizes points as a function of their distance from a preferred separation plane.

The logistic regression method for separation detection is described next. Let x, be the homogeneous co-
ordinate representation of a particle position, i.e., X, = (xp, 1) = (X, X, X5, X,,), where Xp = (x},, x;, xf,)
is the particle position. Let N be the corresponding normal vector of the separation plane, i.e., N = (n, N,)
where n = (n,, n,, n;) = (N;, N,, N;) is the normal to the separation plane and n, is an offset. The equa-
tion of the desired separation plane is

X-N=o (1.130)

where X is the vector of particle positions. Let there be P particles in the point-cloud consisting of points
from objects & and f3. Define a particle label c, as:

-1 for particles in object «
Cp = S . (1.131)
1 for particles in object 3.
The objective function that has to be minimized is the error
P , 4
E = Z W) [L’(Xp, N) - cp] + Z A;N; (1.132)
p=1 j=1

where w,, are weights, A% are penalty factors that help regularize the error function and £ is the logistic
function given by

2
LX,N)=—— ——— —1. .
(X.N) 1+exp(-X-N) ' (1133)
The minimum of E is achieved when 31]\31 =oand 31/% = 0. From the first requirement
P oL 4 5 oN;
ZZZWP[[,(XP,N)—C ]W“LZZA ]a—NJ:o (1.134)

p:l 1 ]:1
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where
;—l'\i = zaiN,- [1+exp(=XmNpm)] "' = —2[1+exp(-X;uNp)] > aiN, exp(—XmNp)
=2 [1+ exp(=XpNo)] exp(—mem)xmaa% (1135)
i
=2[1+exp(~X;uNp)] > exp(= XN ) X; .
Define
0p:=-X,-N and ¢,:=1+exp(6,). (1.136)
Then, in vector form,
0
% = 2exp§ ) X and L(X,,N)=—-1. (1.137)
oN ¢% ¢p
Returning to (1.134), we can write
oE P 0
a_z\u = 2;%, [.C(XP,N) - cp] a_fn +2AiN;=o0. (1.138)
Similarly,
] 2 2
(_M ZZAJBTN =AiN; =0 (1.139)

Then, in vector form, the system of equations needed to solve for N and A is

P
ZWP[E(XP,N)—CP]%+(A®/\)®N:o and

=t (1.140)
Ao (NoN) =
where
N=(N,N,,N;,N,), A= (A, A5,45,4,) , ao b = (a,by, a,b,, a3b5, a,b,) . (1.141)

The second set of equations in (1.140) suggest that the solution will improve as A — o. Given a vector A,
the first equation in (1.140) can be solved for N using Newton’s method. Define

P
Y(N) == w, [L£(Xp,N) — ¢, ] ngl +(A®21)oN. (1142)
p=1

Then, with I denoting the 4 x 4 identity matrix,

Y & oL _oc *L
ﬁ = ZWP ﬁ ®ﬁ [ﬁ(Xp,N)—Cp] aN2:|+(/1®/1)I (1.143)
p=1

Then Newton’s method gives the iterative rule

Nk+1 Nk [ aY]l Y(Nk) ( )
=N"-|—| - 11

| 9N It 44
Given appropriate starting values, this method with converge to the solution except in situations where

XN < o. It is preferable to normalize N in those situations where the exponential becomes too large.

Once the N vector has been found, the unit normal to the separation plane is determine by normalizing
n= (N, N,, N3). Contact occurs at particle pif

min (X, -
pep 7 ] H [n] H

where R, is the distance from the centroid of particle p to its deformed edge along n.

-Rp) - max (xp- +Rp) <o (1.145)
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Implicit time integration

Recall from equation (1.61) that the MPM discretized momentum equations can be written as a semi-
algebraic system

Z MV, = f;Xt - f;,nt + fEOdy ; §=1... N, (1.146)
h

where the mass matrix (M), the internal force vector (fjgm), the body force vector (fEOdy), and the external
force vector (f;"t) at grid node g as

My = p, fQ Y, (x) Sg(x) Sy(x) 4
P »

o' = %:Vp"p (VSgp)

bod

fo* = ngbp (Sep)

£ fr () S;(x) T

(1.147)

While the MPM background grid is reset after each time increment, MPM does not require it to be reset
during each iteration of an implicit integration process. Therefore, during a time step, we can carry a grid
displacement variable u that can be used to compute grid accelerations a, = v, and discarded at the end
of a time step.

Let us express (1.146) in matrix form as

t int bod
Mgag = fzx - f:gn + fgo ’ (1.148)
Define the residual as
r(ugﬂ, tn+1) = Mgagﬂ - fext(ugﬂ’ tn+1) + fint(ugﬂ’ tn+1) - bedy(u;lH; tn+1) =0. (1.149)

where the superscipt # + 1 indicates quantities at time f,,, and ug is the Ny x 3 matrix of grid node
displacements. We use a Newmark- 3 method to integrate the acceleration:

un+1 - u* +ﬂa;+1(At)2

4
(1.150)
ve' = v +yag At
where
u =u, +viAt+ 2(1-2B)al(At)*
£ ¢ 2 ¢ (1.151)

v =vy + (1-y)agAt.

Newton’s method

In the VAANGO implementation, the residual is expressed in terms of the displacement. We are required to
do this because tangents needed in Newton’s method are easier to compute when forces can be expressed
in the form

f=K-u (1.152)

where K is the stiffness matrix. If we were to use the velocity as the primary variable, as in explicit MPM,
we would need rates of the forces instead:

f:K-v+K-u. (1.153)
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The extra term involving the rate of change of the stiffness matrix complicates the process and we avoid
it in VAANGO.

Then, using (1.149) and (1.150), we have

r(un+1’ tn+1) =

. Mg(ugﬂ_u*)_fext(ugﬂ’ tn+1) +fint(ug+1, tn+1)_fb0dy(ug+l) th) = o. (1'154)

1
BAL
The problem then reduces to finding the solution u§+1 of the nonlinear system of equations (1.154). New-
ton’s method is used in VAANGO with the starting value of uy™ = u;. Dropping the subscript g temporar-
ily for convenience, and denoting the current Newton iteration by the subscript k, we can linearize the

residual at u} ™" using a Taylor expansion:

or(ul™, tyi)

o=r(ull tys) =r(ul™ tyn) + — ul —ul™). (1.155)
Rearranging the above equation,
or(ul t -
Au = “Z: - “Zﬂ == [% r(u]zﬂa tn+1) = _K_lr(uzﬂa tn+1) . (1.156)

This iterative process is continued until Au is smaller than a given tolerance. The tangent matrix K, of
size Ng x Ny, is

or(ul™,t
K- (ug n+1)‘

o (1157)

This matrix is decomposed and evaluated separately for the internal and external forces, i.e.,

or(ul™, t 1 0 0 r . 0
K = ( kau n+1) _ ﬁAtz Mg‘@ [fext ugﬂ’ tn+1)]+$ [fmt u;-%—l’ tnﬂ)]_g [bedy(u;ﬂ, tn+1)] )
(1.158)
Alternatively,
1 X 1
K= /)thMg — K, b)) + K™ (U™ ) = KV () ). (1.159)

Tangent stiffness matrix

The contribution to the tangent matrix (K) from the internal forces is called the tangent stiffness matrix
(K™). Since an updated Lagrangian formulation is used in MPM , we can compute the tangent stiffness
using the configuration at time ¢, as the reference configuration.

Recall from (1.147) that for explicit MPM we used
in 1
fgt =Y Vp0,- (VSgp) where (Sgp) = Vp /Qp Yy (x) Sg(x) dQ2. (1.160)
p

For the computation of the tangent matrix, it is preferable to start from the weak form of the momentum
equation (1.4):

I= [Q o:VwdQ (1.161)

which leads to integral form of equation (1.160) (see (1.56)):

f‘ignt = %:/(;P Y,(x)o,- VS, dQ). (1.162)
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Also, since we are typically working with rates of stress in the constitutive models, it is preferable to express
all quantities in terms of stress rates that are objective. It is easier to work with the Lagrangian PK-1 stress
(P) at the beginning of the timestep rather than the spatial Cauchy stress (o).

To convert from the spatial description (1.161) to a Lagrangian material description, observe that

n T T
where, with F as the deformation gradient,
F""' = AF,'F", Ji*' = det(AF)""), AF,. = cofactor(AF)*). (1.164)
Therefore,
I= " ywdQ! = f " vw it dQt
Qm n+ n n+1
= / " (Yw : AFZ) Q" = /Q (6" AF,): YwdQ" (1.165)

:/ P":ywdQ"
Qn n

where P" is the first Piola-Kirchhoft stress. Following the same process as used to derive (1.56), we get
fi't=>" /Q Yp(x")Pp - VS, dQ". (1.166)
p I "
Taking the material time derivative of (1.166), we have
f‘ig“t => fm Yp(x”)Pg VS, dQ™. (1.167)
p I "

Since the rate of the first Piola-Kirchhoff stress is not objective, it is easier to work with the rate of the
second Piola-Kirchhoff stress (S):

P-F.S — P=F-S+F-S. (1.168)

Substitution of (1.168) into (1.167) gives

cint n Pl Gn n+1 o n

f _;fg; V() [Ey -85+ By 8y |- 7S, d” (1169)
Separating out the two components, we have

fint = 3 /Q Y, (xXE, 8 VS, dQ" + Y f CY,(x")Fp- S, VS, dQ". (1170)

P b n P QP n

The rate of the internal force can then be expressed as

fint _ o (117)
where the geometric and material rates of the internal forces are defined as

0= % [ Vp(E " 8p v, da

g Zp: ar p(X")E, - S Vg

i':mat . Y, n Fn+1 S” S. dO" (1'172)
= ar p(xX")F, "Sp Vg :
p 14
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We can now use the constitutive relation between the second Piola-Kirchhoff stress and the Green strain
(E), the expression for the Green strain in terms of the deformation gradient, the relationship between
the velocity gradient (I) and the rate of change of the deformation gradient, and the definition of the
rate-of-deformation (d)

§=C:E, E=(F"-F-I), F=1-F, and d=1(I+1") (1.173)

to write the material and geometric rates of the internal force in (1.172) as
cmat ol
£ = ;fnp Y,(x")Fp* - [C) - E, ] VS dQ”
i3 [ e [ops (BT R E B s do”
p p
_1 Y. n Fn+1 Cn . Fn+1 T ln+1 T Fn+1 Fn+1 T ln+1 Fn+1 S dQn
_229,1?(")11'[P'((p)'(p)‘p+(p)'p‘p)]‘¥g (1.174)
p p
_ Z Y (Xn)Fnﬂ X [Cn . ((Fn+1)T i dn+1 ~Fn+1):| . VS dQn
oyt 3 p W p T Vg
=3 LY [F)T- (13- 8- 98, 0",
P

Recall the interpolation of the velocity from the grid nodes (k) to particles (p) can be computed using

Vp(xn+1) — ZVZ+ISh(Xn+1) (1‘175)
h

Therefore,
N
l; t= VVZ“(X"“) = ZVZ“ ® VS,
n+1 h n+1

dn+1 _ 1 Z n+1 S S n+1 (1.176)
P - = Vh ®v h+nY1h®Vh

2 n+1

h

Using (1.176) in (1.174), we have
f;nat =13 Ln Y (x")F,"- [C; : ((F;“)T . [leSh v, +vi"® V Sh] -F;“)] . YSg aQ”
h p P

n+1
=2 [ %) [(FZ“)T- ( v S, @v,:“)] S1 VS, dO".
np ; n+1 n
(1177)

Since both the second Piola-Kirchhoff stress and the Green strain are symmetric, the tensor C has the

symmetries C;jx; = Cjix; = Cjjx. For hyperelastic materials we have the additional symmetry C;jx; =

Criij- We can take advantage of these symmetries to simplify the above expressions. The first term in the
expression for the rate of the material internal force contains an expression of the form
A::F-[C:(FT-[G®V]-F)]-G::0¢-V (1.178)
while the second term contains
B::F-[C:(FT~[V®G]-F)]-G::[3-V (1.179)

where

G=Gy:= YSg and G=Gj,:=VS,. (1.180)

n+1
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In index notation,
Ay = FriCijkeF{meVnanGj = FriCijkekaGanL’GjVn = Gj(F -C- FT)rjkn(G : F)kVn
=Gj(G-F)i(F-C-F"),jgnVn = trnvy

. . . (1.181)
B, = FricijkngnVnGmFmEGj = FriCiijFnkaFmt’GjVn = Gj(F -C- FT)rjfn(G : F)Evn
= G](G : F)g(F -C- FT)rjgnVn =: ﬁmvn = UrpVy = Ar
Similarly for the geometrically nonlinear component, we have
C:= [FT-(G®V)]-S-G::y-v. (1.182)
In index notation
G = FriGiVnSnka = (G : FT)r(G ’ S)nVn = YrnVn - (1.183)
We can now express (1.177) as
M DO IR ACORT L R
h p 14
- . (1.184)
el by fﬂ Y,(x")y dQ" |- v
h LP P ]
where
. T
[a]ie = Gj [G'F;H]k[F;H'CZ'(FZH) ]ijke (1.185)
1.185
[ylie=[G-(F;™)'] [G- 53],
Using
. of
f=—-v (1.186)
Jdu
where u is the displacement, we notice from (1.184) that
a mat
(Kmat)gh = ﬁ = Z ](;n Yp(xn)(x del
(1.187)

of geo

(R, = G =X [, o)y o

If we now set the current configuration as the reference configuration (see [18], section 6.1.3), we have

Fy''=1, S)=0,", x"=x"", dQ,=dQ,., G=G, C;=(C7);". (1.188)
Therefore,

(Kint)gh(ug+l) tn+1) _ (Kmat)gh + (ngo)gh (1.189)
where

(Kmat)gh_Zf Yp(xnﬂ)G (Ca)nﬂ G dQnH

(1.190)
(ngo)gh — %:[nH Yp(xnﬂ) (Gh ® Gg) X O.Z-H o,
P

An efficient way of converting these relations to Voigt form is possible only in the case where the grid
basis functions are trilinear. For GIMP and CPDI basis functions, the problem becomes more complex
and have not been implemented in VAANGO.



1.8.3

1.8.4

1.9

1.9 Pseudocode of explicit MPM algorithm in Vaango 37

External force stiffness matrix

Recall from (1.60) that the external force is given by

fgxt = frt t(x) Sy(x) dr. (1.191)

To find the contribution to the stiffness matrix from the external force, note that

= [ (100 8,00 +160 (vSg-vp)] dr = [ [160 8,00 + (H(x) ©G) -ve] dT (1192)

We make the simplifying assumption that

t(x) = 1(x)v, (1.193)
to get

f;’“ = frt [£(x) Sg(x)I +1(x) ® Gg] v, dT (1.194)
Therefore,

(K™Y g1 = fr [£(x) S ()T + i(x) @ Gg] 3y, dT (1.195)

Body force stiffness matrix

The body force is given by

fzxt = %:—/Qp ppYp(x)Sy(x)b, dQ (1.196)

In VAANGO we assume that the body force does not vary with deformation. Therefore,

(K*%) g =o0. (1.197)

Pseudocode of explicit MPM algorithm in Vaango

The momentum equation is solved using the MPM algorithm while forward Euler time-stepping is use to
integrate time derivatives. The pseudocode of the overall algorithm is given below. The main quantities
of interest are:

tmax : The maximum time until which the simulation is to run.
t, At : The current time (¢ = t,,) and the time step.

hg : The grid spacing vector.

my : The particle mass.

V;, V;“ : The particle volume at ¢ = t,, and f = £,,,.

x;,xgﬂ : The particle position at t = t,, and t = t,,4,.

u;,uZ“ : The particle displacement at ¢ = t, and t = t,,,,.
V;‘,VZ“ : The particle velocity at t = t,, and t = t,,4,.

O'Z, a;“ : The particle Cauchy stress at time ¢ = ¢, and t = t,,,.

FZ, F;ﬂ : The particle deformation gradient at time t = ¢, and t = t,,4,.
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1.9.1 Initialization

An outline of the initialization process is described below. Specific details have been discussed in earlier
reports. The new quantities introduced in this section are

« n,: The number of particles used to discretize a body.

b;,b;“ : The particle body force acceleration at ¢ = t,, and ¢ = t,.,.
. D;, D;,‘“ : The particle damage parameter at t = t,, and t = t,,4,.

. f;Xt’”, f;Xt’"“ : The particle external force at t = t,, and t = t,,,.

Algorithm 1 Initialization

Require: xmlProblemSpec, defGradComputer, constitutiveModel, damageModel, particleBC,
< mpmFlags materiallist,
1: procedure INITIALIZE
2: for matl inmateriallist do
3 np[matl], x; [matl], u; [matl], m,[matl], V; [matl], v; [matl], b; [matl],
< £,°[nat1] < mat1.CREATEPARTICLES()

4 Fg [matl] < defGradComputer.INITIALIZE(matl)

5 0'2 [matl] « constitutiveModel.INITIALIZE(matl)

6: D;’, [matl] < damageModel.INITIALIZE(matl)

7: end for

8: if mpmFlags.initializeStressWithBodyForce = TRUE then
o: bg <« INITIALIZEBODYFORCE()
10: ag, F;’, <« INITIALIZESTRESSANDDEFGRADFROMBODYFORCE()
11 end if

12: if mpmFlags.applyParticleBCs = TRUE then

13 f;"t’o <« particleBC.INITIALIZEPRESSUREBCs()

14: end if

15: return 71, x?,, ufl’,, My, V;, V;, b;, f;Xt’o, F;, afl’,, D;

16: end procedure

1.9.2 Time advance

The operations performed during a timestep are shown in the pseudocode below.

Algorithm 2 The MPM time advance algorithm

. n n n n gext,n n
1. procedure TIMEADVANCE(hg, Xp» Uy, Mp, VP s Vps fp ,d})

p
2: b, < coMPUTEPARTICLEBODYFORCE() >Compute the body force term
f;Xt’"“ < APPLYEXTERNALLOADS() >Apply external loads to the particles
4 myg, Vg, Vg, bg, f;’“ < INTERPOLATEPARTICLESTOGRID()  [>Interpolate particle data to the grid
5: EXCHANGEMOMENTUMINTERPOLATED() > Exchange momentum between bodies on grid.
— Not discussed in this report.
6: f;nt, 04, Vg < COMPUTEINTERNALFORCE() >Compute the internal force at the grid nodes
7: V,,a, < COMPUTEANDINTEGRATEACCELERATION >Compute the grid velocit,
¢ 9 p 8 Y
— and grid acceleration
8: EXCHANGEMOMENTUMINTEGRATED() > Exchange momentum between bodies on grid
— using integrated values. Not discussed in this report.
9: V,,a, < SETGRIDBOUNDARYCONDITIONS ate the grid velocity and gri
2 g GRIDB C 0 > Update the grid velocity and grid
< acceleration using the BCs
10: Iy, Fp™', V™! < COMPUTEDEFORMATIONGRADIENT() >Compute the velocity gradient

< and the deformation gradient
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1 o™ 1" < COMPUTESTRESSTENSOR() >Compute the updated stress and
— internal variables (if any)
12: op sy Xy Dyt < coMPUTEBASICDAMAGE() >Compute the damage parameter
— and update the stress and internal variables
13: XZ“, D;“ <« UPDATEEROSIONPARAMETER() > Update the indicator variable that is used
< to delete particles at the end of a time step
14: Vp”“, ugﬂ, v;’“, x;“, Mp, h;’“ < INTERPOLATETOPARTICLESANDUPDATE() >Update the

— particle variables after interpolating grid quantities to particles
15: end procedure

The algorithms used for the above operations are discussed next.

Computing the body force

The body force consists of a gravitational term and, optionally, centrifugal and coriolis terms that are

needed for simulations inside a rotating frame such as a centrifuge.

Algorithm 3 Computing the body force on particles

Require: x7, VZ, materiallist, particlelList, mpmFlags
1. procedure COMPUTEPARTICLEBODYFORCE
2: for matl inmateriallist do

3: if mpmFlags.rotatingCoordSystem = TRUE then

4 g < mpmFlags.gravityAcceleration

5 b;’, [matl] < g

6: else

7: for part in particleList do

8: g < mpmFlags.gravityAcceleration

9: X,c < mpmFlags.coordRotationCenter
10: z, < mpmFlags.coordRotationAxis

11 w < mpmFlags.coordRotationSpeed

12: W <~ Wz, >Compute angular velocity vector
13: Acorolis < 20 X V) [matl, part] >Compute Coriolis acceleration
14: r < X; [matl,part] — Xy

15: Acentrifugal < @ X @ X T >Compute the centrifugal body force acceleration
16: bg [matl,part] < g — acentrifugal — Acoriolis >Compute the body force acceleration
17: end for

18: end if

19: end for
20: return b

21: end procedure

Applying external loads

Note that the updated deformation gradient has not been computed yet at this stage and the particle
force is applied based on the deformation gradient at the beginning of the timestep. The new quantities

introduced in this section are:

. h;’ : The particle size matrix at time ¢ = ¢,,.

Algorithm 4 Applying external loads to particles

Require: t,,,, XZ, hg, ug, f;Xt’n, Fg, materiallist, particleList, mpmFlags, particleBC

1 procedure APPLYEXTERNALLOADS
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2: fp <0
3: if mpmFlags.useLoadCurves = TRUE then
4 fp < particleBC.COMPUTEFORCEPERPARTICLE(t" ") >Compute the force per particle
— due to the applied pressure
5: end if
6: for matl inmateriallist do
7: if mpmFlags.useLoadCurves = TRUE then
8: for part inparticlelist do
9 f;Xt’nH[matl,part] < particleBC.GETFORCEVECTOR(ty 4, X}, hp, U,
> fp, Fp) >Compute the applied force vector at each particle
10: end for
1 else
12: f;Xt’n“[matl] «~ f;Xt’n[matl]
13: end if
14: end for
15: return f;’“’"“

16: end procedure

Interpolating particles to grid

The grid quantities computed during this procedure and not stored for the next timestep except for the
purpose of visualization. The new quantities introduced in this section are

o myg: The mass at a grid node.

e Vg : The volume at a grid node.

e Vg : The velocity at a grid node.

o f7*": The external force at a grid node.

« b, : The body force at a grid node.

Algorithm 5 Interpolating particle data to background grid

Require: m,, Vp", Xg, hg, b;, f;Xt’nH, F;, materiallist,particlelList, gridNodeList mpmFlags, particleBC
1 procedure INTERPOLATEPARTICLESTOGRID
2 interpolator < CREATEINTERPOLATOR(mpmFlags) >Create the interpolator
— and find number of grid nodes that can affect a particle
for matl inmateriallist do

®

4 for part in particlelList do
5 Ngps Sgp < interpo1ator.FINDCELLSANDWEIGHTS(X;, h;, F;) > Find the node
— indices of the cells affecting the particle and the interpolation weights

6: pp < mp[matl][part] v; [matl][part] >Compute particle momentum
7: for node in ng, do

8: mg[matl][node] < mg[matl][node] + mp[matl][part] Sgp[node]

9: Vg[matl][node] < Vg[matl][node] + Vp” [matl][part] Sgp[node]
10: vg[matl][node] « vg[mat1][node] + p) Sgp[node]

11 f;Xt [matl][node] < ff;xt [matl][node] + f;Xt’"H [mat1][part] Sgp[node]

12: bg[node] < bg[node] + mp[matl][part] bg [mat1][part] Sgp[node]

13: end for

14: end for

15: for node in gridiodeList do

16: Vg[matl][node] < vy[matl][node]/mg[matl][node]

17 end for

18: Vg[matl] < APPLYSYMMETRY VELOCITYBC(Vg[mat1]) >Apply any symmetry

— velocity BCs that may be applicable
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19: end for

. ext
20: return mg, Vg, Vg, b, fg
21: end procedure

Exchanging momentum using interpolated grid values

The exchange of momentum is carried out using a contact model. Details can be found in the Uintah
Developers Manual.

Computing the internal force

This procedure computes the internal force at the grid nodes. The new quantities introduced in this
section are

» ng, : The number of grid nodes that are used to interpolate from particle to grid.
 Sgp : The nodal interpolation function evaluated at a particle

o Gy, : The gradient of the nodal interpolation function evaluated at a particle

* 0, : A volume weighted grid node stress.

. ffgm : The internal force at a grid node.

Algorithm 6 Computing the internal force

Require: hg, Vg, Vp", x;, h;, O'Z, F;, materiallist, particlelist, gridNodeList mpmFlags
11 procedure COMPUTEINTERNALFORCE
2 interpolator < CREATEINTERPOLATOR(mpmFlags) > Create the interpolator and
— find number of grid nodes that can affect a particle
for matl inmateriallist do

@

4: for part inparticlelList do

5 Mgps Sgp» Ggp <
> interpola‘tor.FINDCELLSANDWEIGHTSANDSHAPEDERVATIVES(XZ, h’, FZ)
- >Find the node indices of the cells affecting the particle and

< the interpolation weights and gradients

6: 0, < Vp[matl][part] 0';', [matl][part]

7: for node in ng, do

8: f(igm[matl] [node] < f;nt [mat1][node] - (Ggp[node]/hg) -o’?, [matl][part] V; [part]
9: 0g[matl][node] « o 4[matl][node] + 6, S4p[node]
10: end for

1 end for

12: for node in gridNodeList do

13: 0g[matl][node] « 6 4[matl][node]/Vg[matl][node]

14: end for

15: Vg[matl] < APPLYSYMMETRY TRACTIONBC() >Apply any symmetry tractions BCs

< that may be applicable
16: end for
17: return fi,m, 0 Vg

18: end procedure

Computing and integrating the acceleration

This procedure computes the accelerations at the grid nodes and integrates the grid accelerations using
forward Euler to compute grid velocities. The new quantities introduced in this section are

e ag: The grid accelerations.
» v, : The integrated grid velocities.
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Algorithm 7 Computing and integrating the acceleration

Require: At, myg, f;,m, f?‘t, bg, Vg, materiallist, gridNodeList, mpmFlags
1: procedure COMPUTEANDINTEGRATEACCELERATION
2: for matl inmateriallist do
3 for node in gridlodeList do
4 ag[matl][node] « (f(ignt [matl][node] + f;’(t [matl][node] +bg[matl] [node])/mg[matl] [node]
5 V:gf < Vg[matl][node] + ag[matl][node] *At
6: end for
7 end for
8 return vg, ay
o: end procedure

Exchanging momentum using integrated grid values

The exchange of momentum is carried out using a contact model. Details can be found in the Uintah
Developers Manual.

Setting grid boundary conditions

Algorithm 8 Setting grid boundary conditions

Require: At, ag, v, Vg, materiallist, gridNodeList, mpmFlags
1 procedure SETGRIDBOUNDARYCONDITIONS
2 for matl inmateriallist do
3 vg [matl] « APPLYSYMMETRYVELOCITYBC(Vg [matl])
4 for node in gridNodeList do
5 ag[matl][node] « (V;; [mat1][node] - vg[mat1][node]) /At
6: end for
7 end for
8 return V;, a,
o: end procedure

Computing the deformation gradient

The velocity gradient is computed using the integrated grid velocities and then used to compute the de-
formation gradient. The new quantities introduced in this section are

+ AF} : The increment of the particle deformation gradient.
« I3 : The particle velocity gradient.
e po : The initial mass density of the material.

Algorithm 9 Computing the velocity gradient and deformation gradient

e n n N n Jn n * . . . .
Require: At,x7, Mp, Vp s hp,vp, lp, Fp, hg,vg,vg, pomateriallist, gridNodeList, mpmFlags, velGradComputer

1. procedure COMPUTEDEFORMATIONGRADIENT

2 interpolator < CREATEINTERPOLATOR(mpmFlags)

3: for matl inmateriallist do

4 for part in particlelList do

5 l;H[matl,part] < velGradComputer.COMPUTEVELGRAD(interpolator, hg, XZ [matl,part],
> h; [matl,part], FZ [matl,part], vg [matl])  >Compute the velocity gradient

6: F g“ [matl,part], AF;Jrl <~ COMPUTEDEFORMATIONGRADIENTFROMVELOCITY(I Z [matl,part],

o l;ﬂ [matl,part], FZ [matl,part]) >Compute the deformation gradient
7: V;H [matl,part] < m,[matl,part]/p, * det(FZJrl [matl,part])
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8: end for
9 end for

. n+1 pn+1 n+1
10: return lp ,Fp , Vp

1: end procedure

Algorithm 10 Computing the deformation gradient using the velocity gradient

Require: At, l;ﬂ, F;, mpmFlags
1 procedure COMPUTEDEFORMATIONGRADIENTFROMVELOCITY
2 if mpmFlags.defGradAlgorithm = "first_order" then
F;“, AF;“ <« SERIESUPDATECONSTANTVELGRAD(numTerms = 1, Af, l;“, Fyp)

3:
4 else if mpmFlags.defGradAlgorithm = "subcycle" then
5: Fg“, AF;“ <« SUBCYCLEUPDATECONSTANTVELGRAD(At, l;“, F;)
6: else if mpnFlags.defGradAlgorithm = "taylor_series" then
7: F™, AF;"™ < sERIESUPDATECONSTANTVELGRAD(nunTerms = mpuFlags.numTaylorSeriesTernms,
At, 17, F?)
>Tp > p
8: else
9: F Z“, AF;’,+1 <« CAYLEYUPDATECONSTANTVELGRAD(At, l;“, FZ)
10: end if
1 return FZ“, AF;+1

12: end procedure

Computing the stress tensor

The stress tensor is compute by individual constitutive models. Details of the Arena partially saturated
model are given later. The new quantities introduced in this section are

. 11;, 11?;rl : The internal variables needed by the constitutive model.

Algorithm 11 Computing the stress tensor

Require: At,x7, mp, V;H, h;, l;ﬂ, F;H, O'Z, 11;, Po,materiallist, mpmFlags, constitutiveModel
1 procedure COMPUTESTRESSTENSOR

2 for matl inmateriallist do
3: o, 11ZJrl « constitutiveModel[matl].COMPUTESTRESSTENSOR(A®, X%, mp, Vp"+1, h;,
n+1 pn+1 n o .n s 4o cfroc
> lp ,Fp > 0> N> Pos mpmFlags) > Update the stress and any
— internal variables needed by the constitutive model
4 end for
. n+1  n+1
5: returno,”, 1,
6: end procedure

Computing the basic damage parameter

The damage parameter is updated and the particle stress is modified in this procedure. The new quantities
introduced in this section are

. s‘];’n sj;’nﬂ : The particle strain to failure at t = T, and t = T),.,.

* Xps X;H : An indicator function that identifies whether a particle has failed completely.

. tg’n, tg’nﬂ : The time to failure of a particle.
. Dy, D;’,” : A particle damage parameter that can be used to modify the stress.

Algorithm 12 Computing the damage parameter

Require: ", Vp”“, Fgﬂ, O'ZH, Dz, sg’n, XZ, tg’n, materiallist, mpmFlags
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1 procedure COMPUTEDAMAGE
for matl inmateriallist do

N

3 for part in particlelList do
4 if brittleDamage = TRUE then
. n+1 Nt pgn Nyt n+1 pn+1
5: 0, 58 Xy o tpf , Dp «~ UPDATEDAMAGEANDMODIFYSTRESS(Vp , Fp ,
n+1 myn o on N > the ) . tope .
g Dp, & Xp 1 ) > Update the damage parameters and stress
6: else
7 a;‘,“, sf,f’"“, n1 tf,f’"“ « UPDATEFAILEDPARTICLESANDMODIFYSTREss(V;“, F;“,
N N . .
N aZ“, s£ R XZ’ tg , " > Update the failed particles and stress
8: end if
9: end for
10: end for
. n+1 JJontlpgn Nt n+1
1 returnoy, L&) Ly, Ht) D,

12: end procedure

Updating the particle erosion parameter

The particle failure indicator function is updated in this procedure and used later for particle deletion if
needed.

Algorithm 13 Updating the particle erosion parameter

Require: D, X; materiallist, mpmFlags, constitutiveModel
1 procedure UPDATEEROSIONPARAMETER
2: for matl inmateriallist do

3 for part in particlelList do
4 if matl.doBasicDamage = TRUE then
5: XZ“ <« damageModel.GETLOCALIZATIONPARAMETER() > Just get the indicator
— parameter for particles that will be eroded.
6: else
7 XZ“, D;“ « constitutiveModel[natl].GETDAMAGEPARAMETER(}p, Dp)
> > Update the damage parameter in the constitutive model.
8: end if
9 end for
10: end for
11 return XZ“, D;“

12: end procedure

Interpolating back to the particles and update

This is the final step at which the particle velocities and positions are updated and the grid is reset. Particle
that are to be removed are dealt with in a subsequent relocation step.

Algorithm 14 Interpolating back to the particles and position update

Require: At, ag, Vg, XZ, VZ, u;’,, h;, X;ﬂ, F;H, V;ﬂ, materiallist, particlelList, gridNodeList,

mpmFlags

1 procedure INTERPOLATETOPARTICLESANDUPDATE
2 interpolator < CREATEINTERPOLATOR(mpmFlags)
3 for matl inmateriallist do

n+1 n
4 h b h p
5 for part in particlelList do

: n n+1 n+1

6 Ngp, Sgp < interpolator.FINDCELLSAND WEIGHTS(X}, hp ’FP )
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10:

11:

12:

V<0, a< 0,

for node in gridliodeList do
V<v+ Vg [node] * Sgp[node]
a < a+ag[node] * Sgp[node]

end for

n+1 n
X <—xp+v>eAt

n

up+1<—u;+v>eAt
V;“<—Vg+a>eAt

end for
end for
DELETEROGUEPARTICLES()
return V', wpt, vt xpt my, h;“
: end procedure

P p 1%

>Update particle velocity
> Update particle acceleration

> Update position

>Update displacement
> Update velocity

> Delete particles that are to be eroded.
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malieil” i!"Lf
<z — MPM Material Models

In this chapter we discuss some general features of the MPM material models. Individual models are
complex and are discussed in separate chapters. Notation and definitions that are used frequently are also
elaborated upon here.

Notation and definitions

A primary assumption made in many of the material models in Vaango is that stresses and (moderate)
strains can be additively decomposed into volumetric and deviatoric parts.

Volumetric-deviatoric decomposition

The volumetric-deviatoric decomposition of stress () is expressed as
o=pl+s (2.1)

where the mean stress (p) and the deviatoric stress (s) are given by

0y, —p 012 013
p=str(o)=j0:I= (on+0yn+0y) and s=o-pl=| 0, O0n-p 0y [. (22
013 O O3~ p

Similarly, the volumeric-deviatoric split of the strain (&) is expressed as

e=1¢,I+¢g (2.3)

T3
where the volumetric strain (¢,) and the deviatoric strain (&) are defined as

1
& — 581/ &1 &3
gy =tr(e)=¢e:I=¢,+€&,+¢&; and & =¢€- ie,,I = & €35 — §sv €23 . (2.9)

1
&3 €23 &3~ 38
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Stress invariants

The principal invariants and principal deviatoric invariants of the stress are used in several models. Fre-
quently used invariants are:

I =tr(o) = 0y + 0y + 035

I =2 [tr(0)* = tr(0”)] = 0105, + 03,053 + 03300 — (03, + 05, + 07,

I; = det(0) = 0,105,033 + 201,023,013 — 04,033 — 0,001 — 07302, (2.5)
Jo=38:85= ¢ [(00—02)" + (00— 033)* + (033 — 00)*] + (0, + 03, + 03,)

Jy=det(s) = Z2I} - LI+

Alternatives to I, ], and j, are p, g, and 0, defined as
3
1 _ (Y 33T, 527
p= 511’ q:=v3, cos 30 := (5) —TF, r —;]3- (2.6)

A geometric accurate view of the stress state and yield surfaces is obtained if the isomorphic cylindrical
coordinates z, p, and 6 are used instead, where

_ b . _ /2 _33
z.—%—\/gp’ P-—vzlz—\/;q, cos30 := TF (2.7)

Effective stress and strain

The effective stress and strain (sometimes also referred to as the shear stress and shear strain in the code)
are defined such that the product is equal to the plastic work done. These measures are strictly applicable
only to J, plasticity models but have also been used elsewhere.

The effective stress is defined as

O = = \/3), = \/gs s = \/i [(0u = 025)> + (022 = 033)% + (033 — 00)2] +3(0% + 02 +02). (2.8)

The effective strain is defined as
Eeff = \/ 385 * & (2.9)

so that

Ocr€ef = \/ (5 :8) (& 1 &). (2.10)

From the definition of & we see that

g e =eie—tr(e)l:e+ S [tr(e) ' I: I=e:e-2[tr(e)]" +  [tr(e)] = e: e - { [tr(e)]”

1
3

= % [(en = €22)" + (€22 — £33)" + (€33 — €0)] + 2(5, + 5;3 + 533)

_ 2 2 2 2 2 2 2 2 2
=&, t &, + &, + 28, +2&,, + 26 — [su + &, + &5y 28080 T 265855 + 2811833] (2.11)

Therefore,

Eoff = \/§ |:§ [(811 - 822)2 + (522 - 833)2 + (833 - 511)2] + 2(‘2%2 + 8%_7, + 8%3 ] (2.12)

For volume preserving plastic deformations, tr(&) = o, and we have

_ 4 _
er=v/2 (2 e +e) vt (2 v ver) =\ /2 (2 e +e2) + L (in+n+y) . (2n)
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Equivalent strain rate and plastic strain

The equivalent strain rate is defined as
e&l=V¢: ¢ (2.14)

where £(t) is the strain rate tensor. The distortional equivalent strain rate is
Ph= /28 & (2.15)

where &;(t) is the deviatoric strain rate tensor.

For models where an equivalent plastic strain is computed, we define a scalar equivalent plastic strain rate
as

& =Vl & (2.16)

where &P (t) is the plastic strain rate tensor. The definition of the scalar equivalent plastic strain is

t
£9(t) = f £9(r)dr. (217)
The corresponding distortional equivalent plastic strain rate and strain are defined as
j =28l (218)
and
t
y;q(t) = f )};q 7)dT. (2.19)
o

Velocity gradient, rate-of-deformation, deformation gradient

The velocity gradient is represented by I and the defromation gradient by F. The rate-of-deformation is

d=§(l+lT)=§(VV+VvT). (2.20)

Eigenvectors and coordinate transformations

For most situations, tensor components in VAANGO are expressed in terms of the basis vectors e, =
(1,0,0), e, = (0,1,0), and e; = (0,0,1). However, in some situations tensor components have to be
expressed in the eigenbasis of a second-order tensor. Let these eigenvectors be v,, v, and v;. Then a vector
a with components (a,, a,, a,) in the original basis has components (a;, a;, a;) in the eigenbasis. The
two sets of components are related by

14

a, €-Vi €-V, €&-Vi||ad Yu Vi V|| G

1
al=le-v. v, evy|la|=|va Vi Villa.|=Q-a. (2.21)
14

a, e -V, -V, e-Vvyf|a, Vi Vi Vi || as

The matrix that is used for this coordinate transformation, Q, is given by
T
Q' = [V1 v, v3] (2.22)

where v, v,, and v, are representing the components of the eigenvectors in the reference
basis.

The above coordinate transformation for vectors can be written in index notation as

a; = Qija;. (2:23)



50 MPM Material Models

For transformations of second-order tensors, we have
Ti,j = QipQjgTpq - (2.24)

For fourth-order tensors, the transformation relation is

C,"jkg = Qim anQkaqumnpq . (2.25)
If the second-order tensor T is symmetric, we can express it in Mandel notation as a six-dimensional
vector t:

. T

t=[T, T. Ty V2T 2Ty V2T.] (2.26)

Then the transformation matrix is a 6 x 6 matrix, Q, such that
f; = Q,]lt] . (2.27)

The matrix Q has components [19],

[ n b 5 Vv2Q1,Qy V2Q4, Qi3 V2QuQ, |
;'1 ;'2 :3 \/Esz Q23 \/EQzl Q23 \/EQm Q2
; : : \/EQ32 Q33 \/EQ31 Q33 \/£Q31 Q32

o)
Il

31 32 33
\/EQZI Q31 \/EQ22Q32 \/EQ23 Q33 sz Q33 + Q23 Q32 Q21 Q33 + Q31 Q23 Q21 Q32 + Q31 sz
\/EQII Q31 \/EQIZ Q32 \/£Q13 Q33 Qu Q33 + Q32 Q13 Qu Q33 + Q13 Q31 Qu Q32 + Q31 Q12
_\/zQu Q31 \/Ele sz \/£Q13 Q23 le Q23 + sz Q13 Qu Q23 + Qzl Q13 Qu sz + Q21 le_

(2.28)
Similarly, the transformation relation for fourth-order tensors simplifies to
C:] - QiP qu CPq (2.29)
where
[ Cun Ci C1133 \/EC1123 \/£C1131 \/EC1112 1
C2211 C2222 C2233 \/5C2223 \/£C2231 \/ECZZIZ
C- Cyn Cao Gz V2Cips V2Cim V2Csn (2.30)

\/EC2311 \/EC2322 \/EC2333 2C2323 2C2331 2C2312
V2Cium V2Ch V2Ch5 205y 2Cy5 2Cs,
_\/ECIZH \/ECIZZZ \/EC1233 2C1223 2C1231 2C1 ]

2.2 Material models available in Vaango

The MPM material models implemented in VAANGO were originally chosen for the following purposes:

o To verify the accuracy of the material point method (MPM) and to validate the coupling between
the computational fluid dynamics code (ICE) and MPM.

« To model the elastic-plastic deformation of metals and the consequent damage in the regimes of
both high and low strain rates and high and low temperatures.

« Tomodel polymer bonded explosives and polymers under various strain rates and temperatures.

« To model the deformation of biological tissues.

 To model the explosive deformation of rocks and soils.

As of VAANGO Version 20 .9 .18 , the material models that have been implemented are:

1. Rigid material
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Ideal gas material

Water material

Membrane material

Programmed burn material

Tabular equation of state

Murnaghan equation of state

JWL++ equation of state

Hypoelastic material

Hypoelastic material with manufactured solutions

. Hypoelastic material implementation in FORTRAN

. Polar-orthotropic hypoelastic material

. Compressible neo-Hookean hyperelastic material

. Compressible neo-Hookean hyperelastic material with manufactured solutions
. Compressible neo-Hookean hyperelastic material with damage

. Unified explicit/implicit compressible Neo-Hookean hyperelastic material with damage
Compressible Neo-Hookean hyperelastic-J, plastic material with damage
Compressible Mooney-Rivlin hyperelastic material

. Compressible neo-Hookean material for shells

. Transversely isotropic hyperelastic material

. The p-a model for porous materials

. Viscoelastic material written in FORTRAN for damping

Simplified Maxwell viscoelastic material

. Visco-SCRAM model for viscoelastic materials with cracks

. Visco-SCRAM hotspot model

. Tabular plasticity model

Tabular plasticity model with cap

Hypoelastic J, plasticity model with damage for high-rates

. Viscoplastic J, plasticity model

. Mohr-Coulomb material

. Drucker-Prager material with deformation induced elastic anisotropy
. CAM-Clay model for soils

. Nonlocal Drucker-Prager material

Arenisca material for rocks and soils

. Arenisca3 material for rocks and soils

36. Arena material for partially saturated soils

37. Arena-mixture material for mixes of partially saturated sand and clay
38. Brannon’s soil model

39. Soil foam model

Y XN Vv p e D
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A small subset of these models also have implementations that can be used with Implicit MIPM .

Some of these models can work with multiple sub-models such as elasticity model or yield condition. As
of VAANGO Version 20 .9 .18, the implemented sub-models are:

1. Equations of state:
(a) Pressure model for Air
(b) Pressure model for Borja’s CAMClay
(c) Pressure model for Granite
(d) Pressure model for hyperelastic materials
(e) Pressure model for Hypoelastic materials
(f) Pressure model for Mie-Gruneisen equation of state
(g) Mie-Gruneisen energy-based equation of state for pressure
(h) Pressure model for Water
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2. Shear modulus models:
(a) Constant shear modulus model
(b) Shear modulus model for Borjas CAMClay
(c) Shear modulus model by Nadal and LePoac
(d) Mechanical Threshold Stress shear modulus model
(e) Preston-Tonks-Wallace shear modulus model
(f) Steinberg-Guinan shear modulus model
3. Combined elastic modulus models:
(a) Constant elastic modulus model
(b) Tabular elastic modulus model
(¢) Neural net elastic modulus model
(d) Arena elastic modulus model
(e) Arena mixture elastic modulus model
(f) Arenisca elastic modulus model
4. Yield condition models:
(a) Yield condition for Arena model
(b) Yield condition for Arena mixture model
(c) Yield condition for Arenisca3z model
(d) Yield condition for CamClay model
(e) Yield condition for Gurson model
(f) Yield condition for Tabular plasticity with Cap
(g) Yield condition for Tabular plasticity with
(h) Yield condition for vonMises J, plasticity
(i) Classic Mohr-Coulomb model
(j) Sheng’s Mohr-Coulomb model
5. Plastic flow stress models
(a) Isotropic hardening plastic flow model
(b) Johnson-Cook plastic flow model
(c) Mechanical Threshold Stress plastic flow model
(d) Preston-Tonks-Wallace plastic flow model
(e) Steinberg-Guinan plastic flow model
(f) Suvicl viscoplastic flow model
(g) Zerilli-Armstrong metal plastic flow model
(h) Zerilli-Armstrong polymer plastic flow model
6. Plastic internal variable models:
(a) Arena internal variable model
(b) Borja internal variable model
(¢) Brannan’s soil model internal variable model
(d) Tabular plasticity with cap internal variable model
7. Kinematic hardening models:
(a) Prager kinematic hardening model
(b) Armstrong-Frederick kinematic hardening model
(c) Arena kinematic hardening model
8. Damage models
(a) Becker’s damage model
(b) Drucker and Becker combined damage model
(c) Drucker loss of stability model
(d) Johnson-Cook damage model
(e) Hancock-MacKenzie damage model
9. Melting model
(a) Constant melting temperature model
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(b) Linear melting temperature model

(c) BPS melting model

(d) Steinberg-Guinan melting temperature model
10. Specific heat model

(a) Constant specific heat

(b) Cubic specific heat model

(c) Copper specific heat model

(d) Steel specific heat model
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G — Special material models

VAANGO contains a few material models that are designed for special problems. These are discussed in
this chapter.

Rigid material

Applicable to: explicit and implicit MPM

This material model assumes that
o(F,t)=0 and F(t)=1I. (3.1)

The model is a rough approximation of a rigid body as long as there is no contact between objects. Upon
contact, the model should ideally transition into the form

6(F,t)=00 and F(t)=1. (3.2)

This situation is approximated using the specified body contact algorithm which is applicable only in
certain directions. Rigid materials were designed to act as rigid surfaces against which deformable ob-
jects could be compressed. The specified body contat algorithm can simulate the interaction of a single
“master” rigid body with deformable objects.

Ideal gas material

Applicable to: explicit MPM only

The ideal gas material assumes that the stress at a particle is

p(F)I  for p>o

(33)
0 for p<o

o(F,t) :{

where p = —p, and the pressure p is computed with an isentropic ideal gas equation of state:

-1 f
p= prslew(y&) -1 : e—v={0“(” o G0

for J>1
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where ] = det(F).

A rate of change of temperature (T) can also be computed by the model:

dT_ 1 Jn1 p
EB(J_)(pT) os)

where 4, = J(tns1, Jn = J(tn), p is the mass density, and C, is the constant volume specific heat.

Water material

Applicable to: explicit MPM only

This material models water [20], and assumes that the stress is given by

o(F,t) =p(F)I+2un. (3.6)
where y is a shear viscosity, d is the symmetric part of the velocity gradient,

p=-p and n=d-;tr(d)I. (37)
The pressure is given by:

p=x[J7-1], J=det(F) (3.8)

where x the bulk modulus and y is a model parameter. It has not been validated, but gives qualitatively
reasonable behavior.

Murnaghan material

Applicable to: explicit MPM only

This material is based on the equation of state proposed in [21]. The stress is given by

o(F,t) = p(F)I+2un. (3.9)
where y is a shear viscosity, d is the symmetric part of the velocity gradient,

p=-p and n=d-;tr(d)I. (3.10)

The pressure is given by:
p= 1, []_K’ - 1] , ] =det(F) (3.11)
K

where « the initial bulk modulus and " = dx/dp is a constant.

JWL++ material

Applicable to: explicit MPM only

The JWL++ material is a combination of the Murnaghan and JWL models along with a burn algorithm
to convert from one to the other [22]. A small viscous component is added to the JWL model to stabilize
behavior.

The stress is given by

o(F,t)=p(F)I+2un. (3.12)
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where y is a shear viscosity, d is the symmetric part of the velocity gradient,
p=-p and n=d-;tr(d)I. (3.13)
The burn rate is computed as

f=0-£Gp’ (3.14)

where f is the volume fraction of the reactant, G, b are fit parameters, and p is the pressure, computed
using

p=(0=f)pm+fPjw- (3.15)
The Murnaghan pressure (py,) is given by:
pm=—=["=1], J=det(F) (3.16)
nK

where K = 1/x, « is the initial bulk modulus, and n = ¥’ = d«k/dp is a constant.

The JWL pressure (pj,1) is given by

Piwl = Aexp(=R,J) + Bexp(~R,J) + CJ~+*) (3.17)

where A, B, C, w are fit parameters, R;, R, are fit rate parameters, and J = det F.






4 — Elastic material models

Hypoelastic material

Applicable to: explicit and implicit MPM
Hypoelastic materials have stress-deformation relationships of the form

&(F) = C(F) : d(F) (41)
where C is an elastic stiffness tensor and d is the symmetric part of the velocity gradient.

The base hypoelastic material implemented in Vaango is linear and isotropic:
6= (K— ?y) tr(d) I +2ud (4.2)

where y is the shear modulus and « is the bulk modulus.

To ensure frame indifference, both ¢ and d are unrotated using the beginning of the timestep defor-
mation gradient polar decomposition before any constitutive relations are evaluated. The updated
stress is rotated back using the deformation gradient decomposition at the end of the time step.

Hyperelastic Material Models

Several hyperelastic material models have been implemented in VAaANGo. Other models can be easily
implemented using the available infrastructure. The general model has the form
10W T
= —-—"- F .
= F (4.3)

where W is a strain energy function and J = det F. For isotropic hyperelastic functions that are expessed
in terms of the invariants (I,, I,, J) of the right Cauchy-Green deformation (C = F T.F), the Cauchy stress
is given by

2[ 1 (OW _ oW 1 OW oW 2 (. oW _ oW
c=—-|—/|—+1, —|B-— —B-B|+|——-—\|I, —+21, — I (44)
J1LJP3\ o1, ol, J4/3 9, o] 3J\ ol ol,

where B=F-FT, and

J=detF, I,=PL, I,=J*L,, L,=trC, L =1[(trC)* - tr(C-C)] (4.5)
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Note that I, and I, are identical for C and B. Alternatively,

2 ow IawB aWBB awI (4.6)
“il\an L) PR &

where I = J.

The P-wave speed (c) needed to estimate the timestep can be computed using

(4.7)

oW [ oL oot W]

“T 7 an T prlan o T an, o A, o

where A; are the principal stretches, i.e., I, = 33; A}, I, = AJA; + AJAS + A3AS and [; = A7ASAS.

i

Compressible neo-Hookean material

Applicable to: explicit and implicit MPM

The default strain energy function for the compressible neo-Hookean material model implemented in
VaanGois ([23], p.307):

k[1,, -
W:—[—(] —1)—1n]]+ﬁ[11—3] (4.8)
22 2
The Cauchy stress corresponding to this function is
K 1 Bip_ 17
==(J-2)1+=5(B- L1 .
4 2(] ]) +]( LI) (4.9)

where B = ]_2/ 3B=] —23F . FT and J = det F. Consistency with linear elasticity requires that x = K and
p = G where K and G are the linear elastic bulk and shear moduli, respectively.

Alternative expressions for the bulk modulus factor are allowed and defined in the equation-of-state sub-
models.

Compressible Mooney-Rivlin material

Applicable to: explicit MPM only

The compressible Mooney-Rivlin material implemented in VAANGO has the form

W=C(I,-3)+Cy(I,-3)+C4 (1—12 - 1) +Cy(I; —1)* (4.10)
3

where C,, C, and v are parameters and

(4.11)

Cu(sv —2) + Cy(11v -
Cy = 1(C,+2G,), c4:§[ W(5v—2) + G (v 5)].

1—2v

The corresponding Cauchy stress is

o= ; (C,+C,1,)B-C,B-B + J2 [—21—?3 +2C,(I, - 1)” : (4.12)
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Transversely isotropic hyperelastic material

Applicable to: explicit and implicit MPM

The transversely isotropic material model implemented in VAANGO is based on [24]. The model asssumes
a stiffer, “fiber”, direction denoted f and isotropy ortogonal to that direction.

The strain energy density function for the model has the form
W=W,+ W, (4.13)

where W, is the volumetric part and W is the deviatoric (volume preserving) part. The volumetric part
of the strain energy is given by

W, = x(InJ)* (4.14)

where « is the bulk modulus and ] = det F. The deviatoric part, Wy, is given by

Ci(I, - 3) + Co(I, —3) + Cs [exp (C,(A - 1)) —1] for A<A*
wy={ 2 > L ¢ o (415)
Ci(I,-3)+Cy(I,-3)+CsA+ CslnA for A>A
where C,, C,, C;, C,, Cs, A* are model parameters, and
Cs = Cy[exp (C4(A" —1)) —1] - GA”
N (4.16)
1=\/I,, L=t (C-f), C=J?cC.
The fiber direction is updated using
\ J
fp,=—F-f,. (4.17)
A
The Cauchy stress is given by
c=pl+o,;+0y (4.18)
where
In(J)
=K—
P
2 — = = = = —
0a=5 [(Cl +GI)B-C,B-B-1(Cl,+ 2C212)I] (4.19)

of= % % (fnﬂ@fnﬂ— %I)

The model also contains a failure feature that sets 6; = o when the maximum shear strain, defined as
the difference between the maximum and mimum eigenvalues of C, exceeds a critical shear strain value.
Also, a fiber stretch failure criterion can be used that compares \/1_4 with a critical stretch value and sets
0 ¢ = o is this value is exceeded.

Elastic modulus models

Applicable to: Hypoelastic Tabular material models

For selected material models that use isotropic hypoelasticity models and require bulk and shear moduli,
specialized elastic moduli models can be used. Some of these models are discussed in this section.
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Support vector regression model

The support vector regression (SVR) approach [25, 26] can be used to fit bulk modulus models to data
without the need for closed form expressions. The advantage of this approach is that the resulting model
requires few function evaluations and can, in principle, be computed as fast as a closed-form model.

For the purpose of fitting a bulk modulus model we assume that the input (training) data are of the form
{(&5, 1), (&2 P2)s - -» (€m> pm) } © R* x R. Here g; = (&, ¢!) where ¢ is the total volumetric strain and
e is the plastic volumetric strain and p; is the mean stress (assumed positive in compression). The aim
of SVR is to find a function p = f(&) that fits the data such that the function is as flat as possible (in
d +1-dimensional space), and deviates from p; by at most € (a small quantity).

In nonlinear support vector regression we fit functions of the form

p=f(e)=w-¢(e) +b (4.20)

where w is a vector of parameters, ¢( &) are vector-valued basis functions, (+) is an inner product, and b is
a scalar offset. The fitting process can be posed as the following primal convex optimization problem [27]:

m
minimize fw-w+C) (&+¢])
W,b,f,f* i=1

subject to

{_(£i+€)Spi_w'¢(£i)_bS£;+€ (4.21)

£, 87 >0, i=1...m

where C is a constraint multiplier, m is the number of data points, and &;, & are constraints.

In practice, it is easier to solve the dual problem for which the expansion for f (&) becomes
m
p=f(&) =2\ - A)K(ei&) +b, K(zi,2) = ¢(ei) - ¢(e) (4.22)

where &; are the sample vectors, A; and A} are dual coefficients, and K(¢;, €) is a kernel function. The
dual convex optimization problem has the form

minimize 1 (A —A])K(ei, &) () - A7)+ e> (Ai+A7)+ > pi(Ai—A])
PWE - L -
> 1,]=1 1=1 1=1

(4.23)
T(Ai-A7)=0
subject to (i A7)
AiAf €[o0,C], i=1...m.
The free parameters for the fitting process are the quantities e and C. SVR accuracy also depends strongly
on the choice of kernel function. In this paper, we use the Gaussian radial basis function:

K(si,sj) = exp [— (& - sj()fz. c(lSi _ sj) = exp [—y Hsi - stZ] , pi= 021d (4.24)

where d is the dimension of € and ¢ is the width of the support of the kernel (assumed to be equal to the
norm of the covariance matrix of the training data in this paper).

The minimization problem solves for the difference in the dual coefficients (1 — A*) and the intercept (b),
and outputs a reduced set (mgsy < m) of values of &; called “support vectors”. Given these quantities, the
function (4.22) can be evaluated quite efficiently, particularly if the number of support vectors is small.
SVR fits to data can be computed using software such as the LIBSVM library [28]. A variation of the above
approach, called v-SVR [25] can also be used if sufficient computational resources are available.
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The bulk modulus can be computed from (4.22) using

op Jdp &, ., oK;
=== Al =A)—, K;:=K(g;, .
k(e) =% =7 ;( i) (eir€) (4.25)
From (4.24),
aKi 2
= - 2y(&; — €) exp [—y le; — ] ] (4.26)

Therefore, the bulk modulus is given by,

mgy

k(e) = 20 2y(A] = Ai)(ei — ) exp [~y & — e]] (4.27)

i=1
If we need to account for elastic-plastic coupling, we may also need the derivative

aK msy

P Z 47" (A7 = Xi)(ei —€) (el — eP) exp [—y le; - £||2] (4.28)

The bulk modulus model is also associated with a shear modulus model that computes the value of u
using a Poisson’s ratio (v) based on the value of k. The VAaANGo implementation can be accessed in the
tabular plasticity models, using the tag <elastic.moduli_model type="support_vector”>.






Most plasticity models in VAANGO are implemented as stand-alone models with their own elasticity law,
yield condition, flow rule, and internal variable evolution rules. However, because of the large number of
possible combinations of these, a few metal plasticity models are available that allow the user to swap out
one set of rules for another.

The list below is not comprehensive. Please see the following chapters for details of the models
actually available in VAANGO.

The plasticity implementations typically contain the following:

1. An elasticity model:
o Isotropic linear elastic model.
« Anisotropic linear elastic models.
« Isotropic nonlinear elastic models.
Anisotropic nonlinear elastic models.
Equation of state to determine the pressure (or volumetric response), for example,
- Mie-Gruneisen equation of state.
Deviatoric stress model to determine the shear response.
- Nadal-LePoac shear modulus model
- Steinberg-Guinan shear modulus model
2. Avyield condition:
« von Mises yield condition.
« Drucker-Prager yield condition.
« Mohr-Coulomb yield condition.
« Gurson-Needleman-Tvergaard yield condition.
3. Aflow rule:
o Associated flow.
+ Non-Associated flow using either a flow potential or a material parameter.
4. lsotropic hardening:
o Perfect plasticity (no hardening).
« Johnson-Cook plasticity.
o Mechanical Threshold Stress (MTS) plasticity.
5. Kinematic hardening:
o Isotropic backstress.
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Plasticity

10.
11.

o Deviatoric backstress.

. Isotropic hardening internal variable evolution rules :

« Mechanical threshold stress evolution.
« Gurson’s porosity evolution law.

Kinematic hardening internal variable evolution rules:

o Ziegler-Prager evolution rule.
 Armstrong-Frederick evolution rule
Damage evolution rules:
« Johnson-Cook damage model.
o Brittle damage model.
Melting temperature models
Specific heat models
Material stability-based localization models:
» Acoustic tensor.
o Drucker stability.

The models used by the main plasticity codes in the current implementation of VAANGO are described in

the following chapters, followed by descriptions of the plasticity algorithms themselves.
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In the isotropic metal plasticity models implemented in VAANGO , the volumetric part of the Cauchy stress
can be calculated using an equation of state. The equations of state that are implemented in VAANGO are
described below.

Hypoelastic equation of state
In this case we assume that the stress rate is given by
=Atr(d*)I+2pud’ (6.1)
where o is the Cauchy stress, d° is the elastic part of the rate of deformation, and A, y are constants.
If dev(d®) is the deviatoric part of d° then we can write

6= (A + § y) tr(d®) I+2 pdev(d®) =k tr(d®) I+2 pdev(d®). (6.2)

If we split ¢ into a volumetric and a deviatoric part, i.e., ¢ = p I + s, take the time derivative to get
6 = p I +§, and compare the result with (6.2), we see that

p=xtr(d®). (6.3)

In addition we assume that d = d° + d”. If we also assume that the plastic volume change is negligible
(tr(dp ) ~ 0), which is reasonable for a void-free metal matrix, we have

p=xtr(d). (6.4)

This is the equation that is used to calculate the pressure p in the default hypoelastic equation of state. For
a forward Euler integration step,

Puir = pn + K tr(dyy,) At . (6.5)

To get the derivative of p with respect to J, where J = det(F), we note that

,_9p;_9p
p= a]]_ a]Itr(d)- (6.6)



6.3

68 Equation of state models

[herefore,
adp K
°o_* 6.
T, (6.7)

This model is invoked in VAANGO using

<equation_of_state type="default_hypo">
</equation_of_state>

Default hyperelastic equation of state

In this model the pressure is computed using the relation

pzix(e—i) (6.8)
]e

where « is the bulk modulus and J¢ is determinant of the elastic part of the deformation gradient.

We can also compute

dp | 1
it () )

The metal plasticity implementations in VAANGO assume that the volume change of the matrix during
plastic deformation can be neglected, i.e., J° = J.

This model is invoked using

<equation_of_state type="default_hyper">
</equation_of_state>

Mie-Gruneisen equation of state

The pressure (p) is calculated using a Mie-Griineisen equation of state of the form ([14, 29])

b P CEO=II=OI] e e 620)
[1-Sa(x=7O)]
where C, is the bulk speed of sound, p, is the initial mass density, T, is the Griineisen’s gamma at the
reference state, S, = dU;/d U, is a linear Hugoniot slope coefficient, U is the shock wave velocity, U, is
the particle velocity, and E is the internal energy density (per unit reference volume), F° is the elastic part
of the deformation gradient. For isochoric plasticity,

J¢ = J = det(F) = £2.
p

The internal energy is computed using

T-T,
E= 1 / C,dT » M (6.11)
Vo Vo

where V,, = 1/p, is the reference specific volume at temperature T = T,, and C, is the specific heat at
constant volume.
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Also,
31) Po Cg [1+(Soc_ro) (1_16)] oE
—= = T, —. (6.12)
3] [1=Sa 1-J°) 3]

We neglect the % term in our calculations.

This model is invoked in Vaango using

="

<equation_of_state type="mie_gruneisen">
<C_0>5386</C_0>
<Gamma_0>1.99</Gamma_0>
<S_alpha>1.339</S_alpha>
<rho_0> 7200 </rho_0>
</equation_of_state>

An alternative formulation is also available that can be used for models where a linear Hugoniot is not
accurate enough. A cubic model can be used in that formulation.

Po Cg (1 - Z+1)[1 - ro(l B ]1e1+1)/2]

- T, ensrs J¢:=detF® 6.
= Se(l=Jin) = $s(1— o) = S,(1— Jo, o]p o Gnws Jimde (6.13)

Pn+1 = -

This model is invoked using the label

Equations of state used in the ARENA model

In many models, a tangent bulk modulus is computed using the equation of state and the pressure is
updated using an integration step. While this approach less accurate than directly evaluating the equation
of state, it is useful when a composite material is being simulated that does not have well-characterized
equations of state at all states.

The equations of state used by the ARENA model for soils are described below. The bars above quantities
indicate negation.

Solid matrix material

The pressure in the solid matrix is expressed as

o v,
po- K5 & =tn(12) (614

N

where p; = —p is the solid matrix pressure, Kj is the solid bulk modulus, s_f, is the volumetric strain, Vi,
is the initial volume of the solid, and V4 is the current volume of the solid. The solid bulk modulus is
assumed to modeled by the Murnaghan equation:

KS(?S) = Ko + 115 (}_)s - 1_750) (6.15)
where K, and 1, are material properties, and p;, is a reference pressure.

Pore water

The equation of state of the pore water is

- W = W Vivo
pw=Kye) +po; & = ln( v ) (6.16)

w
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where p,, = —p,, is the water pressure, K,, is the water bulk modulus, V,,, is the initial volume of water,
Viv is the current volume of water, p, is the initial water pressure, and &} is the volumetric strain in the
water. We use the isothermal Murnaghan bulk modulus model for water:

K, (ﬁw) = Kyo + 1y (1_714/ - ﬁwo) (6.17)

where K,,, and n,, are material properties, and p,,, is a reference pressure.

Pore air

The isentropic ideal gas equation of state for the pore air is

- — — 1%

Pa=prlexp(yed) —1]; ef:=In (ﬁ) (6.18)
Va

where the quantities with subscript a represent quantities for the air model analogous to those for the

water model in (20.10), p, is a reference pressure (101325 Pa) and y = 1.4. The bulk modulus of air (K,)

varies with the volumetric strain in the air:

dﬁa — —a — —

Ka=—==7pr exp(yey) =y (Pa+Pr)- (6.19)
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7.1.1

Isotropic plasticity models in VAANGoO typically assume hypoelasticity, for which the stress rate is given
by

6=pIl+s=xtr(d®) I+2udev(d®) (7.1)

where ¢ = pI + s is the Cauchy stress, p = tr(o), s is the deviatoric stress, d° is the elastic part of the rate
of deformation, and «, y are the bulk and shear moduli.

The pressure is computed using an equation of state as described in the chapter 6. The deviatoric stress is
computed using the relation

$=2pdev(d®). (7.2)

If a forward Euler stress update is used, we have

Sn+1 = Sp + 2pudev(d;, ) At. (7.3)

For linear elastic materials, the shear modulus can vary with temperature and pressure. Several shear
modulus models area available in VAANGoO for computing the value for a given state.

For linear viscoelastic materials to be used with plasticity, a Maxwell model is available in VAANGO where
the deviatoric stress is computed as a sum of Maxwell elements:

Snir =Sy +2y pidev(dy, )At. (7.4)
j

Shear modulus models

Shear modulus models that are available in VAANGO are described below.

Constant shear modulus

The default model gives a constant shear modulus. The model is invoked using

<shear_modulus_model type="constant_shear">
<shear_modulus> 1.0e8 </shear_modulus>
</shear_modulus_model>




7-1.2

72 Deviatoric stress models

Mechanical Threshold Stress shear modulus

The simplest model is of the form suggested by [30] ([31])
b
exp(To/T) -1

where g, is the shear modulus at oK, and D, T, are material constants.

u(T) = po — (75)

The model is invoked using

<shear_modulus_model type="mts_shear">
<mu_0>28.0e9</mu_0>
<D>4.50e9</D>
<T_0>294</T_0>
</shear_modulus_model>

SCG shear modulus

The Steinberg-Cochran-Guinan (SCG) shear modulus model ([29, 32]) is pressure dependent and has the
form

o p  op

N T = o —_— —_— T —_ ; = o) .6
pT)=pot 50+ (T -300) n=plp (7.6)
where, p, is the shear modulus at the reference state(T = 300 K, p = o, 7 = 1), p is the pressure, and T is
the temperature. When the temperature is above T}, the shear modulus is instantaneously set to zero in

this model.

The model is invoked using

<shear_modulus_model type="scg_shear">
<mu_0> 81.8e9 </mu_0>
<A> 20.6e-12 </A>
<B> 0.16e-3 </B>
</shear_modulus_model>

Nadal-LePoac (NP) shear modulus

A modified version of the SCG model has been developed by [33] that attempts to capture the sudden
drop in the shear modulus close to the melting temperature in a smooth manner. The Nadal-LePoac
(NP) shear modulus model has the form

ot 00 A W S B (9 e
#(p’T)_‘j(f)[(#O+_ap1fh (1 T)+-Cnlkb71’ C:= 3 f (7.7)
where
. ~ 1+1/( . T
J(T) := 1+exp[ —1+(/(1_ 7l for T:= T €lo,1+ ], (7.8)

Yo is the shear modulus at o K and ambient pressure, { is a material parameter, k; is the Boltzmann
constant, m is the atomic mass, and f is the Lindemann constant.

The model is invoked using

<shear_modulus_model type="np_shear">
<mu_0>26.5e9</mu_0>
<zeta>0.04</zeta>
<slope_mu_p_over_mu0>65.0e-12</slope_mu_p_over_mu0>
<C> 0.047 </C>
<m> 26.98 </m>

</shear_modulus_model>
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Preston-Tonks-Wallace (PTW) shear modulus

The PTW shear model [34] is a simplified version of the SCG shear model. This model suggests computing
the shear modulus using

_ p T
u(p,T) = po (1+ﬁm) (1_“pT_m) (7.9)

where y, is the shear modulus at room temperature and pressure, p = —p, apisa material parameter, T,
is the melting temperature, and

du
d_

P podp (710)
Po Ho

Borja’s shear modulus model

Borja’s deviatoric stress model [35] assumes that the deviatoric part of the elastic strain energy density has
the form

Wdev(sfz’ 8?) = % U (85)2 (7.11)

where ¢ = tr(e?) is the volumetric part of the elastic strain, &¢ = \/2/3dev(e’) : dev(e?) is the deviatoric
part of the elastic strain, and y is the shear modulus.

The shear modulus in the Borja model is computed as

u(p) = po — apo exp (_8V ;SVO) (7.12)

where y, is a reference shear modulus, ¢/, is the volumetric strain corresponding to a mean normal

compressive stress p,, and « is the elastic compressibility index.






8 — Yield condition

The yield condition models in VAANGO are of two types: yield conditions that are tightly tied to material
models such as CamClay, Arenisca3, Arena, Mohr-Coulomb etc. and those that can be switched in the
input file. This chapter discusses those yield conditions that can be easily substituted while simulating
isotropic metal plasticity. The other yield conditions are described in the chapters that deal with specific
models.

von Mises yield

The von Mises yield function implemented in VAANGO has the form
f= ajff— ay(szq,é;q,gb, T,e4,...) (8.1)

where 0, is the flow stress, szq is the equivalent plastic strain, é;q is the equivalent plastic strain rate, ¢ is
the porosity, and T is the temperature. The equivalent stress is defined as

= V3 =28, E=-s—dev(B), s=o-tu(o) (82)

where o is the Cauchy stress and  is the kinematic hardening backstress.

The normal to the yield surface is

N Of _Of 9% _of 0k s

-2 L. >_2L. 5.2 8.
90 0 90 9& s 0o (83
Noting that
aa—; =symm(I) - ;I®I and g—f = symm(I) (8.4)
where I is the fourth-order identity tensor and I is the second-order identity tensor, we have
N = g—'g :symm(I) : (symm(I) - JI®1) = g—'é : (symm(I) - 1I®T)
—%—ltr(%)l (8.5)
S0t 3 \oE)
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Next we compute the derivative of f:

of of aafﬁc_ 3 § of \
_af__aojff—af _\/§—£:€ tr(—af)—o. (8.6)
Therefore,

N- \/3% (8.7)

The unit normal to the yield surface is

§

N=_% 8.8
H (88)

The von Mises yield condition is the default for metal plasticity and can be invoked using the tag

="

<yield_condition type="von_mises"/>

The Gurson-Tvergaard-Needleman (GTN) yield condition

The Gurson-Tvergaard-Needleman (GTN) yield condition [36, 37] depends on porosity. The GTN yield
function can be written as

£\ ok
f(i—“) +qu¢*cosh(qzt - ))—(1+q3¢i) (89)

y 20y

where 6¢ = ¢ - B, o is the Cauchy stress, f is the backstress, ajﬂ is the equivalent stress defined in (8.2), oy
is the flow stress of the void-free material, g, g,, g are material constants, and ¢, is the porosity function
defined as

y :{¢ for ¢ < ¢e,
¢c+k(p—¢c) for ¢ > ¢,

where k is a constant and ¢ is the porosity (void volume fraction).

(8.10)

The normal to the yield surface is

4 4
w3 96 e ar 9k as ofarfan .
do  0& Odo a[lf doc 0& 0s Odo a[lf oI, do

where I, = tr(o) and = tr(6%) = tr(o — B). Using (8.5),

of af) of oI a1,
N=2 -l = )1+ L2, 8.
FE sr(af "ok oL, 90 (812)
Noting that
3
2—2=1 and %zl (8.13)
we have
of 3f) of
N=2 -l = | I+ =1 8.
dE 31’(a;,r oL (8.14)
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Computation of the derivatives of f gives

3 3
of  of 9oy (2054 & 3 (af)
—=—-== 3|+ == = tr|=])=o. (8.15)
98 50T 0k Vi o8
and
3
of _ 0429+ Smh(%M) . (8.16)
oI oy 20y
Therefore,
¢
N = 3—§ + D929+ sinh (qztr(a ))I (8.17)
o} oy 20,
The unit normal to the GTN yield surface is given by
. N
N=—. (8.18)
IN]

The GTN yield condition is invoked using

<yield_condition type="gurson">
<ql> 1.5 </q1>
<q2> 1.0 </q2>
<q3> 2.25 </q3>
<k> 4.0 </k>
<f_c> 0.05 </f_c>
</yield_condition>

The Rousselier yield condition
The Rousselier yield condition [38] is another porosity-based yield condition that has been used for ductile
tearing simulations.
The yield function is
¢ £
Oeff ( tr(a ) )
== +Dgdexp|l ——]-0 (8.19)
T e A

where D, o, are material constants, and the remaining quantities have been defined in the previous section.

The normal to the yield surface is

of . (9f of

N:a_f_gtr(a_f)pra_[fl (8.20)
where

of [ af %oy i & 9\ _

ok aafff 9§ _\/:1_¢||€‘ tr(aﬁ)_o (8.21)
and

of D¢ tr(a) )

alf - 3(1-¢) exp (3(1 -¢)o ] (8.22)
Therefore,

N:

! 5§ Do ( tr(c®) )]
1‘¢[\/:||f BT Yo vy | (8.23)
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9 — Flow rule

Plastic flow rules in VaAaNGoO have the form
dP =P = M (9.1)

where df = & is the plastic strain rate tensor, A is the consistency parameter, and M is a unit tensor in
the direction of the plastic strain rate.

Associated plasticity

For associated plasticity, VAANGO uses the classical approach in plasticity theory and assumes that M = N
is the unit normal to the yield surface:

& =)\N, N= (9.2)

where f is the yield function.

Non-associated plasticity

VAANGO use two approaches for non-associated plasticity (M # N). The first approach, implemented in
the Mohr-Coulomb model, is to use a separate plastic potential (g) to compute M:

The plastic potential is assumed to have the same form as the yield function, but different parameters to
match experimental data on dilatation.

=AM, M= (9.3)

An alternative approach, used in Arenisca3 and Arena, is to compute the direction of the plastic strain
rate tensor using

. dev(N)+ptr(N)
M= Taev() + fu(v)]

where f3 is an adjustable parameter.

& =\M,

(9.4)
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10 — Isotropic hardening models

Several flow stress models have been implemented in VAANGO . These are described in this chapter.

Linear hardening model
The linear hardening model in VAANGO has the form
ay(s;q) =0, + Ks;q (10.1)

where 0, is the initial yield stress, K is a hardening modulus, and s;q is the equivalent plastic strain.

The linear hardening model can be invoked using

<flow_model type="linear">
<sigma_0> 700.0e6 </sigma_0>
<K>1.5e6</K>

</flow_model>

Johnson-Cook model

The Johnson-Cook (JC) model ([39]) has the following relation for the flow stress (o)

Oy(szq, ELT)=[A+ B(e;q "+ Cln(e")][1 - (T*)"] (10.2)
where s;q is the equivalent plastic strain, A, B, C, n, m are material constants, and
. &4 (T-T,)
é =2 Tx— - . 10.
= (T =Ty (10.3)

In the above equations, é°? is the equivalent strain rate, é° is a reference strain rate, T, is a reference
temperature, and T, is the melt temperature. For conditions where T < o, we assume that m = 1.

The inputs for this model have the form

<flow_model type="johnson_cook">
<A>792.0e6</A>
<B>510.0e6</B>
<C>0.014</C>
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<n>0.26</n>
<m>1.03</m>
<T_r>298.0</T_r>
<T_m>1793.0</T_m>
<epdot_0>1.0</epdot_0>
</flow_model>

Steinberg-Guinan model

The Steinberg-Cochran-Guinan-Lund (SCG) model is a semi-empirical model that was developed by [32]
for high strain rate situations and extended to low strain rates and bcc materials by [40]. The flow stress
in this model is given by

oy(e;q, e';q, T) = [aaf(e;q) + at(é;q, T)] @ (10.4)

(0]

where o, is the athermal component of the flow stress, f (s;q) is a function that represents strain hard-
ening, oy is the thermally activated component of the flow stress, u(p, T) is the shear modulus, and y, is
the shear modulus at standard temperature and pressure. The strain hardening function has the form

f(s;q) = [1 + ﬁ(sft;q + Spi)]n; o'af(g;q) < Omax (10.5)

where f3, n are work hardening parameters, and ¢, is the initial equivalent plastic strain. The thermal
component o; is computed using a bisection algorithm from the following equation (based on the work

of [41])

2 -1
eq |1 2Uy oy G| .

where 2Uy is the energy to form a kink-pair in a dislocation segment of length L, k;, is the Boltzmann
constant, g, is the Peierls stress. The constants C,, C, are given by the relations

Lyab? D
C, = Pdldad V; C, =
2w? pab?

(10.7)

where p; is the dislocation density, L is the length of a dislocation segment, a is the distance between
Peierls valleys, b is the magnitude of the Burgers’ vector, v is the Debye frequency, w is the width of a kink
loop, and D is the drag coeflicient.

The inputs for this model are of the form

<flow_model type="steinberg_cochran_guinan">
<mu_0> 81.8e9 </mu_0>
<sigma_0> 1.15e9 </sigma_0>
<Y_max> 0.25e9 </Y_max>
<beta> 2.0 </beta>
<n> 0.50 </n>
<A> 20.6e-12 </A>
<B> 0.16e-3 </B>
<T_m0> 2310.0 </T_mO0>
<Gamma_0> 3.0 </Gamma_0>
<a> 1.67 </a>
<epsilon_pO0> 0.0 </epsilon_pO0>
</flow_model>
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Zerilli-Armstrong model

The Zerilli-Armstrong (ZA) model ([42-44]) is based on simplified dislocation mechanics. The general
form of the equation for the flow stress is

ay(s;q,é;q, T) =0, +Bexp(-B(&;1)T) + Bo\/s;q exp(—oc(é;q)T) (10.8)

where 0, is the athermal component of the flow stress given by

k
0q = 0g + Zhoy K(qu)n, (10.9)

Vi1

0, is the contribution due to solutes and initial dislocation density, kj, is the microstructural stress inten-
sity, [ is the average grain diameter, K is zero for fcc materials, B, B, are material constants. The functional
forms of the exponents & and f3 are

a=oy— 0 ln(s';q); B=Po— B ln(s';',q); (10.10)

where «,, &, Bo, f1 are material parameters that depend on the type of material (fcc, bee, hep, alloys).
The Zerilli-Armstrong model has been modified by [45] for better performance at high temperatures.
However, we have not used the modified equations in our computations.

The input for this model is of the form

<flow_model type="zerilli_armstrong">

<sigma_g> 46.5e6 </sigma_g>
<k_H> 5.0e6 </k_H>
<sqrt_l_inv> 3.7 </sqrt_1_inv>
<B> 0.0 </B>
<beta_0> 0.0 </beta_0>
<beta_1> 0.0 </beta_1>
<B_0> 890.0e6 </B_0>
<alpha_0> 0.0028 </alpha_0>
<alpha_1> 0.000115 </alpha_1>
<K> 0.0 </K>

<n> 0.0 </n>

</flow_model>

Polymer Zerilli-Armstrong model

The Zerilli-Armstrong model for polymers has the form:

ay(ep €5 T) = 0 + Bexp(=BT") + Bo\/ we,  exp(-aT™) (10.11)

where gy, is the athermal component of the flow stress and

w=wg+ wbln(é;q) + wp\/I:) (10.12)

where wg, wp, w, are material parameters and p = —p is the pressure (positive in compression). The
functional forms of the exponents « and f3 are

a=oy— 0 ln(s';q); B=PBo—PB ln(é;q); (10.13)

where ay, &, o, B; are material parameters. The factors B and B, are defined as

B = Bpa (1 + pr\/jz))Bpn » Bo = Bopa (1 + Bopb\/;)Bopn (10.14)
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where Bpa, Bopas Bpb» Bopb> Bpns and Bopy, are material parameters. Also,

T = —

T (10.15)

where T, is a reference temperature.

The input tags for the polymer ZA model are:

<flow_model type="zerilli_armstrong_polymer">

<sigma_g> 46.5e6 </sigma_g>
<B_pa> 0.0 </B_pa>
<B_pb> 0.0 </B_pb>
<B_pn> 1.0 </B_pn>
<beta_0> 0.0 </beta_0>
<beta_1> 0.0 </beta_1>
<T_0> 300.0 </T_0>
<B_Opa> 890.0e6 </B_Opa>
<B_Opb> 0.0 </B_Opb>
<B_Opn> 1.0 </B_Opn>
<omega_a> 0.0 </omega_a>
<omega_b> 0.0 </omega_b>
<omega_p> 0.0 </omega_p>

</flow_model>

Mechanical thresold stress model

The Mechanical Threshold Stress (MTS) model ([46-48]) gives the following form for the flow stress

)#(p, T)

[¢]

0y (e €5 T) = 04 + (Si0i + S0, (10.16)

where 0, is the athermal component of mechanical threshold stress, y, is the shear modulus at o K and
ambient pressure, 0; is the component of the flow stress due to intrinsic barriers to thermally activated
dislocation motion and dislocation-dislocation interactions, o, is the component of the flow stress due to
microstructural evolution with increasing deformation (strain hardening), (S;, S.) are temperature and
strain rate dependent scaling factors. The scaling factors take the Arrhenius form

[ 1/q: VP
kb T époi
Si=li-\—F 7l :
1 bu(p D) n = (10.17)
[ . 1/qe 1pe
Se = kb—T n ffz)eoe (10.18)
Soe3u(p, T) qu

where kj, is the Boltzmann constant, b is the magnitude of the Burgers’ vector, (goi, £o.) are normalized
activation energies, (€p0i, £poe) are constant reference strain rates, and (g;, pi, ge, p.) are constants. The
strain hardening component of the mechanical threshold stress (o) is given by a modified Voce law

do,

eq =
dsp

0(a.) (10.19)
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where
0(o.) = 05[1—-F(0.)] + OrvF(a.) (10.20)
0, =a,+a,ln é;q +a, é;q -a,T (10.21)
Oe
tanh (oc—)
Oes
F(o,) = ———=2 .
(0e) fanh (@) (10.22)
Tes kT e
In(—) = (—) In| 2 (10.23)
Opes goesb3ﬂ(p: T) Epoes

and 0, is the hardening due to dislocation accumulation, 0y is the contribution due to stage-IV hard-
ening, (o, 4, a,, a5, &) are constants, o is the stress at zero strain hardening rate, 0, is the saturation
threshold stress for deformation at o K, gy is a constant, and €. is the maximum strain rate. Note that
the maximum strain rate is usually limited to about 107/s.

The inputs for this model are of the form

<flow_model type="mechanical_threshold_stress">
<sigma_a>363.7e6</sigma_a>
<mu_0>28.0e9</mu_0>
<D>4.50e9</D>
<T_0>294</T_0>
<koverbcubed>0.823e6</koverbcubed>
<g_0i>0.0</g_0i>
<g_0e>0.71</g_Oe>
<edot_0i>0.0</edot_0i>
<edot_0e>2.79e9</edot_0Oe>
<p_i>0.0</p_i>
<q_i>0.0</q_i>
<p_e>1.0</p_e>
<q_e>2.0</q_e>
<sigma_i>0.0</sigma_i>
<a_0>211.8e6</a_0>
<a_1>0.0</a_1>
<a_2>0.0</a_2>
<a_3>0.0</a_3>
<theta_IV>0.0</theta_IV>
<alpha>2</alpha>
<edot_es0>3.42e8</edot_es0>
<g_0es>0.15</g_0Oes>
<sigma_es0>1679.3e6</sigma_es0>
</flow_model>

10.7 Preston-Tonks-Wallace model

The Preston-Tonks-Wallace (PTW) model ([34]) attempts to provide a model for the flow stress for ex-
treme strain rates (up to 10''/s) and temperatures up to melt. The flow stress is given by

Oe5)!
o+ aln|1- -p-—= ,T) thermal regi
oy(szq,é;q,T)= 2|t +alnf1—-gexp| - o p(p, T) thermal regime (10.24)
27,u(p, T) shock regime
with
f— ‘[’ —
N O (1025
o

where 7 is a normalized work-hardening saturation stress, s, is the value of 7; at oK, 7, is a normalized
yield stress, 0 is the hardening constant in the Voce hardening law, and d is a dimensionless material
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parameter that modifies the Voce hardening law. The saturation stress and the yield stress are given by

R : éeq S1
T, = max {so — (S0 — Soo )erf[xT'In ()’Ti) » So (i) } (10.26)
€p 123

[ vE S\ (&Y
Ty = max{ Yo — (Yo = Yoo )erf| xT'ln | [>minin| =] sso| — (10.27)
€p 123 Y€

where s is the value of 7, close to the melt temperature, (y,, Yo ) are the values of 7, at oK and close
to melt, respectively, (x,y) are material constants, T=T/T,, (s, ¥, ¥») are material parameters for the
high strain rate regime, and

.1 (amp\" (u(p TV

=122 (10.28)
2\ 3M p

where p is the density, and M is the atomic mass.

The inputs for this model are of the form

<flow_model type="preston_tonks_wallace">
<theta> 0.025 </theta>
<p> 2.0 </p>
<s0> 0.0085 </s0>
<sinf> 0.00055 </sinf>
<kappa> 0.11 </kappa>
<gamma> 0.00001 </gamma>
<y0> 0.0001 </y0>
<yinf> 0.0001 </yinf>
<yl1> 0.094 </yi1>
<y2> 0.575 </y2>
<beta> 0.25 </beta>
<M> 63.54 </M>
<GO> 518e8 </GO>
<alpha> 0.20 </alpha>
<alphap> 0.20 </alphap>
</flow_model>

10.8 SUVIC-l model

SUVIC-I is a viscoplastic model for ice that has been used for modeling the interaction of tires with ice [49,
50]. The model is an extension of the SUVIC model (Strain-rate history dependent Unified Viscoplastic
model with Internal Variables for Crystalline materials). The model is applicable for strain rates in the
range of 10~® to 1072 s". Further details on the range of applicability of the model can be found in [49].

This model is driven by a specialized viscoplastic constitutive model for which the yield criterion is given

by
Xae —R X for x>o
<%> R {o for x<o (1029)
where the effective reduced stress is defined as
Xge = \/g(s—ﬁ) :(s-p) (10.30)
and R is the yield stress, K is the drag stress, s = dev(o) is the deviatoric stress, f is the deviatoric
backstress.

The inelastic strain rate is given by

&= [A(X“e—K_R>N exp(—R%)] n, n=2 (SX_MB) (10.31)
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where A is a kinetic-law material constants, and Q, R, T are the activation energy, Universal gas constant
and the absolute temperature, respectively.

The equivalent inelastic strain rate for the model is defined as

. o 4 [ Xae = R\Y

g?q = §£Z cel = A< aeK ) exp (——) . (10.32)
The evolution of the deviatoric backstress is given by

B= 3 - A(Bu) E B - Aa(BL)TICTIP (1033
where A, is a constant that is fitted to the kinematic hardening and dynanamic recovery curves, g, is a

saturation value of the backstress, and A,, g, C are constants fitted to static recovery curves. The isotropic
hardening yield stress evolves as

e g (1o ) ARy

a,° Ra) 4, C (10.34)

where A; is a constant, d, is the grain size, Ry, is the saturation value of R, and A,, p, C are constants
associated with static recovery. The drag stress evolves as

(I_L)_Q(K—Ksat)q

Ko As e
Ka) d;  C

d,° (10.35)

and has the same form as the yield stress evolution rule. The static recovery terms are ignored in the
VaANGO implementation. The saturation value for the effective stress is given by

& 1/n
=g | - (10.36)
&o

osat

where 0, and ¢, are reference values and # is a constant. Similar relations are assumed for the reference
values of the other quantities:

.eq\ 1/n .eq\ 1/n

eff _ ei . R _ R 81-

at =Po|l-] 5 Ra=Ro|-—— (10.37)
Eo €o

The drag stress saturation value is given by

.eq
E.
Kt = + (Xsat - Rsat) (10.38)
Aexp ( R—? )
where X, is the saturation value of X ..

A typical input deck for the SUVIC-I model is shown below.

<constitutive_model type="visco_plastic">

<shear_modulus>3.52e9</shear_modulus>

<bulk_modulus>8.9e9</bulk_modulus>

<remove_particles> false </remove_particles>

<zero_stress_upon_failure> false </zero_stress_upon_failure>

<stability_check type="none"> </stability_check>

<equation_of_state type="default_hypo">
<bulk_modulus>8.9e9</bulk_modulus>

</equation_of_state>

<viscoplastic_flow_model type="suvic_i">
<coeff_backstress_evol>75e6</coeff_backstress_evol>
<exponent_backstress_evol> 1</exponent_backstress_evol>
<normalizing_backstress> le6</normalizing_backstress>
<coeff_saturation_backstress> 0.1e6</coeff_saturation_backstress>
<exponent_backstress> 4</exponent_backstress>
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<ref_strainrate>7.794e-08</ref_strainrate>
<normalizing_inelastic_strainrate>5.0e9 </normalizing_inelastic_strainrate>
<activation_energy> 67500.0</activation_energy>
<universal_gas_constant>8.3144 </universal_gas_constant>
<temperature>269.15</temperature>
<exponent_inelastic_strainrate>4.0 </exponent_inelastic_strainrate>
<coeff_yieldstress_saturation>0.8e6 </coeff_yieldstress_saturation>
<exponent_yieldstress>4.0 </exponent_yieldstress>
<coeff_yieldstress_evol> 1600.0e6</coeff_yieldstress_evol>
<exponent_dragstress> 4.0</exponent_dragstress>
<coeff_dragstress_evol>95e6 </coeff_dragstress_evol>
<coeff_stress_saturation>1.0e6</coeff_stress_saturation>
<intial_drag>0.05e6</intial_drag>
<initial_yield> 0.0</initial_yield>
<integration_parameter_theta> 0.5</integration_parameter_theta>
</viscoplastic_flow_model>
</constitutive_model>
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11 — Kinematic hardening models

Kinematic hardening in VAANGO is modeled with a backstress () that is subtracted from the stress while
evaluating the yield condition. In Arena, the pore water pressure (p,, = —p,,) acts as a backstress, i.e.,

B=pul. (11.1)

For metals, the backstress can either be ignored or modeled using the approaches described in this chapter.

Ziegler-Prager model
If the evolution of the backstress is given by the Ziegler-Prager kinematic hardening rule, we have
B=2pHée (11.2)
3

where B is the backstress, BH is a constant hardening modulus, and &’ is the plastic strain rate.

The Prager model is invoked using

<kinematic_hardening_model type="prager_hardening">
<beta> 1.0 </beta>
<hardening_modulus>1.5e6</hardening_modulus>

</kinematic_hardening_model>

Armstrong-Frederick model

The Armstrong-Frederick model evolves the backstress using
H 2 . .
B= ; BH, ¢ - BH, B Hsp H (11.3)

where 8, H, and H, are material parameters.

The Armstrong-Frederick model is invoked using

<kinematic_hardening_model type="armstrong_frederick_hardening">
<beta> 1.0 </beta>
<hardening_modulus_1>1.5e6</hardening_modulus_1>
<hardening_modulus_2>1.5e4</hardening_modulus_2>
</kinematic_hardening_model>
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12 — Internal variable evolution

Internal variables are used to model isotropic hardening/softening behavior in VaAaNGo . The evolution
of these internal variables is assumed to be given by first-order differential equations of the form

7= ).‘hﬂ (12.1)

where # is the internal variable, A is the consistency parameter, and h,; is a hardening/softening modulus.

The kinematic hardening backstress is also an internal variable. Equations for the evolution of
backstress are given in Chapter 11. Other internal variables that are specific to CamCay, Arena,
Tabular plasticity, etc. are discussed in separate chapters associated with these models.

Equivalent plastic strain

Recall from the flow rule (9.1) that
& =M (12.2)

where M is a unit tensor (M : M = 1). Therefore, using the definition of the equivalent plastic strain rate
from (2.16),

e =(1) = A=Vt =g (12.3)

Therefore, from the definition of the equivalent plastic strain in (2.17), we see that the evolution rule for
the equivalent plastic strain can be expressed in the the form (12.1) as

é;q = )'thp s he, =1. (12.4)

Porosity

The evolution of porosity is assumed to be given by the sum of the rate of void growth and the rate of void
nucleation [51]. In VAANGO these rates are computed as [52]:

(/.’ = (bnucl + (z)grow (12.5)
¢grow = (1-¢)tr(&) (12.6)

" n ( . - 71)2 .e
Pruc = (snf—\/z_ﬂ) exp [_i%] epq (12.7)
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where &, is the plastic strain rate, f, is the volume fraction of void nucleating particles , ¢, is the mean of
the distribution of nucleation strains, and s,, is the standard deviation of the distribution.

From the flow rule (9.1),
tr(&f) = Atr(M) (12.8)
Therefore, using (12.3),

seQ__s 2
fr exp —i(p—n) . (12.9)

gbz/'\hgb, h¢:(1—¢)tr(M)+m s

VaaNGo allows for the possibly of porosity to be different in each MPM particle. The inputs tags for
defining the porosity and its distribution are:

<evolve_porosity> true </evolve_porosity>

<initial_mean_porosity> 0.005 </initial_mean_porosity>
<initial_std_porosity> 0.001 </initial_std_porosity>
<critical_porosity> 0.3 </critical_porosity>
<frac_nucleation> 0.1 </frac_nucleation>
<meanstrain_nucleation> 0.3 </meanstrain_nucleation>
<stddevstrain_nucleation> 0.1 </stddevstrain_nucleation>
<initial_porosity_distrib> gauss </initial_porosity_distrib>

Backstress
The backstress evolution rule can also be expressed in terms of the consistency parameter in the form
B= \h 8 (12.10)
For the Ziegler-Prager model in (11.2),
hg = §/5HM (12.11)

where M is the unit tensor in the direction of th eplastic flow rate.

For the Armstrong-Frederick model in (11.3),

hg = fﬁHlM - BH,B. (12.12)

Damage

The evolution of damage models in VAANGO is detailed in Chapter 15. These models have the general form

D=g(s,T) é;q:).‘hD’ hp=g(o,T) (12.13)

where D is the damage parameter and g(o, T) is a damage function.

Temperature
The rise in temperature due to plastic dissipation can also be treated as an internal variable that causes
softening. This may be considered to be equivalent to treating the plastic work as an internal variable.

The evolution of temperature (T') due to plastic work is given by the equation

T= Lo‘ ‘€ (12.14)

rCp
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where y is the Taylor-Quinney coefficient, p is the density, and C,, is the specific heat.

Expressed in terms of the consistency parameter,

T=MAhy, hy= La M (12.15)
PCp

where M is the plastic flow rate direction defined in the flow rule.
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13 — Melting temperature models

The melting temperature is used by several models in VAANGO to compute the shear modulus. Failure and
transitioning into fluid-like behavior is also controlled by the melting temperature. The melt temperature
models implemented in VAANGO are described below.

Constant melting temperature

The default is to use a constant melting temperature. This model is invoked using

<melting_temp_model type="constant_Tm">
</melting_temp_model>

Steinberg-Cochran-Guinan melting temperature
A pressure dependent relation to determine the melting temperature (T,,) in the Steinberg-Cochran-
Guinan (SCG) melt model ([32]).

This model is based on a modified Lindemann law and has the form

Tm(p) = Tino €xp [m (1 = l)] prdomamfs), = i (13.1)
n Po

where T, is the melt temperature at # = 1, a is the coeflicient of the first order volume correction to
Griineisen’s gamma ().

This model is invoked with

<melting_temp_model type="scg_Tm">
<T_m0> 2310.0 </T_mO0>
<Gamma_0> 3.0 </Gamma_0>
<a> 1.67 </a>
</melting_temp_model>
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Burakovsky-Preston-Silbar melting temperature

The Burakovsky-Preston-Silbar (BPS) model is based on dislocation-mediated phase transitions [53]. The
BPS model has the form

’ ’ 1/Ki
Tn(p) = Tu(o) | 24— Fopl s y=lis Do) (132)
17 ;14/3 [/lo Ko

Twm(0) =

KAl Vivs a?
(13.3)

8mln(z —1) ky, " 4 b2p(Tp)

where p is the pressure, 11 = p/p, is the compression, 4, is the shear modulus at room temperature and
zero pressure, 4, = du/dp is the derivative of the shear modulus at zero pressure, K, is the bulk modulus at
room temperature and zero pressure, K, = 9K/dp is the derivative of the bulk modulus at zero pressure,
k is a constant, A = b?/vys where b is the magnitude of the Burgers’ vector, vy is the Wigner-Seitz
volume, z is the coordination number, « is a constant, p.(T,,) is the critical density of dislocations, and
ky is the Boltzmann constant.

This model is invoked with

<melting_temp_model type="bps_Tm">

<BO> 137e9 </BO>

<dB_dp0> 5.48 <dB_dp0>

<GO> 47.7e9 <GO>

<dG_dp0> 1.4 <dG_dpO>

<kappa> 1.25 <kappa>

<z> 12 <z>

<b2rhoTm> 0.64 <b2rhoTm>

<alpha> 2.9 <alpha>

<lambda> 1.41 <lambda>

<a> 3.6147e-9<a>

<v_ws_a3_factor> 1/4 <v_ws_a3_factor>

<Boltzmann_Constant> <Boltzmann_Constant>
</melting_temp_model>
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14 — Adiabatic heating and specific heat

A part of the plastic work done is converted into heat and used to update the temperature of a particle.
The increase in temperature (AT) due to an increment in plastic strain (Aef,q) is given by the equation

o
AT = MA&? (14.1)
PCp

where y is the Taylor-Quinney coefficient, and C, is the specific heat. The value of the Taylor-Quinney
coeflicient is taken to be 0.9 in all our simulations (see [54] for more details on the variation of y with
strain and strain rate).

The Taylor-Quinney coeflicient is taken as input using the tags

<taylor_quinney_coeff> 0.9 </taylor_quinney_coeff>

The heat generated at a material point is conducted away at the end of a time step using the transient heat
equation. The effect of conduction on material point temperature is negligible (but non-zero) for the high
strain-rate problems simulated using Vaango.

Constant specific heat model

The default model returns a constant specific heat and is invoked using

<specific_heat_model type="constant_Cp">
</specific_heat_model>

Specific heat model for copper

The specific heat model for copper is of the form

(14.2)

o Ay T3—-By T>+C, T-D, if T<T,
A, T+B, if T>T,.

The model is invoked using

<specific_heat_model type = "copper_Cp"> </specific_heat_model>
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14.3 Specific heat model for steel

A relation for the dependence of C, upon temperature is used for the steel ([55]).

{A1+Bl t+C ™ if T<T,

Cp= (14.3)
P A, +B,t+C,t7% if T>T,
T
t= Fc -1 (14.4)

where T, is the critical temperature at which the phase transformation from the a to the y phase takes
place,and A,, A,, By, B,, a, a are constants.

The model is invoked using

<specific_heat_model type = "steel Cp"> </specific_heat_model>
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15 — Damage models

The damage models implemented in VAANGO are described in this chapter. The most common model
evolves a scalar damage parameter that can either be used to flag failure when a critical value is reached
or to modify the stress as in continuum damage mechanics.

Hancock-MacKenzie model

The Hancock-MacKenzie model [56] evolves a scalar damage parameter (D) using the rule:

D= ¢ exp (tr(o) ) (15.1)

- 1.65 P 20

where D = o for virgin material, &p is the equivalent plastic strain rate, ¢ is the Cauchy stress, and Ocq =
V3], is the von Mises equivalent stress.

Expressed as an evolution equation in terms of the plastic consistency parameter, the above can be written
as

D=\Ahp, hD:;exp(m) . (15.2)
1.65 2006

The input tags for the damage model are :

<damage_model type="hancock_mackenzie">
<D0>0.05</D1>
<Dc>3.44</D2>

</damage_model>

Johnson-Cook model

The Johnson-Cook damage model [57] depends on temperature, plastic strain, and strain rate. The dam-
age evolution rule for the damage parameter (D) can be written as

S
D=-2L, ££ = [D, + D,exp (Ds0")][1+ D, ln(é;)] [1+DsT"] . (15.3)
€
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The damage parameter D has a value of o for virgin material and a value of 1 at fracture, ef; is the fracture
strain, D,, D,, D,, D,, D; are constants. In the above equation,
. tr(o)
oF = ——7 (15.4)
30eff

where o is the Cauchy stress and o4 is the von Mises equivalent stress. The scaled plastic strain rate and
temperature are defined as

.eq
3 T-T,
PR (15.5)
P
spo Tbl_ o

where £, is a reference strain rate and T, is a reference temperature, T}, is the melting temperature, and
s';q is the equivalent plastic strain rate.

When expressed in terms of the consistency parameter, the Johnson-Cook damage model has the form,

D=Ahp, hp= [[D, + D, exp (Ds0*)][1+ D, ln(é;)] [1+ DST*]]_1 . (15.6)

The input tags for the damage model are :

<damage_model type="johnson_cook">
<D1>0.05</D1>
<D2>3.44</D2>
<D3>-2.12</D3>
<D4>0.002</D4>
<D5>0.61</D5>
</damage_model>

An initial damage distribution can be created using the following tags

<evolve_damage> true </evolve_damage>
<initial_mean_scalar_damage> 0.005 </initial_mean_scalar_damage>
<initial_std_scalar_damage> 0.001 </initial_std_scalar_damage>
<critical_scalar_damage> 1.0 </critical_scalar_damage>

<initial_scalar_damage_distrib> gauss </initial_scalar_damage_distrib>
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16 — Material failure

Introduction

The primary technique used in VAANGO to simulate failure is damage evolution. A particle is tagged as
“failed” when its temperature is greater than the melting point of the material at the applied pressure.
Failure is also flagged when the porosity of a particle is greater critical limit (typically 0.9) and the strain
exceeds the fracture strain of the material.

An alternative approach that can be used in the metal plasticity models implemented in VAANGO is to
test material stability conditions to determine and propagate failure. Upon failure detection, a particle is
either removed from the computation by setting the stress to zero or is converted into a material with a
different velocity field which interacts with the remaining particles via contact. Either approach leads to
the simulation of a newly created surface. More details of the approach can be found in [58-60].

Erosion algorithm

In metal plasticity simulations, the heat generated at a material point is conducted away at the end of a
time step using the heat equation. If special adiabatic conditions apply (such as in impact problems), the
heat is accumulated at a material point and is not conducted to the surrounding particles. This localized
heating can be used to determine whether a material point has melted.

The determination of whether a particle has failed can be made on the basis of either or all of the following
conditions:

o The particle temperature exceeds the melting temperature.
o The TEPLA-F fracture condition [61] is satisfied. This condition can be written as

2 eq\2
€
(i) +[ 2] =1 (16.1)
o) \G
where ¢ is the current porosity, ¢. is the maximum allowable porosity, s;q is the current equivalent

plastic strain, and e£ is the equivalent plastic strain at fracture.

« An alternative to ad-hoc damage criteria is to use the concept of material stability bifurcation to
determine whether a particle has failed or not.

Since the material unloads locally after fracture, the hypoelastic-plastic stress update may not work accu-
rately under certain circumstances. An improvement would be to use a hyperelastic-plastic stress update
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algorithm. Also, the plasticity models are temperature dependent. Hence there is the issue of severe mesh
dependence due to change of the governing equations from hyperbolic to elliptic in the softening regime
[62-64]. Viscoplastic stress update models or nonlocal/gradient plasticity models [65, 66] can be used to
eliminate some of these effects. Such models that have been implemented in VaAaNGo are discussed later.

The tags used to control the erosion algorithm are in two places. In the <MPM> </MPM> section the fol-
lowing flags can be set

<erosion algorithm = "ZeroStress"/>
<create_new_particles> false </create_new_particles>
<manual_new_material> false </manual_new_material>

If the erosion algorithm is "none" then no particle failure is done.

In the <constitutive_model type="elastic_plastic"> section, the following flags can be set

<evolve_porosity> true </evolve_porosity>
<evolve_damage> true </evolve_damage>

<do_melting> true </do_melting>

<useModifiedEOS> true </useModifiedE0S>
<check_TEPLA_failure_criterion> true </check_TEPLA_failure_criterion>
<check_max_stress_failure> false </check_max_stress_failure>
<critical_stress> 12.0e9 </critical_stress>

Material stability conditions

Drucker’s condition

The simplest criterion that can be used is the Drucker stability postulate [67] which states that time rate
of change of the rate of work done by a material cannot be negative. Therefore, the material is assumed
to become unstable (and a particle fails) when

g:d? <o (16.2)

Acoustic tensor criterion

Another stability criterion that is less restrictive is the acoustic tensor criterion which states that the ma-
terial loses stability if the determinant of the acoustic tensor changes sign [68-70].

We assume that the strain is localized in a thin band with normal n. The band is assumed be homogeneous
but has slightly different material properties than the surrounding material.

To develop the bifurcation relations [69], assume that v? is the velocity of a material point in the band
(Qy) and v° is the velocity of the material outside the band (Q,). The deformation of the material outside
the band is assumed to be uniform. The deformation within the band is also assumed to be homogeneous.

We assume that stresses and rates of deformation have been rotated to the undeformed configuration
using the polar decomposition of the deformation gradient.

Consider the case where the local coordinates of points in the band are expressed in terms of an orthonor-
mal basis e, e,, e; where e, = n. Then a point x inside (or outside) the band can be expressed as x = x;e;.

Continuity and the homogeneity of deformation in the two regions requires that only the velocity in the
n direction can be different in the two regions. This implies

vP(x) - v°(x) = f(n-x) = f(x,) (16.3)
where f is an unknown function. The velocity gradient can be computed from the above relation as

df

Xa

vvl = vvO +

®n=Vv’+q®n (16.4)
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where

df o for xeQ,
(16.5)

q::dx2= q for xeQy
The rate of deformation in the band is

d = 2 [va + (va)T] =1[wvo+ (VVO)T] +2(qen+ne®q)=d°+(q®n+ne®q). (16.6)
The stress rate is related to the rate of deformation by

6°=C°:d°, ¢"=C":d"=C":d°+1C":(q®n+n®q). (16.7)
The minor symmetry of C implies that

6"=Cl:d°+C": (qon). (16.8)
Homogeneity of the deformation also implies that

n-¢’ =n-0°. (16.9)

Taking the material time derivative of the above gives

b b

n-¢’+n-¢6’ =n-06°+n-¢°. (16.10)

We need an expression for n. To find that, note that if n, and n are the unit normals to the band in the
reference and current configurations, using Nanson’s formula, we have

nda=J(F T -n,)dA, J=detF. (16.11)

Taking the time derivative of (16.11),

T

ada +nd —d]F‘T dA il dA (16
nda +n a—a( ‘ny)dA+] el 16.12)
For the derivative of J, we have

aj 9] . o .

- 3F F=JF " :F=Jtr(F-F")=]Jtr(Vv). (16.13)
We can also show that

dF™ L B

oy =—F ' F-F'=-F'.-Vv. (16.14)

Therefore, using (16.11),

nda +nda = Jtr(Vv)(F T -n,)dA - J(vv)T-F T .n,dA

(16.15)
=n-[tr(Vv)I-Vv]da.
To find da, we compute a dot product of both sides of (16.11) to get
da®> =J*(F T .ng)-(FT-ny)dA> = Pn, - (F'-F 1) -nodA>. (16.16)

The material time derivative of the above expression is

. d] _ -T d - -T
2dada = 2]EnO -(F-F ") -nydA*+ J*n, - E(F '"F ") -n,dA* (16.17)
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For the derivative of the F* product, we have

T

F . .
) —_p .p.Fr.F T p T R FT

d pT d T g dF™!
g FE ) s Ee

dt
= F' v FT-F' (v .FT=2F"d.FT.

(16.18)

Substitution into (16.17) gives

dada = Ptr(V)n, - (F-F 1) -ngdA> - Py - (F'-d-F ) -n,dA®
=tr(VV)(JF T -nodA)- JF T -n,dA) - JF T -n,dA)-d-(JF T -ny,dA) (16.19)
=tr(Vv)n-nda* - n-d-nda”’ = tr(Vv)da®’ —n-d-nda”.

Therefore,

da=[tr(Vv)-n-d-n]da=[tr(Vv)-n-Vv-n]da. (16.20)
Plugging (16.20) into (16.15), we have

nda +n[tr(Vv) —n-d-n]da=n-[tr(Vv)I - Vv]da. (16.21)
That gives us the expression for n that we seek,

n=n-[d-(n®n)-Vv]=n-Vv-(n®n-1I). (16.22)
Using (16.22) in (16.10), we have

n-[(r’rb—(fo)+va-(n®n—1)-(ab—0°)]:o. (16.23)
Substituting equations (16.7), (16.8), and (16.4),

n- [((Cb :d°+C?: (q®n)-C°:d°) +(Vv°+q®n)-(n®@n—-1I)- (ah—ao)] =o0. (16.24)
Using the symmetry of stress and the projection n ® n — I, we can reorganize the above expression into

n-[((CbJr(ab—ao)‘(n®n—1)-]l):(q®n)+((Cb—(C°):d°+(0b—a°)-(n®n—1)~VV°]:o.
(16.25)

Further rearrangement leads to

[n-((Cb+(0'b—0'°)-(n®n—I)-]I)-n]-q:—n-[((Ch—(Co):d°+(ab—a°)-(n®n—1)-Vv°]

(16.26)
This equation has a solution (q) only if
det[n‘((Cb+(ab—ao)-(n®n—1)-]l)'n]qto. (16.27)
The canonical bifurcation condition is obtained if 6 = ¢°:
det(A) :=det(n-C-n) =0 (16.28)

where A is the acoustic tensor.

Evaluation of the acoustic tensor requires a search for a normal vector around the material point and is
therefore computationally expensive.
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Becker's simplification

A simplification of this criterion is a check which assumes that the direction of instability lies in the plane
of the maximum and minimum principal stress [71].

Let the principal stresses be 0, > 0, > 03, and the corresponding principal directions (eigenvectors) are
E,,E,, E;. We can express the unit normal to the band in this basis as n = n;E;.

The components of the tangent modulus in this coordinate system are given by
ijg szQ]anpQZq mnpq - (16.29)
where the 3 x 3 matrix used for this coordinate transformation, Q, is given by
QT = [E1 E, E3] (16.30)
Then the acoustic tensor in (16.28) has the components
Aj = Cl{jkening (16.31)

If det(Ajx) = o, then g; = dfj/dx, can be arbitrary and there is a possibility of strain localization. Also,
this condition indicates when a material transitions from stable behavior where det(Aj; > o. If this
condition for loss of hyperbolicity is met, then a particle deforms in an unstable manner and failure can
be assumed to have occurred at that particle.

Becker’s simplification is to consider only selected components of the acoustic tensor by assuming that
the stress state in the band can be approximated as a planar tension problem. Then the acoustic tensor
takes the form

/ / n?
C1111n + C3113 3 0 (C1133 3131 ) 1’111’13
_ ! / n?
A= 0 Chontt + Caypy o (16.32)
! ! ! / n?
(C3311 + C1313)n1n3 0 Cl331n1 + C3333 3

Without loss of generality, we can divide this matrix by n} to get

/ ;o l n3
Cnn + C3113_f o (C1133 + C3131)n_1
~ 2
— / / 3
A= o Ch + C3223—f 0 (16.33)
2
/ ! ny ! ;N3
(C3311 + C1313 0 C1331 + C3333 n;

Let a := n,/n,. Then we can write

4 A 2 !
B Cun + C3113 Y (C1133 + C3131)06
/A /4
A= o Cloo + G50 ) (16.34)
I / ! 2
(C 3T Clsls)“ 0 Chan T Gz
and we have

det(A) (Cuu 3113 )“2(C1,331 + C;333“2) - (C1,133 + C;131)“(C1’221 + C;223“2)(C;311 + C1,313)‘X (16'35)

Setting the determinant to zero allows us to get the following quadratic equation in f3 := a*:

(C1,111 + C;113ﬁ)(c1’331 + C;333/3) (Cu33 + C3131)(C1221 + C3223ﬁ)( 3311 1,313) =0. (16'36)

We can express the above in Voigt notation (convention 11, 22, 33, 23, 31, 12) as

(én + CAss/-"))(éss + CAss/’)) - (éls + éss)(é% + CA44/3)(CA'31 + éss) =0. (16.37)
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or
a,f*+a,f+a;=0 (16.38)

where,
02 = CuCyy = CusCCas = CCaaCis = CnCyCs — CagCi 4 €2, (16.39)

The four roots are

n; N —a, £+\/aj — 4a,4a,

n, 24,

(16.40)

If there are no real roots, a band cannot form and there is no bifurcation. If there are four real roots
then bifurcation is possible. Two real roots indicate an intermediate condition that may not be realized
in practice but is considered stable in VAANGO .

More explicitly, for unstable deformation,

—a, ++\/a% — 4a,a
d 2 >0

24,

a; - 4a,a; >0 an (16.41)

If these conditions are satisfied, the MPM particle is assumed to have failed.
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17 — Isotropic metal plasticity

The deformation gradient (F) can be decomposed into a rotation tensor (R) and a stretch tensor
(U) with the polar decomposition F = R - U. In the isotropic metal plasticity model implemented
in VAANGO, R is used to rotate the stress (¢) and the rate of deformation (d) into the unrotated
configuration before the updated stress is computed:

6=R"-¢-R; é=R"-d-R (17.1)
where ¢ is a “natural” strain rate. After the stress has been updated, it is rotated back using
c=R-6-R". (17.2)

In the following discussion, all equations should be treated as referring to the hatted quantities even
though we drop the hats for convenience.

The model

The metal plasticity model assumes that we know the total strain rate (¢") and that this strain rate can be
decomposed into a mechanical component (&) and a thermal expansion component (&¢*):

g =e+¢". (17.3)
The thermal expansion component is assumed to be of the rate form

~ o0e®
~ 9T

L0

£ T=aT (17.4)

where T is the temperature and « is a coeflicient of thermal expansion. Then the mechanical strain rate
can be expressed as

e=¢ —aT. (17.5)

The primary function of the metal plasticity model is to compute the stress when a mechanical strain rate
¢ is given, which we assume can be additively decomposed into elastic (¢°) and plastic (&) parts:

e=¢g"+ ¢l (17.6)
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The Cauchy stress (o) is decomposed into volumetric and deviatoric parts:
o=pI+s where p=Itr(¢) and s=dev(s)=0-]tr(c). (17.7)

In the above p = 0y, is the mean stress and s is the deviatoric stress. An alternative decomposition that
can be used for the isotropic metal plasticity models implemented in VAANGO is

O | . S
c=0,+05, I= I,S:M,ap:\/gp,(g:”s”. (17.8)

V3
This decomposition is useful because I and § for a basis that can be used to express several other quan-

tities in the metal plasticity models implemented in VAANGo . The time derivative of stress can then be
expressed as

6=pI+5=0,1+075. (17.9)

The isotropy of the material allows us to compute the mean stress using an equation of state if desired.
The deviatoric stress is computed using a rate-form stress-strain relation. For convenience, we assume
that rate-form relations are used for both the mean stress and the deviatoric stress.

Purely elastic loading/unloading

The elastic constitutive relation is assumed to be of the form

0
6 = 8; 1ef=C:¢%, C°= (K - gy)1® I+ 2psymm(I) (17.10)
or,
6°= (K - ?u) tr(&)I +2p &°. (17.11)

In the above, u(p, p, T, ¢, D) is the shear modulus, x(p, p, T, ¢, D) is the tangent bulk modulus, I is the
second-order identity tensor and I is the fourth-order identity tensor. Also, p is the mass density, p is the
pressure, T is the current temperature, ¢ is the current porosity and D is a scalar damage parameter.

The inverse relationship is

e =8%:6°, Se:l(i—i)l®1+ Lsymm(l[) (17.12)
3\3x  2p 2

Using the decomposition (17.8), we can write

. Lot ien 0,, 0°f,
se:Se:(oel+osese):—PI+—Sse. (17.13)

Yield condition
The isotropic metal plasticity yield conditions implemented in VAANGO have the form

flop. e, 6, 0. D, T,é%,...) =0, op:=0-f. (17.14)
The quantity o is further decomposed into isotropic and deviatoric parts:

op=ppgl+§ (17.15)

where § = dev(ag) and pg = tr(og)/3. Most of the metal yield conditions in VAANGO use this notation.
Derivatives of f with respect to the stress (¢) can therefore be expressed as

ﬂ_ﬁ.%:i_ﬂ%+%.a_f_;af“%_;tr(ﬂ)l_

= : = : =-— .16
do  Jdop Jdo dog Odpgdes dE dopg dpy  0& 3 \oE 0719
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The isotropic metal yield conditions in VAANGO are expressed in terms of Gjﬁ‘ =\/3; = 2§ : & There-
fore,
) o o 30 o
of ; f —TI+ —J; 3 f f E (17.17)
do aps oot ok apﬁ e el

If we express both I and & in terms of the basis I and §, we have
I=./31, E=&5, &=&:5 and |§ =& — =5. (17.18)

Therefore,

f 1 of | l(af)z NETA NN
=L N g ) R e D Oy :
do \/_aPﬁ \/ - INT= \|3 ops) "> 30’y IN] 0719)

The Kuhn-Tucker loading-unloading conditions are

)'Lzo;fgo;).tf:o (17.20)

and the consistency condition is A f = o.

Flow rule

We assume that the plastic rate of deformation is given by the flow rule
& =)\M. (17.21)

For the isotropic metal plasticity models in VAANGO , we assume associated plasticity:

PN (17.22)
~INT [f Sops faaeﬁ]

Isotropic and kinematic hardening/softening rules

The equivalent plastic strain (e;q) evolves according to the relation
4_ipe (17.23)

The back stress (f8) evolves according to the relation

,B =1hP. (17.24)
The porosity (¢) is assumed to evolve according to the relation

([) =Ah?. (17.25)
The damage parameter (D) evolves as

D=AHh". (17.26)
The temperature (T)) due to plastic dissipation evolves as

T, = inT. (17.27)



17.1.5

110 Isotropic metal plasticity

Elastic-plastic loading/unloading
During purely elastic loading and unloading

A=o, =0, &=¢. (17.28)
In that situation, the stress is updated using (17.10).

However, during elastic-plastic deformation, A> 0, and we have

_ 90 0 99 3, 99 jeq 00y 00 00
BT AR B AT BT
.| do do do do do
zce:'e )t _hﬂ hsp _h¢ —hD —hT
o [3ﬁ " de,! "o Ton" T, (17.29)
INCITS L IS0 "L T a‘: per = 9% pe _ 9%y 99 1
o de,! o oD 0T,
Define
do do do do do
P=C:M-22 hP_ - —pt - —pP - —pT, .
B gk 9 oD aT, (1730)
Then,
6=C:-AP=6""_ P where ¢"®:=C°:¢ (17.31)

In VAANGO, we assume that the coupling terms do/0p are zero and T = T}, for elastic-plastic coupling.
From (17.10) we have

o= (K - 3;4) tr(&°)I +2p €° (17.32)

We can use this relation to estimate the coupling terms for the internal variables # € {s ,6,D, T}:

a_o': (%_Ea_y)tr(se)l_i_za_#se (1733)
on on

Similarly, from (17.13), choosing the basis to be I and §#! = dev(g'*2!)/ Hdev(amal) H ,

O.e
and tr(ef) = —2- (17.34)
T3k 24 (=) V3K

e _ 0 j 0 O-SS Atr1al
where o, = §° : §". Substitution into (17.33) leads to

Jo 1 oK ey 1 a.”l tr1al
= = I ss .
o x ar] + — p 8770 OsS (17.35)

Also, for associated plasticity and using (17.19),

C M= 1 [f”_ i ] l[ﬁk_l s 1] 70
eff

IN] o
Therefore,
0 0 . 0 0
| vaxof 1 el Veu of 1 M e g g (1737)
NI opg x5 on INT 368, w5 on
For an elastic-plastic load step, we can compute the plastic strain rate using (17.13):
Ops 08 .4
=i-Li- 2 — gtrial (17.38)

3K 24
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17.2 Stress update m
Consistency condition
The consistency condition requires that, when A > o,
f(o.B. 6L 6,,¢,D,T,69,.. ) =0. (17.39)
For rate-independent plasticity, from the chain rule,
. of . Of . Of .q Of . Of . Of .
=——:0+—:B+ Ef+—¢+—=—=D+—=—T,=0 17.40
f=5c " P desd P a6 P ap Proar, T (17.40)
Using the hardening/softening rules,
of . -[af of o Of 4 Of b Of T]
L+ AL P+ W+ =ty L pP 4 2L T [ =0 (17.41)
do p E)s;q ¢ oD oT,
or
0 .
—f:(7+AH:o. (17.42)
do
Define,
of . N N H
Ni=-=, Ni=—r, Hi=— (17.43)
Jo IN] IN|
Then,
N:¢+AH=o0. (17.44)
Combining the stress-rate equation (17.31) with the consistency equation (17.44), we have
N:dmal=N:(Ce:é=i(N:P—I—AI). (17.45)
Therefore,
. N:d,trial N:Ce:é
A== === A 17.46
N:P-H N:P-H (17.46)
Substituting this expression to (17.31), we have
W Nt PeN
. -_trial -_trial - trial
6=6""-F———P=6""-F——: 17.
N:P-H N:P-H (17.47)
or,
. . (PeN):C° . )
6=C:e-~— 2 :e=C%:¢. 17.48
T P_h (17.48)
The quantity C*? is the continuum elastic-plastic tangent modulus.
Stress update
The first step in the stress update procedure is to compute a trial stress state from
el - e g, (17.49)
We assume that
o =g+ At(CS : Ey4y) (17.50)
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where o, is the stress at the end of time t,, C;, is the elastic modulus at that time, &,., is the strain rate
computed from the symmetric part of the unrotated velocity gradient, and At = t,,,, — t,, is the timestep
size.

The trial state contains the vector

ntrial = [O'trial, ﬁn, (fzq)n, (é;q)rp ¢n’ Dn» Tn: éilq’ Kn> Uns - - ] . (17'51)

where the subscript (n) indicates the state at the end of time ¢,,.

The trial state is used to compute the yield function

fy = f[atriala ﬁna (8;(])}1) (Ef)q)n’ ¢H) Dn’ Tn: siq) Kﬂ) ,Mn) L ~:| (17'52)

If f, < o, the trial state is in the elastic regime and we update the stress using

O = 0", B =By (Séq)nﬂ = (gzq)n J (é;q)nﬂ = (é;q)n
¢n+1 = ¢n sy Dy =Dy Thi =Ty (17.53)
Kn+r = K(pn+1> Tn) s Bn+r = [/‘(pnﬂ) Tn) .

If f, > o, the trial state is outside the yield surface in the elastic-plastic regime. We can used a backward
Euler algorithm to compute the updated stress state:

trial
Opt1 —0p O ~ 0y Ap— Ay trial
= - p or 6y =0 " —=AA Ppyy. 17.
At At At n+1 n+1 n+1f n+1 (17.54)

The plastic strain and the internal variables can similarly be updated using
££+1 = sln) +AA 4 Mn+1
&
(Equ)nﬂ = (szq)n +AAnay By

ﬁnﬂ = ﬁn +AA”+1 hgﬂ

s (17.55)
¢n+1 = ¢n +A/1n+1 hn+1
Dy, = Dy, ""A/lnﬂ h?+1
(Tp)nir = (Tp)n  +DAus h;{+1~
In addition, the stress state has to lie on the yield surface:
f(o_trial - AAnﬂPnﬂ) =0. (17.56)
Finally, the consistency condition needs to be satisfied:
Nnﬂ : (Gnﬂ - Gn) + AAHHHHH =0 (17-57)
or,
Nnﬂ : (O,trial - o'n) = A/lnﬂ(Nnﬂ ‘P — Hnﬂ) . (17.58)

Iterative solution

VAANGO assumes associated plasticity for isotropic metals, i.e., M = N. Therefore, the following coupled
equations, not all of which are independent, have to be solved for T' := AA,,, and the updated state



17.2 Stress update 13

[O'nﬂ’ Kn+1> Un+1s ££+1’ (g;q)nﬂ’ ﬁn+l’ ¢n+1’ Dpirs (Tp)nﬂ]:

tr1al
Opr = TPy,

P _
&y = sn + I‘N,,Jrl

Buin = B+ Ty

(&g e = (651 + Tyl
$usr = b + THE, (17.59)
Dy = D, +THP

n+1
(Tp)nﬂ = (Tp)n + thH
Nl’H—l : (O'trial - O'n) - r(Nn-H i Py — HVH—l) =0
Jrn = f(”mal ~TPy.) =0

where
R A Y L LA [ WA A A
Bl L Cl ] 0D lnss OTp |14,
. N _of
T = ;’—” | Hiy = % e aii;q e % B | b % W

Let us express the stresses and strains as vectors:
. P
S:= [011: 035, 033, \/50'23’ \/50-313 \/50'12] E? := [811’ &2 533) \/—823) \/—831’ \/5812] . (17.61)

We can also write

of df Idf of of of N N
- .6
|:8011 aazz a033 \/_8(723 \/—8031 \/_8012 “NH 1762)

Because of the isotropy of the elasticity tensor, we have

C:N=C-= [2yN1 (k= 2p) (N, + Ny + N, 24N, + (1= 2p) (N, + N, + N),

(17.63)
2uN; + (k - ?ﬂ)(Nl + N, + N3),2\/5yN4,2\/E/,¢N5,2\/EyN6]

where N; are the components of the vector N. If we ignore the elastic-plastic coupling term d¢/d, and
define

Zep = a0'11 hsp) 80'22 hsp, 80’33 hsp, \/580'23 hsp’ \/—8031 hs \/—8012 hgp
| as;q Be;q 882‘1 Be;q asp ;

YARS %lh@ 880;2h¢, aao(;3h¢,\/58023h¢,\/5%h¢) ﬁ%w]

[ do. a0 o0 0. a0 o0
D ._ 17D 221D 331D 231D 311D 121D
z "_aDh aDh oD h \/_E)Dh ’\/_8Dh \/_E)Dh]

[ d0, do o0 o0 do o0
ZTP - nhT 22hT 33 hT 23]’1T, 31hT uhT
o1, ’ 3T, T, fan V2o, T, fa:rp

(17.64)
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we have
P=C-27%-72%-7P 7", (17.65)

Noting that B is required to be symmetric for the conservation of angular momentum, we can express the
internal variables as a vector such that

= [ﬁll) ﬁzz’ ﬂ33) \/_ﬁz_’,) \/_ﬂ:il) \/Eﬁu) 8;‘1’ (/5’ D) Tp]
[hﬁ,hfz,héi,fhzs,fh3l,ﬁhﬁ,hfp,h¢,h”,hT]

f._[af of of pof pof ;of of of of 3f]

E'_ OPu’ 0Pss’ B3y’ OPay’ T 9Py aﬁlz,afzq’ﬁ’a_D’a_TP

(17.66)

Therefore,

o . . H

CH= 6
Q N| (17:67)

H-=

Then (17.59), can be written in vector form as

Sn+1 = Strial TPy
Eﬁﬂ = E‘Z + anﬂ
Qu+1=Qu +THypy
. ial (17.68)
Nn+1 . (Strla _ Sn)

(Nnﬂ : Pn+1 - I:In+1)

Ny (Smal Sn) - F(Nn+1 Py, — H?H—l) =0 = r=

fn+1 = f(strial - rPnﬂ) =0

Since P = P(S,E?,Q), N = N(S,E?,Q), H = H(S,E*,Q), and H = H(S,E?,Q), we can write the
equations above as residuals:

rS(r’ S,E?, Q) ==Spn + Smal - FPn+1(S, E?, Q) =0
rz(T,S,E?,Q) := -EL,, + E, + TN, ,,(S,E/,Q) = o

.6
rq(r) Sa Ep’ Q) = _Ql’l+1 + Qn + FH?H—I(S) Ep) Q) =0 (17 9)
rr(L,S, B, Q) := f(Sps1 Epiyy Quis) =0
First-order Taylor series expansions of these functions at (T, S,, E,, Q,), give
rs(T,S,E?, Q) ~ rs(T,S,, Eb, Q)+
or
Tl w-nye | s-s0+ 5] @ -ED+ 52| @-a)
I'E(F,S,EP,Q) NI'E(I‘ SnaEn:Qn)
aI‘Q Q
—_—= r-1, S-S, — Ef - Ep n
2| o)+ 5 -8+ S| @ -ED+ 5 (a- W
ro(T,S,EF,Q) ~ ro(T,S,, Ef, Q)+ 17.70
L (o) ZE| (5o v 0| (B + 22| (Q-Qu)
orl, "7 s, " oEr |, "aal, '
r7(T,S,E?,Q) ~ r/(T, Sy, Ef, Qu)+
arf arf 8rf arf
—L| (r-r, (S-8,)+ —=| -(EP-E})+ —L| - (Q-Q,
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Since the residuals are required to be zero at the end of the timestep, we get the following rule for the k-th
iteration,

al‘s al’s al‘s al‘s
—| AT+ -AS + AEP + —>| - AQ = —rs(T), St EL,
Tl s, Foan *3ql, Q = —rs(Tk, Sy, By Q)
8rE al'E al‘E arE
—| AT+ AS + - AE? + -AQ = —rg(Ty, Si., EL,
Faf 35 s SE 2, Q= —rp (T, Sk, B}, Qi) oo
al'Q al'Q or Q‘ al'Q 1771
| AT+ —=| -AS+ -AEP + —2| - AQ = -1q(T, Sk EL,
ar = " s |k OF” +aQ Q= —rq (T S By Q)
O ars 2| ase S| awe s ‘A (Te» S, EZ, Q1)
e + = : + - - > > 5
ar |~ eS|, JFP |, aQ Q=17 Sie B Qu
where
AT =Tjuy — Tk, AS =Sk, — Sk, AEF = E'ZH—EP, AQ = Qpyy — Q- (17.72)
The derivatives of the residuals are (dropping subscripts # + 1 for convenience),
ors  _ Org o 0rg _ ory o
or  ~’ or  or  or
s _ 9P or N arq_oH Iy of
oS 35’ as 'as’ s s’ @8 as (1773)
o o e 0N org oM dry of ”
OEF OEP’ OEF OEF’ OEF  OEF’ OEf OF’
\ 0
%:_ra_l), org raN orq _[|]+ra_H, ory _of
0Q Q aQ 0Q’ 0Q 0Q 0Q 0dQ
Therefore, using N = 9 f/0S,
oP JoP JP
P AT —([1]+T =—| |- AS-T} —| -AE? - T} —| - AQ = —rs(I%, S, EZ,
K ([]+ "as’k) 3|, £ 3l Q = —rs(Tk, S, By, Qi)
N AT + T N -AS — | [I] - Iy N -AE? + T}, oN - AQ = —rg(Tk, Sk Ef, Qi)
3S |, JOF? |, aQ|,
(17.74)
H(AT + T, —‘ as+T, AR - [1]-T, oH AQ = —ro(Ti, Sk, EY, Qi)
k k k3B, £ 3ql, QL Sks B, Qi
9f ». 9f _ p
Nk AS + aEp - AEF + E k-AQ——rf(Fk,Sk,Ek,Qk)

Because the derivatives of N, P, H with respect to S, E, Q may be difficult to calculate, it is more conve-
nient to use a semi-implicit scheme where the quantities N, P, H are evaluated at t,,. In that case we have

— PkAI‘ —AS = —l‘s(rk, Sk; E‘Z; Qk)
N AT - AE? = —r5(T;, St EL, Qp)

HAT - AQ = —rq(Tk, S, BV, Qi) (17.75)
Nj - AS + a—l{p‘ - AEP + %‘k - AQ = —r (T}, St EF, Qi)
We now force rg, rg, and rq to be zero at all times, leading to the expressions
AS = -P; AT
AE? = N AT
AQ = H AT (17.76)

of of
rf(l"k,Sk,Ek,Qk) +Nk AS + aEP -AEP + E‘k -AQZ o
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Plugging the expressions for AS, AE?, AQ from the first three equations into the fourth gives us

) . )
rf(l"k,Sk,E*z,Qk) — N - Py AT + a—l::fp‘k N AT + % -H AT =0 (17.77)

k

or

(S ED, Q)
of

AT =
W‘k

(17.78)

— of
NPy - -Nk——’ H,
Q|
In the metal plasticity models implemented in VAANGO, there is no direct dependence of f on E. There-
fore, using (17.67),

Sk Qi)

. 17.
N, P, H, (17.79)

Ty = T +

All quantities on the right hand side of the above equation are known, and we can compute I,,. The
other variables can now be updated using

Skt =Sk~ PLAT, B =EP + NJAT, Quuy = Qi+ HiAT (17.80)

The iterative process can be stopped when 7 is close to 0 and Iy, is close to the value required to satisfy
consistency given in (17.68).

Stress update in reduced stress space

The isotropic metal yield functions in VAANGO depend only on two invariants of stress. Therefore, the

return mapping can be carried out in the reduced stress space spanned by I and $"*! where

jo Lo g g S dev(e™) (1781
Il /3 [strial| | dev(gtrial) | - '

The stress can be expressed in terms of this basis as,

strial o tr(044)

Optr = (Up)nﬂi"" (Os)n+1 where (Up)nﬂ =0p4 1= \/g > (0'5);1+1 =0p+r - §trial . (17.82)

As before,
e =g, + At(C? : &pyy) =0, + At [(Kn - %/4,,) tr(&,.,)1 + 2;4,,é,,+1] (17.83)

The trial stress is then decomposed into

tr ( O.trial)

O_trial _ O,It)riali 4 O_Strialgtrial where O,It)rial _ , O,Strial — o,trial :gtrial _ HstrialH ) (17.84)
V3
The yield function is computed using
ial : : ial ial
fy = flog™, (€D (651 $us Doy Tos s s phns - 15 0" = 6" =B, (17.85)

If f, < o, the state is updated using

Optq = O,trial > Bn+1 = ﬁn > (5;q)n+1 = (gzq)n > (é;q)nﬂ = (é;q)n
¢n+1 = ¢n » Dpsi=Dy, Ty =T, (17'86)
Kpy1 = K(pnﬂ; Tn) s Bn+r = [/‘(pnﬂ) Tn) .



17.2 Stress update 117

If f, > o, integration of the stress rate by backward Euler leads to

Opsyr = o,trial — ALy Py (17.87)

Expressed in terms of the trial basis using (17.37), and noting that 6,4, = 65, and (0ss)n+1 = $n1 - gtrial,

[ \/§K1’l+1 afn+1 1 aKn+1 A
P, = - o ay
n+ i HNn+l || apﬁ Knst Z}/l: al/] ( p)]’l+

- Ve o 5 (17.88)
6//‘n+1 n+1 1 Un+ atrial
+ - (05) (0ss)n+18
| ||N?1+1H aajﬂ ‘l’ln+l ; a’,’ S VH~1] ss )n+1
Therefore,
trial \/gknﬂ afn+1 1 0Kyt
o =g, —AA - o
(Op)nss = 05 "INl 9pp K ; ay P (17.89)
- 17.89
; 6 d 1 d
(Us)nﬂ = Ugmal - AAnﬂ \/_Mn-H fn+1 - Z ["n+1 (as)nﬂ (Uss)nﬂ
| IN o | aafff Une 5 O
The plastic strain can be updated using (17.38):
o - (o . - )
e Ate,. (M) i (M) il (170)
3Kn+1 2Up4
The internal variables can be updated using
Mo = My + A/\l’H-l hZﬂ (17.91)
Also, as before, the stress state has to lie on the yield surface:
f(o_trial - AAnﬂPnﬂ) =0 (17.92)
and the consistency condition needs to be satisfied:
Nnﬂ : (O,trial - Gn) = A/lnﬂ(Nnﬂ i Py — Hnﬂ) (17'93)
where
- Nn+1 afn+1A afn+1;~t'1
Ny = , Ny = = I++/3 =226 (17.94)
Rl N g, TV 20,

We can now attempt to express the iterative semi-implicit stress update algorithm given in (17.79) and
(17.80) in terms of the trial basis. Recall that
f(Sk: Q)

_ P _ P X _ _
Dipy =Tk + Ne P H.’ E., =E +N{AT, Spyy = Sp = PrAT, Qpyy = Qe + HRk AT (17.95)
Reverting back to tensor notation,

flown;) &
NG| (N : Py - Hy) 9

Ty =T+ = ££+NkAF s Oksy = 0k —PrAT, 5, =5 +H AT (17.96)

Using (17.94) and (17.88), we have

N \ 1 afk afk Hth ajck
lv N P = —= — —_
” kH ( k k) NP ﬁ [\/gKka 5 Ky 2;1: 871 (Op)k

\/E% |:\/gﬂk% — HNk H Z aa—i’k(as)k] (Gss)k
n

24 ¢ 13
80eff aoeﬁ Hk

(17.97)
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Also,

i
"B

At the end of the iterative process, the plastic strain tensor may also be updated using (17.90) and a non-
hardening return used to force the computed stress state on the final yield surface.

o ity (P

o
S X (.

JT,

L (W) + aef (k) + (17.98)

Algorithm 1

Two implementations of the model described in this chapter have been implemented in VAanGo . The
algorithm described in this section is used when the algorithm is invoked in an input
file. This plastic return algorithm is more robust but does not include kinematic hardening or softening
due to damage and temperature changes. Softening and damage are treated in an uncoupled manner after
the stress has been updated. Also, elastic-plastic coupling is ignored. For this algorithm, the timestep is
divided into substeps and the following algorithm is applied at each substep. At the end of the last substep,
the stress state is projected back to the updated yield surface without any changes to the internal variables.

1. Inputs:
Timestep size: At
New strain rate:  £,41, &0,

Old stress: o,

Old moduli:  x,, 4y,

Old plastic strain: &, (17.99)
Old equivalent plastic rate: (s D
Old internal variables:  (&,") . ¢, Ty

Trial stress: ™ = g, + At [(Kn 3;4,,) tr(&p ) + 2‘14,,.'9,,“]

2. Decompose trial stress

ial
trial _ ltr(o,trial) strial _ O,trial _ 1tr( trlal) Atrlal st
p=3 ’ B 3 HstrialH (17.100)
o,trial _ O_trialj i O_trialAtrial trlal \/— ptrlal trlal H trlalH
=0, ! =
3. Decompose start-of-timestep stress
O = pul + 55 = (0p)ud + (05)n8™ , (Geit)n = \/25n : 50 (7101
(Gp)n =0, :j, (Us)n =0, :gtrial =s, :gtrial
4. Compute f, and derivatives
0 )
Jo =1 (505 P> (€3> (E3D) s S Tons Koo s s -+ ) 5 aj;'; ; ai’ﬁ (17.102)
5. Compute components of N, and | N ,|
N, = (Np)nj+ (NS)n:‘trial o INWl =~/ (Np)z + (No)3
(17.103)

s - of,
(N = 355, (=15
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6. Compute components of P,
Py = (Pp)ud + (Py) s
(P, = V3Kkn Ofy (P), = V6u, of, (17.104)
PNl 0op T "IN 9o
7. Initialize:
k=o, T=o0
o) = o.trial (17'105)
8. Decompose current stress
ok = prl + s = (o)1l + (0)k8™™ , (0em)i = \/ 25k : 5k
_ = _ . atrial _ . atrial Sk atrial _ (17'106)
(0p)k=0k: 0, (0)f=0p:8"" =518, (oss)k—m.s =1
k
9. Compute f; and derivatives
: : ofk 9k
k = Sk)pk) (seq)k) (seq)k) ¢kaT > Kns ’seq PICIENN s TN (17'107)
f f( P P n> Kns Un> Eniq ) ap aO'eff
10. Compute components of Ny and | N||
Ni = (Np)ed + (N)™ [Ny = /(N + (No)3
df df (17.108)
N = 2225 | (N =+/2=25 .
(k= 355, (V= /15t
11. Compute Ny : P,
Ng:Py= (Np)k(Pp)n+(Ns)k(Ps)n (17.109)
12. Compute updated AT
e, =T J: AT =Ty, -T
k= L + P, =T — T (17.110)
N n
13. Compute updated stress components:
(Up)kﬂ = (op)k - (pp)nAr > (Us)kﬂ = (Gs)k - (Ps)nAr (17.111)
14. Compute fy,
fk+1 = f (Sk+1’ Pk+1> (SZCI)k’ (é;q)kﬂa ¢k+1’ Dk+1a Tk+1’ Ki+1> Uk+1> éiﬂ—p K (17-112)
15. If |fk+1| < ftolerance and |rk+1 - 1—‘k| < Ttolerance go to step 18.
16. Set k < k +1and go to step 8.
17. Update the stress:
On1 = (O'p)k+1j + (‘75)k+1§trial (17.113)
18. Compute internal variable hardening/softening moduli
(h*" ) > (h¢)k+1 (17.114)
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19. Compute updated internal variables
(ep s = (€g)n + (h)kabT 5 fus = $+ (BT (17.115)

20. Compute updated elastic strain

o - (o . - .
£Z+1 _ sfl + (( P)k+1 ( p)n)I_ ((Us)kﬂ (Us)n)gmal. (17.116)
3Kn 2Un
21. Compute the updated plastic strain
=g e+ Atk — £y (690 = €0 (17.117)
22. Compute updated elastic moduli
Kpn+1 = K ((Gp)k+1>£f1+1’ (Tp)n) > Ynt1 =Y ((Up)kﬂ’ i (Tp)n) (17.118)

17.2.4 Algorithm 2
The following stress update algorithm is used for each (plastic) time step for models that require kinematic
hardening.

1. Inputs:

Timestep size: At
New strain rate:  &,4,, s'ffH
Old stress: o,
Old moduli: &y, 4n
Old plastic strain: &, (17.119)
Old equivalent plastic rate: (é;q)n

Old internal variables: S, (s;q)n, Gn> Dy, (Tp)n

Trial stress: ™ = ¢, + At [(Kn - fﬂn) tr(&p )1+ 2;4”&”“]

2. Decompose trial stress:

trial
ptrlal _ %tr(amal) , strlal _ O_tnal _ %tr(amal)l , trial _ —
|strial] (17.120)
trial _ _trialy trial atrial trial _ trial trial _ ||  trial
0" =0, I+, 0,7 =\/3p™, o = "
3. Initialize:
k=o, T'=o0
__trial _ _ p_ P
Op=0 » Kk = Kn>s Uk = Un> Sk—sn
(17.121)

('s;q)k = (SEQ)H’ ﬁk = ﬁn . (Pk = ¢na Dk =D,, (Tp)k = (Tp)n

&k = (&Nn &9=81,

. Compute shifted stress using backstress:

N

(0p)k =0k =B (ppl=3tr(op)ks &k = (0p)k— (pplil > (02K = /2 & (17122)
5. Compute f; and derivatives

), Y Of

, (17.123)
£
app 00

fe = F (& (Pp)io (€511 (651 ks k> Dis Thes K s Enhas - - -
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6. Compute components of Ny and | N ||

Ni = (Np)ed + (N)™ [Ny =/ (Np); + (N3

(17.124)
( p)k—\/'aag ( S)k \/7;-](’2 . 7124

7. Compute derivatives of bulk and shear modulus with respect to internal variables

OKi Ok Ok Ok Opk OMr Ok Ok (17:125)
Be;q’ a(P ’ aDk, aTk ’ ae;q’ a¢ ’ aDk’ aTk '

8. Decompose current stress

ok = prl + 55 = ()il + (05) 8™

Atri Atri 126
(op)k=0x:1, (0)x = 0% cgmial = g gl (o) = _”skH . gtrial _ (17.126)
Sk
9. Compute components of Py
Py = (Pp)il + (P8
3K dfr 1 0K

(Pp)k: \/_N ai__ a_(ap)k

| [Nkl dpp ®i 57 on (17.127)

—\/g/‘k fy 1 o«
(PS) = - (0o (0s)
¢ | INKl 307, #k; on % ‘

Compute [N| (N : Py)
INEl (Ni: Pr) = (Np)k(Py)i + (No)i (P (17.128)

11. Compute derivatives of f; with respect to internal variables

U e Ok Ok f

0B 0e)'” 99’ oD’ 9T,

10.

]

(17.129)

12. Compute internal variable hardening/softening moduli

()i, (h)s (W), (BP)e, (h") (17.130)

13. Compute |N| Hy

IN, Hk_af; (hP), + afk GO afk(m’) af"(hD) g{j‘(h ). (17131)
4

14. Compute updated AT

fr
INk| (Ni : P — Hy)

[ = T + s AT =Tjy, — T (17.132)

15. Compute updated stress components:
(0p)kr1 = (0p)k = (Pp) kAT 5 (05)kss = (05)k — (Ps)k AT (17.133)
16. Compute updated internal variables:
Biww =B+ HPAT, (e51)isr = (1) + R AT

(17.134)
$prr = $k + hPAT, Dy, = D+ hPAT, (Tp)gsy = (Tp)x + h' AT
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17. Compute updated elastic strain:

£]e<+1 =& + ((Up)kﬂk; (Up)” )i_ ((Us)kﬂﬂ_k (Us)n)gtriaI.

3 2

18. Compute the updated plastic strain:

p

&, =&+ eh+ Atey,, — €5, (é;q)k+1 - Hs‘zﬂ H

19. Compute updated elastic moduli

Kk+1 = K ((Up)kﬂ’ siﬂ’ (Tp)k+1) > Uk+1= U ((Up)kﬂ’ £i+1’ (Tp)k+1)

20. Compute fi,

fk+1 = f (fk-l—l’ (pﬁ)kﬂ’ (€;q)k+1, (é;q)kﬂ’ ¢k+1’ Dii1> Thr> Kk Hk+1> éiﬁi—v s

21, If |fk+1| < ftolerance and |rk+1 - I‘k| < Tolerance go to step 23.
22. Set k < k +1and go to step 4.

23. Update the state:

1

Optr = (ap)k+1I + (O-S)k+1strla > ﬁn-ﬂ = ﬁk+1 > (qu)nﬂ = (8;q)k+1
¢n+1 = ¢’k+1 > n+1 = Dk+1 > (Tp)nﬂ = (Tp)kﬂ > (é;q)nﬂ = (é;q)kﬂ
Kn+1 = Kk > Un+1 = Uk

e _ Py ((Op)kﬂ B (Op)n)j_ ((Us)kﬂ (05)n ) Atrial

n+1 ~ ¢n

3Kn+1 2[/ln+1
p

e P : e
€y =€, Y&+ Aty — £,

&€

17.3 Example 1: von Mises plasticity

Consider the case of ], plasticity with the yield condition

Frmf2 s~ dev(B)] - oy (5%, &9, 6, T, ) =\ /2 €] - 0y (50,69, 6, T, ..

(17.135)

(17.136)

(17.137)

(17.138)

(17.139)

(17.140)

where ||| = /& : & The derivatives of the yield function with respect to the internal variables are

L 9% of 9% of 9% 9f 99
1§

aseq de,t 9p  9¢ oD oD’ 9T, 9T,

Assume the associated flow rule

o af
d’P =\ N = /\— where IN| =
N Vi EE Vi

Then

§
1€l

The evolution of the equivalent plastic strain is given by

d? =) ——; dev(d?) =d’, tr(d’) =o,

dr|| =&t=1.

s;q:}tth — h*=1.
The evolution of porosity is given by (there is no evolution of porosity)

p=Ah*=0 — h*=o0.

(17.141)

(17.142)

(17.143)

(17.144)

(17.145)
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The evolution of the back stress is given by the Prager kinematic hardening rule

B=inf-Hd* — K -=H Hz (17.146)
where H' is a hardening modulus. For the Armstrong-Frederick kinematic hardening model,
l';:/'\hﬁ:HldP_Hzﬁ Hdp‘:,i[ ‘j_ -H, ﬁ] = hﬁ:HI%”_Hzﬁ (17.147)

Example 2: Gurson-type model

Consider a Gurson-type yield condition with kinematic hardening. In this case the yield condition can
be written as

, (0p)*

2
%y

£ g con (3022 g (07 (7148

Y

where o), is the yield stress of the matrix material (zero-porosity),

0x=§:&, E=dev(o-B), ps="1tr(c—p)
. |? for ¢ < ¢, (17.149)
P 0B (59 forg> g

and ¢ is the porosity. Final fracture occurs for ¢ = ¢ or when ¢ = 1/q,. In this case, the derivatives of

f are

4 * & *
Of _ 3%  Of _30:9:¢ sinh(%quﬁ)’ ﬁz_[ﬂ%ﬁr) | 309:pp¢ Smh( qlpﬁ)]

agjﬁ o~ opg oy ay o, gt o2 oy
(17.150)
and
of of af of df do, df 9df do, Idf  If 9o,
a_:_ f eq:_ eq’_:__>_:__ (17~151)
B ag apﬁ asp doy de,' 0D doy 0D~ 9T, doy 9Ty
For the derivative with respect to ¢,
0 of o 8 do of 0¢”
af S 9", of 9oy f ? (17152)
¢ d¢* 99 aoy op 0¢p" ¢
where
* 1 for ¢ < ¢,
af* =24, Cosh(iw) -2q;¢" and % _ $1—p. <9 (17.153)
8(/5 y 8(/) _W for (/) > ¢C

Using an associated flow rule, we have

_ﬂ af f _ of ’ of 2
d? = /lN A“N“ N = 90 E+ ”N” = \' 4(8056 ‘f) +3(apﬂ) (17_154)
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For the evolution equation for the plastic strain we use

(6-B):d" = (1-¢)ay,’ (17.155)
where s';q is the equivalent plastic strain rate in the matrix material. Hence,
of ,,9f
3p +2—F§: ¢
eq 3 1€ (PﬁIJFf) . ﬁapﬁ do f
& Ak =) 22— = (17.156)
(1-¢) 0, (1-¢) UyHN”

The evolution equation for the porosity is assumed to be given by
¢=(1-¢)tr(d?) + A&} (17.157)

where

A:

(17.158)

fn 1 (‘S;q_em)z
85\/27TeXp 2 &2

N
and f, is the volume fraction of void nucleating particles, &,, is the mean of the normal distribution of
nucleation strains, and &, is the standard deviation of the distribution. Therefore,

of ,,9of
. ppa-t2—F &g
b= in® =i < (ppl +8§): N o af pﬁapﬁ CRAR
d=Ah* =1 |(1-¢)tr(N)+A——— | = h*=—|3(1 —(/5)
(1-¢) 0y ||N|| (1-¢) 0y
(17.159)
If the evolution of the backstress is given by the Prager kinematic hardening rule
!
B=iW-H ad — K- H aff 9 (17.160)
NIEEANTTS
For the Armstrong-Frederick model,
B=Anf=H,d’-H,p|d"| = K= Hl af — &+ 9 - H,p. (17.161)
AT
Example 3: Nonlinear elasticity and isotropic hardening
Let the flow stress be given by the Johnson-Cook model:
0y (51, €9, T) = [A+ B(s;q)”] [1+CIn(e")][1-(T")"] (17.162)
The volumetric part of the stress in the intact metal is given by a Mie-Griineisen equation of state:
p(]e’ T) _ _ Po Co (1_] )[1_ I‘0(1_] )/2] +T, E|, ]e = det F¢ , Ewn M (17.163)

[1-S,(1-7¢)]> \%

The tangent bulk modulus of the intact metal is defined as

e Op edp 9] Viop .dp pO]eC2 [14 (S - To)(1-79)]
km(p,J, T)=V v " =V 3 v " o o) =J° 3 LS. J)]F . (17.164)
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Since the rate of deformation is unrotated in the VAANGO metal plasticity implementation, we can identify
tr(&°) with In(J¢) [72] and use that quantity in the calculation. The deviatoric part of the stress in the
intact metal is given by the Steinberg-Cochran-Guinan (SCG) shear modulus model:

e Ty = Othm revifs , Om (o
Um(p,J5T) = pho + p op (JE)7 + 5T (T-To) (17.165)

When we include porosity-dependence for the bulk and shear moduli, we have

‘ _ (=@)km 3Kt 4
AP D =G e KT

e (1=¢)pm 5(3Km + 44m) (17.166)
KO G608 O o

The derivatives of o), k, and y required for the algorithm can be calculated from these expressions.
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18 — Mohr-Coulomb model

Introduction

The classical Mohr-Coulomb model is a workhorse of rock and soil plasticity modeling. This model is
typically hard to implement for implicit codes because of the difficulties encountered in computing tan-
gent stiffness matrices near the corners (as viewed from the hydrostatic axis). However, that problem is
not encountered in explicit codes and corners can be handled relatively easily.

The VaaNGo implementation of Mohr-Coulomb plasticity uses a linear elastic model and perfect plastic-
ity. There are also features that allow the shear modulus, cohesion etc. to vary with deformation and for
the effect of water content to be modelled without a fully coupled saturation/porosity model. A nonlocal
correction features is also included.

Stresses and the rate-of-deformation are unrotated using the beginning of the timestep deformation
gradient polar decomposition before any constitutive relations are evaluated. The updated stress is
rotated back using the deformation gradient decomposition at the end of the time step.

The convention used for this model is that stresses are positive in compression and that the principal
stresses are in the order 0, > 0, > 0;. The model assumes that the plastic potential (alternatively
referred to as the dilation model) and yield function have the same form but the angles may differ.
The angle of the plastic potential function is denoted y.

The implementation is largely in Voigt notation with stresses arranged in the sequence (04, 055, 033,
0135 0135 023)-

Elasticity model

Isotropic linear hypoelastic behavior is assumed, i.e, the stress-rate ¢ is linearly related to the rate-of-
deformation d.

¢ = (K- 2G)u(d)I +2Gd (18.1)

where K is the bulk modulus and G is the shear modulus. These are related to the Young’s modulus (E)
and the Poisson’ ratio (v) by

E

and :m.

_ o) (18.2)
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The elastic tangent modulus at any time ¢ is given by
'K+‘§‘G K-3G K-3 o ]
K-3G K+iG K-
K—%G K—%G K+‘3—‘G o

O O O O
O O O O ©

C-= (18.3)
o o o 2G
o) o) o) o 2G
o o) o o o 2G

A variable modulus model that depends on a varying cohesion can also be activated if desired. The model
has the form

Mc(t)

2(Tvy) (18.4)

G(t) = L K(t) =

where M and v, are model parameters, and c(¢) is a time-varying cohesive strength. The model is ini-
tialized such that G(o) = G and K(0) = K when ¢(0) = ¢, the initial cohesive strength, i.e., E = Mc and
vy = V.

Yield functions

The model includes two variations on the shape of the yield surface (f(g) = 0):

« the classical model
« the Sheng et al. variation of the yield surface [73].

The second does not have sharp edges but is not strictly convex and should not be applied when stress
states close to the vertex of Mohr-Coulomb cone are expected. Plastic states are achieved when f (o) > o
and elastic states when (o) < o.

Classical Mohr-Coulomb yield surface
The classical Mohr-Coulomb yield surface expressed in terms of the principal stresses is

0,—0, [o0,+0,]

t———= . sin(¢) + ccos(¢)
L2 ; % _[% : % | sin(¢) + ccos(¢) (18.5)
0 ; % _[a : %] sin(¢) + ccos().

where c is the cohesive strength and ¢ is the angle of internal friction.

The eigenvalues of the stress tensor can be computed in closed form. The resulting expressions are

2 2 27
o,=p+-qcosf and 03:p+;q cos(9+?) (18.6)
3
where
3
P=111, q=V3l, c0539:(1) =£1—j r3:z]3 (18.7)
3 q 2 pi2 2

and

L=tr(o), J,= Is:s, J; = det(s), s=0 - £I. (18.8)
2 3
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mm Classical Mohr-Coulomb yield function in terms of invariants

In terms of these invariants, the Mohr-Coulomb yield function in (18.5) can be expressed as |
f(6)=R(0)g—p sing —ccos¢ (18.9)
where
R(0) = i (0 + E) - isinqﬁ cos (0 + z) . (18.10)
V3 3/ 3 3

Plots of the Mohr-Coulomb surface in the octahedral and Rendulic planes are shown in Figure 18.1.

8

- s
13 oo
od s

Z Axis (x103)

(a) Octahedral profile. (b) Rendulic profile.

Figure 18.1: Profiles of the classical Mohr-Coulomb yield surface.

18.3.2 Sheng et al. yield surface

The yield function of the Mohr-Coulomb yield surface can be expressed in p—q space as
f(e)=q-Mp-c¢. (18.11)
Comparison with (18.9),
f(6)=R(0)g—p sing — ccos¢ (18.12)

indicates that

ccos ¢

R(6)

sin ¢

R(6)

M(0) = and ¢é(0) = (18.13)

for the classical Mohr-Coulomb model.
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M Sheng et al. Mohr-Coulomb yield function

Sheng et al. [73] suggest a modified model designed for CAMClay type models, which when ap-
plied to the Mohr-Coulomb yield function takes the form

fle)=q-Mp-c¢. (18.14)
where

1/4 .
- 204 3-sin¢
M(0)=M(0 = , d a=——. 8.
©) ( ﬂ/3)(1+a4+(1—(x4)cos39) ame @ 3+sin¢g (18.15)

Note that from (18.10),

3+sin¢ 6sin ¢
6

3+sing

R(n/3) = —  M(xf3)=

(18.16)

Plots of the modified yield surface surface in the octahedral and front view are shown in Figure 18.2. This
yield surface is not convex and should be avoided in computations.

is (x1043)

Z Ax:

Figure 18.2: Profiles of the modified Mohr-Coulomb yield surface.

Note that the angle 6 in [73] is defined as

sin395=—z£=—cos39, 0;=0-%. (18.17)
2 g3

For that definition, triaxial compression occurs at 6; = 77/6 whereas with our definition it occurs at
0 =n/3.

A variant of the model in (18.14) is implemented in VaaNGoO:

M 6 si
ZC_p’ M o sin ¢

M = (1818)

f: s’ o - .
[2[1+a4—(1-a*)sin(36,)]] / 3—sin¢

4
M

This model is visualized in Figure 18.3 and is not convex.
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(£40LX) SIXV Z

Figure 18.3: Profiles of the modified Mohr-Coulomb yield surface as implemented in VAANGO .

18.4 Variable cohesive strength

A time varying cohesive strength model can be activated if necessary. Under certain circumstances, the
cohesive strength is assumed to depend on the effective strain e g (see definition in (2.9)) and an effective
strain-rate .. The strain is computed from the unrotated rate-of-deformation d using

e(tps:) = €(ty) +dAt where At=t,., —1t,. (18.19)

The effective strain is then computed using

Eeff = \/§ [§ [(en — &)+ (&2 - 533)2 + (833 —&y)?] +2(e3, + T ] . (18.20)

An effective strain-rate, é.g, is also computed from

it - \/g [ [~ ) + (s — )2 + (g — )] + 2(d, + 2, + 2] (18.21)

For situations during which a rate-dependent undrained shear transition is important, the cohesion model
takes the form

Spa, Wb for éeg < €per

c(t) = e\P (18.22)
Sia, Wb (if) for éog > €rer
Eref

where S; is a softening parameter, a,, b, are water influence parameters, & is a reference strain-rate, and
B is a strain-rate parameter.

If the cohesion varies linearly with depth, the model that can be used to compute depth-dependent values
has the form

c(t) =c+A(Xp ng — Yref) (18.23)

where A is a slope parameter and yyf is a reference depth value. The particle position is x, and ny is the
depth direction (aligned with the axes of the computational domain).
If softening is activated, the cohesive strength is modified if the condition

c
Eeff > el (18.24)
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where c is the cohesive strength and G is the shear modulus. The softening model has the form
c(t)=c [Sit + (1 - Sit) 2.7156“/895] (18.25)

where S; is the softening parameter used earlier and ¢, is a reference effective strain.

Finally, if a water retention model is used to modify the cohesive strength, a suction value y,, is computed
and the cohesion is computed as

c(t) =c+ypytan ¢y, (18.26)
where ¢, is a water retention parameter. The suction is computed using the van Genuchten model:

95 - er
[+ (alym)"] ™"

where 0(y) is the water retention curve, |y,,| is the suction pressure, 6; is the saturated water content, 6,
is the residual water content, & > o is a parameter related to the inverse of the air entry suction, and n > 1
is a measure of the pore-size distribution.

O(y)=0,+ (18.27)

Flow rule

A non-associated flow rule is assumed such that the plastic strain-rate d,, is given by

d,= '% (18.28)
where
g(6)=R(0)q—p siny—ccosy (18.29)

and v is the dilation angle. Typically y is taken to be equal to ¢, the friction angle.

The normal to the plastic potential surface is given by

dg dRaf oq dp .
=2 = _——g+R(O) L -FX . 8.
"=y T deae 1T RO 5.~ 5, sinv (18.30)

where
drR | 9 AV (o 7r
— =1 +—]+1 + —
18-V cos ; ;siny sin ;

00 1 9 dJ; r*dq 1 9 5 r3 dq
- Z B A = (s-s=2J,1)- —=—=2
do  sin3f [2(13 do g4 do sin30 | 2¢3 (s s/ ) q* do
99 _ 30k _ /3
do  2\/], 06 2./],

op oL,
oo 3dg 3

(18.31)

S

Nonlocal shear correction

The Mohr-Coulomb model contains a nonlocal correction feature that uses neighbor information to regu-
larize solutions. Neighboring particles that contribute to the nonlocal effect are identified using a nonlocal
length (£,). Let there be N, such particles in the neighborhood of particle p.
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The nonlocal effective strain (el) and effective strain rate (€};) are computed as

Ny 1,4
Zq:l Vi €eff

N, .
Zq:ql Vu?seff (18.32)
Zqul VM? v 18.32

n
seE=(1—n)seﬁr+n( N
Y Vil

) and  élg=(1-n)éeg+ n(

where 7 is a nonlocal parameter, e.f, é.¢ are the local effective strain and strain-rate, respectively, and V;,!
is a weighted volume of neighboring particle g whose local volume is V. The expression for Vi is

14 &

V! = WwpqVq Where wy, = - exp (_6_2) , €= qu - Xp H . (18.33)
n n

If a regularization flag is activated, and e[}z > ¢/G, where c is the cohesion and G is the shear modulus, a

time-scale is included in the computation:

a LFE g

n
Eoff < Eeff

s Eap < Eoff (18.34)

fshear fshear

where tpg and tge,r are regularization time scales. The nonlocal effective strain is typically not used
directly in the model except for modifying the cohesion and the elastic moduli.

However, after the stress has been updated, a nonlocal correction can be applied using a similar approach:

N,
Yo Vile

0'”:(1—11)0'+n( N
Zq:qlvvg

where ¢, is the nonlocal stress.

Explicit stress integration

An additive decomposition of the unrotated rate-of-deformation into elastic and plastic parts is assumed:

d=d.+d, (18.36)

Elastic and plastic strains are defined using

t t t
€= f d(r)dr=¢.+¢, =— &= / d.(r)dr, €= / dy(r)dr. (18.37)
[¢] o (o]
The strain increment during a timestep, At = t,,4, — t,,, is computed as
Ae = dAt. (18.38)

The stress update begins with a check whether the stress state at the beginning of the time step is on the
yield surface. This is necessary because the modification of the cohesion and the elastic moduli may have
affected the shape of the yield surface. Special checks are used to determine if the strain increment leads
to unloading. Details are omitted for brevity.

An elastic trial stress state is computed

o,trial =0, + Cn : Ae (18.39)
where C tangent elastic modulus tensor.

If the trial stress is in the plastic region, the intersection of the stress increment vector Ac = otrial _ o,

with the yield surface is computed using bisection. The strain increment corresponding to this reduced
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stress increment is the increment in elastic strain and the stress on the yield surface is the stress at the end
of the elastic strain increment.

The remainder of the strain increment is purely plastic. The trial stress now has to be projected back to
the yield surface along the projection vector P [74], given by

)
p--C:% (18.40)
oo
The intersection of the projection vector with the yield surface is found via bisection. The updated stress
is the intersection point on the yield surface.

Several Runge-Kutta schemes are implemented in the VAANGO code to break-up large The intersection of
the projection vector with the yield surface is found via bisection. strain increments into smaller steps.
However, the two-step modified Euler scheme is accurate enough for our purposes.

This procedure is repeated for each timestep.
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19.1 Introduction

The Cam-clay plasticity model and its modified ellipsoidal version [75-78] is widely considered to be an
accurate model for the prediction of the compressive and shear behavior of clays. The Borja model [35,
79-81] extends the original Cam-clay model to large deformations and uses a hyperelastic model and large
strain elastic-plastic kinematics.

The Borja Cam-clay model and its implementation in Vaango are discussed in this chapter.

19.2 Quantities that are needed in a Vaango implementation

The implementation of a hyperelastic-plastic model in Vaango typically (but not always) involves the
following:

1. an elasticity model factory that creates an elasticity model that provides the simulation with a pres-
sure and a deviatoric stress for a given (elastic) deformation gradient.
2. a plasticity model factory that creates:

(a) ayield condition factory that compute the yield function for a given stress and internal vari-
able state,

(b) aflow rule factory that gives the value of the plastic potential for a given state of stress/inter-
nal variables. The flow rule factory and yield condition factory are typically assumed to be
identical (i.e., plastic flow is associated),

(c) an internal variable factory that is used to update internal variables and compute hardening
moduli.

The models returned by the various factories for Borja cam-clay are discussed below.

19.2.1  Elasticity

The elastic strain energy density in Borja’s model has the form

W(ey, ;) = Wool(ey) + Waev (e, Vey)
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where
5 e — e
Weoi(€7) = —pok exp (— L VO)
K
Wdev(gﬁ’ 8?) =5 H (sse)2
where ¢/ is the volumetric strain corresponding to a mean normal compressive stress p, (tension posi-
tive), « is the elastic compressibility index, and the shear modulus is given by

e e
e‘VO

o &
H=Hot Z Weol(€y) = to = apo exp(— P ) = Ho ~ Hvol -

The parameter o determines the extent of coupling between the volumetric and deviatoric responses. For
consistency with isotropic elasticity, Rebecca Brannon suggests that a« = o (citation?).

The stress invariants p and q are defined as

_IW _ 3% eye & &) _ & ~ &0
P-a—ﬁ-Po[Hzﬁ(Ss)]exp( P )—PoﬁeXP( P )

e e

ow I3
9=== =3[uo—rxpoe><p(——” . V°)]s§ =3p .
o€, K
The derivatives of the stress invariants are

9 __Po [H_%E (sf)z] exp(—g" i‘evo) _ _g
K K

oe;, K i
9p _ 94 _3%pots exp(_ssisso) _ 3P o 3l o
de;  O¢, % Bic %
ﬁ— [ — AD. ex (_85_ 50)]_
D¢l =3|Ho — &Po €Xp p =3U.

Plasticity

For plasticity we use a Cam-Clay yield function of the form
(9 s pp-
S ( M) +p(p - pe)

where M is the slope of the critical state line and the consolidation pressure p. is an internal variable that

evolves according to

1 dpc 1 dsf

pe dt  A-g dt’

The derivatives of f that are of interest are

af_ B
ap PP
9f _2q
g M’

If we integrate the equation for p. from ¢, to t,.,, we can show that

(es)trial - (ss)nﬂ
A-& '

(P)nsr = (P)n exp[

The derivative of p, that is of interest is

apc _ (Pc)n exp [ (ss)triall - (85)n+1:| ‘

EICH I A - &
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Stress update based Rich Reguiero’s notes

The volumetric and deviatoric components of the elastic strain €® are defined as follows:
e =€ -ley1=€" - tr(e°)1 and ef:\/gHeeH :\/gx/ee:ee.
The stress tensor is decomposed into a volumetric and a deviatoric component
e’ e’
2 . 2
a:p1+\/tqn with n= :\/t—.
’ Jecl V3 e

The models used to determine p and g are

816/_816/0 . _ 3“ e\2
—T with ﬂ—l‘l‘;%(ss)

p:poﬁexp[
q = 3ue; .

The strains are updated using

)
€ = €piy — Ay a—f where €f;, =€, +Ae =€, + (€ —€,).

o
Remark 1: The interface with MPMICE, among other things in Vaango, requires the computation of the quantity dp/dJ. Since
J does not appear in the above equation we proceed as explained below.

J = det(F) = det(z + Vou) = det(1 +¢€)

=1+tre+ 1 [(tre)” —tr(e’)] + det(e) . =1+e + 2 [e —tr(e’)] +det(e) .
Also,
]=p—°:1 and ¢, = VYo :1—1:]—1.
P Vo Vo VO

We use the relation J = 1+ ¢, while keeping in mind that this is true only for infinitesimal strains and plastic incompressibility for
which &, tr(€*), and det(€) are zero. Under these conditions

dp dp dey _ dp dal_apasva]_]ap

9 e, o] o9&, ¢ 3p " 0e 9] 9 poe

Remark 2: MPMICE also needs the density at a given pressure. For the Borja model, with &, = ] =1 = p,/p — 1, we have

N » \1
=po |1+ &0 +xln .
g ”[ (po/&)]

Remark 3: The quantity g is related to the deviatoric part of the Cauchy stress, s as follows:

q=+/3J. where J,=1s:s.
The shear modulus relates the deviatoric stress s to the deviatoric strain e®. We assume a relation of the form
e
s=2ue’.

Note that the above relation assumes a linear elastic type behavior. Then we get the Borja shear model:

a=\/isis=\[1 G Vee =\ G fre = auel
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19.3.1 Elastic-plastic stress update

For elasto-plasticity we start with a yield function of the form

q 1 dp. 1 deb

f=(M) +p(p-pc) <o where Edt=~

Integrating the ODE for p, with the initial condition p.(t,) = (pc)n, at t = tyu,

(P)n+r = (PC)neXP[ 7

From the additive decomposition of the strain into elastic and plastic parts, and if the elastic trial strain
is defined as

(&) )trial := (&))n + Agy
we have
85 = ev—eﬁ - (5€)n+1_(£€)n = (sv)n+1_(5$)n+1_(8v)n+(€§)n = Aev"‘(ss)n_(ss)nﬂ = (sle;)trial_(gs)n-ﬂ .

Therefore we can write

(Pc)n+r = (P)n exp[(ss)tri;: : ;fﬁ)nﬂ] -

The flow rule is assumed to be given by

o o

TR
Integration of the PDE with backward Euler gives

e‘,l;+1:¢_:;l1’+Aty,,+1 [%] :eﬁ+Ay [%] .
n+1 n+1

This equation can be expressed in terms of the trial elastic strain as follows.

of

€ (4
€ni1— €, = €, — €, + Ay [—]
00 1y
or

e e of y of
€ne1 = Ae + €n A)/ I:g]nﬂ = €pjal ~ A)/ [%:Inﬂ .

In terms of the volumetric and deviatoric components

) )
(E)ovs = t(e50) = r(eiaa) Syt [ L]~ (ebhuna-apee[ 2]

of L (9f
eiy+1 = efrial - A)/ [(%)nﬂ B 5“(%)"“1] ‘

With s = ¢ — p1, we have

of _of ds of dp _9df () . af _of | [af ] of
_—— — ——:—:H - _— = —_— - = —_— —_—
30 " as 90 apac as L T3i®rgir=goost oot

and
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o o o .
tr[—f]1:l tr[ f] tr[ f] f f
Jo 3 os as] °9 p]  d p
Remark 4: Note that, because ¢ = o(p, g, pc) the chain rule should contain a contribution from p.:

of _of 99  of op  Of opc
96 9q 06 dp d6  Ip. 9o

and

However, the Borja implementation does not consider that extra term. Also note that for the present model

o =0 (p(es, 67, 60) s (en €6, €1, 7)), pe(e)))

Therefore, for situations where tr(df/ds) = o, we have

R St PO

The deviatoric strain update can be written as
of
e _ e
€ni1 = Crial ~ A)/ ( Os )n+1

and the shear invariant update is

e 2 > 0 s dJ dJ
() =/ Vel i = /2 \/ i 207 [ 2] cepgrpre[2] L[]

The derivative of f can be found using the chain rule (for smooth f):

of _of dp 9f 9q
do  dp 9 0q do

Now, with p =1/3tr(0) and g = \/3/2s : s, we have

P2 [tie(o)] = 1

9p 29 99
=(p-pd) 5 aa M2 9¢

elig 3

g—z:%[\/;]:\/%\/:fsg—;:s:\/gﬁ [H(S)—§1®1]:s:\/§ﬁ.
Therefore,

%%fﬂf R
Recall that

a=p1+\/§qn=p1+s.
Therefore,

=\ ffan sl Ve [ie = TE el

So we can write

of _2p—pe . 724,

de 3 2 M> (91)
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Using the above relation we have

of of of _of af
g—gt [8 ]—2p pe and s 30 \/7

The strain updates can now be written as

(516;)n+1 = (ss)trial - AY [2Pn+1 - (pc)n+1]
2qn+1
€ =€~ iAy( )n
n+1i tria 2 M%,ﬂ n+1

s [ 29n+1 . 2q4n+1 ’
(8 )n"'l \/7\J trlal trlal \/_(A)/) ( )nnﬂ' terlal 3(AY)4 (M’Zqﬂ) ‘

n+1

From the second equation above,

2q9 : 2q9

. € _ . e 3 n+i . _ Fn+1 " ¥n+1 n+1 n+i\)

"”ﬂ‘"trial‘""ﬂ‘enH*\EAy(M2 )nnﬁ'n”“_ \[A (1\/12 )— n+1||+\[A (
n+1 |ei’l+1|| n+i

Also notice that

24n+1 e 2(1n+1
e e te . t2 \/7Ay ( ) P+ /2 Ay
trial * €trial ~ n+1 n+1 €1 Mns
My My

or,
q
”etnalH = |:en+1” + \/7A (M;:):l
Therefore,
Ry - etrlal H etnalH
and we have

2 2
(eﬁ)nﬂ = \/g\l Heteriale - \/E(A (ﬁ) H etrlalH 2 (Ay)4 (%) \/7 ”etnal” Ay ( q:il) .

1

The elastic strain can therefore be updated using
(&) nr1 = (€))trial = AY [2Pnt1 = (Pe) ]

24n+1
(8se)n+1 = (sg)trial - AV (]Vng:l) .

The consistency condition is needed to close the above equations

f = (%)2 +Pn+1[pn+1 - (pc)nﬂ] =0

The unknowns are (€£),+1, (€£) 4+, and Ay. Note that we can express the three equations as

d
(ss)nﬂ = (ss)trial - A)’ [%:Inﬂ

a .
(&) n1 = (&) trial = Ay [a—jqf]nﬂ (19.2)
fn+1 =0.

2qn+1
2
Mn+1

).
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19.3.2 Newton iterations

The three nonlinear equations in the three unknowns can be solved using Newton iterations for smooth
yield functions. Let us define the residual as

d
(85)n+1 - (es)trial + Ay I:%:I N 7 (eﬁ)n-ﬂ X
_ 3 n+1 . _ . _
K = (e = (e + 8y [ S| |7 |72 where x= (€ | = s
9 1p41 13 fon X3
fn+1

The Newton root finding algorithm is :

Require: x°

k<o
while r(x*) # o do

or\"
X = x| 5 1(x)
= ék
k< k+1
end while

To code the algorithm we have to find the derivatives of the residual with respect to the primary variables.
Let’s do the terms one by one. For the first row,

garcll - aa [er — (€ )trial + Ay (20 = pc) ] —1+Ay( 8187:)
aa;: B a%s[ — (& )triat + Ay (2p = pc)] = a 5
s;:; - a%y (€5 = (&)t + Ay (2p = pc)] = 2p — pc = g£

where

a_p - _Poﬁ exp [_85 - sie/o] _P % _ (Pe)n exp[ss - (ss)tria1:| and

e, K K k7 0, k-1 k-1
a_Pe _3Poc £ exp [_ £ ifﬁo]
¢ K

For the second row,

o, 9 2q ] _ 28y 04
- ria A T M2 0e
ox, 8£V[ ~ (&) + Ay 3 ] M> Og,
or, o 2 2y 9
=3 [sf — (&) trial + Ay _qz] =1+ MZ a_fe
or, _ 0 4]-4 o
2 _ rial A Y
9x;  9Ay [ (a8 M
where
aq 3po £° [ el — geo] ap aq [ el — geo]
Z1 _ 2P0 %s _& T &0 | 9P d = =3u ° e e
de; PR g N Ger DM TIPOE SR !
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For the third row,
| R L R R
et IR B - RO A
g: aAy[z?p p(p- pC)]:o'

We have to invert a matrix in the Newton iteration process. Let us see whether we can make this quicker
to do. The Jacobian matrix has the form

dr, Or, 0n,
ox, OJx, Ox
*_|on on Qﬁ._lé é]
ox | 9% Odx, dxs|T|C
R L Ao B
0x; Ox, 0x,
where
on on % 0 d
_|ox, ox, _|ox _|or r
A=l Il B-|gn|. wd c-|gn 22
ox, 0x, ox;

We can also break up the x and r matrices:

Ax"* r’s A
Ax=x""-x =" |, r=|" where r*=|"| and Ax*=|71].
B - Ax, N T3 - Ty = Ax,

Then

or

1>
>

134

+
{loy}
>

Ry

1l

|

=
S

fob)

=
[al
@]
>

X
S

1l

|

w\

From the first equation above,

A§VS — _é 1 VS A BAX3

Plugging in the second equation gives

= CA™r* + CA™BAx,.

Rearranging,
AT
+1

Axy = X, X, = gé_1§

Using the above result
-CA '+ I3
Ax* =-A - AT'B —” _
= = = = = gé §

We therefore have to invert only a 2 x 2 matrix.
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Tangent calculation: elastic

We want to find the derivative of the stress with respect to the strain:

Jdo op 0q on
_=1®—+\/§n®$+ %qg. (19.3)

For the first term above,

a—p:PoeXp[ f]%—Poéexp[——svisvo]%—poexp[ —](8/3 ﬁas )
de 8 de i K K

o€ oe oe
Now,
9B _ 3% e 05
de Kk ° Oe
Therefore,

0 € — €l o O€¢ oe,
—p:&exp[— ] 3aei— - —]|.
de K K oe oe
We now have to figure out the other derivatives in the above expression. First,

e 1 855 . e
\[¢—ee o fueen( 5‘®¥)‘e‘

For the special situation where all the strain is elastic, € = €°, and (see Wikipedia article on tensor deriva-
tives)

o€’ _ 0e 0ef  Oe
(O d v o2
de ae an de de !

That gives us

e Vi (190 srea) et = E i [ - ]

But tr(e®) = o because this is the deviatoric part of the strain and we have

e ae
—:\/g ee :\/En and | v -
lec] o€

Using these, we get

aP Do 85_850 e
gz?exp[— P ](\/gocesn—/h). (19.4)

The derivative of g with respect to € can be calculated in a similar way, i.e.,

dq O . ou ol Ppo [ sﬁ—sﬁo] oe,
Ge M e T3 e TG T aE P de

Using the expressions in the boxes above,

q \/_yn 3 exp[ %]asﬁ. (19.5)
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Also,

on S| 1 de’ 1 e oS
—=+/2|= ® .
o€ \/;[sf oe (ss)2 ]

Using the previously derived expression, we have

_:\/EL—H(S)_zl(X,I_ s1e®e
Ses | 3 Sef e

or

Lr
:\/E— ]I(S)—11®1—n®n]. (19.6)
3ee L 3
Plugging the expressions for these derivatives in the original equation, we get

oe i

d6  po & —¢f & —¢f
=" exp|-

LA "’](\/gocef1®n—ﬁ1®1)+2yn®n—\/g& exp[— L VO] aesn 1+
K K K

24 []I(S) 1®1—n®n].

3 gl
Reorganizing,
e e _ e L€
il = —\/Epf’“ss exp[—sv ~8v°] (1®n+n®1)- (Po/3 exp[ &= & _svo] + 2i)1®1+
de K K K K 9 g
g q o (19.7)
12 ® 2 ]I S
2 (y 3 s§) nen+:
19.3.4 Tangent calculation: elastic-plastic
From the previous section recall that
do _dp 3 0q S on
10— +./2n® - +,/29g—
de de \/;n de 93¢
where
P  Po [ e — €l ] oes oe; oq gl po [ e — €l ] o€,
ZF _ to Sy V0 e_s__v’ e Y& ko e Sy vo | Y¢v d
de & OF K 3% 3¢ e de Hge TIR ¥ P K % "
on

S| 1 o€’ L e as
—=4/2|= ® —|.
oe 3|et g (e )2
The total strain is equal to the elastic strain for the purely elastic case and the tangent is relatively straight-
forward to calculate. For the elastic-plastic case we have

e e d
€n+1 = €irial ~ A)/ I:aijl . .

Dropping the subscript # + 1 for convenience, we have
o€’ €y af 8Ay [8f] () [2p pc 2g ] oA dAy [2p pc 2q ]
T il -A i 3 -A e Y
de de do ae Y %€ de L do 3 f M?> " de Y % Je 3 \/Z M?> "

19.4 Caveats

The Cam-Clay implementation in Vaango behaves reasonably for moderate strains but is known to fail to
converge for high-rate applications that involve very large plastic strains.
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20 — Arena: Partially Saturated Soils

For a more detailed description and a sample of the input file format, please see the manual in the
ArenaSoil directory.

The convention used in Vaango is that tension is positive and compression is negative. To keep the nota-
tion simple we define, for any x,

X:=-Xx, X:= % (20.1)
Elasticity
The elasticity model used by Arena has the form

o = 6 — & =C%(o, €, ¢,Sy) (e —AZ (20.2)

where 6% is the effective stress, ¢ is the unrotated Cauchy stress, a is the backstress, C® is a tangent elastic
modulus which depends on the stress (and also the plastic strain &P, porosity ¢, and water saturation S,,),
the elastic strain is €°, A is the plastic flow rate, and Z in an elastic-plastic coupling tensor.

The model assumes that the tangent modulus tensor is isotropic and can be expressed as

Cez(K—§ >I®I+2G]I (20.3)
where K(o, a, €7, ¢, S,,) is the bulk modulus, G(o, , €7, ¢, S,, ) is the shear modulus, I is rank-2 identity
tensor, and [ is the symmetric part of the rank-4 identity tensor.
If the effective stress is decomposed into volumetric and deviatoric parts:

ff I o ff _ eff {f

0% =-pI+s, p:=;tr(6%), s:=0" —jtr(a™)I (20.4)

and the elastic strain is also decomposed into volumetric and deviatoric parts
e__1

e =-legI+y°, e =tr(ef), y° =g — jtr(e)I (20.5)

the elasticity model (without the coupling term), simplifies to
f) =K(o,a, €, ¢, SW)s;f, , $=2G(0,a, €%, ¢,5,) 9. (20.6)
The partially saturated Arena model assumes the moduli depend only on

IL:=tr(o), (=tr(a), & =tr(’), ¢, S,. (20.7)
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Bulk modulus model: Solid matrix material

The pressure in the solid matrix is expressed as

_ B — |
ps =K ; € :=In (ﬁ) (20.8)
Vs

where p; is the solid matrix pressure, K; is the solid bulk modulus, & is the volumetric strain, Vi, is the
initial volume of the solid, and V; is the current volume of the solid. The solid bulk modulus is assumed
to modeled by the Murnaghan equation:

Ks(ﬁs) = Kso + 1 (1_75 - I_Jso) (20.9)

where K, and n; are material properties, and p;, is a reference pressure.

Bulk modulus model: Pore water

The equation of state of the pore water is

_ — v,
Pw=Kyey) +po; &y = ln( ‘;m) (20.10)

w

where p,, is the water pressure, K,, is the water bulk modulus, V,,, is the initial volume of water, V,, is the
current volume of water, p, is the initial water pressure, and €] is the volumetric strain in the water. We
use the isothermal Murnaghan bulk modulus model for water:

Kw(pw) = Kyo + ty (ﬁw - Z’wo) (20.11)

where K,,, and n,, are material properties, and p,,, is a reference pressure.

Bulk modulus model: Pore air

The isentropic ideal gas equation of state for the pore air is

_ — — \%
Pa=Pr [exp(y &) — 1] 5 ey = ln( ‘;O) (20.12)
a
where the quantities with subscript a represent quantities for the air model analogous to those for the
water model in (20.10), p, is a reference pressure (101325 Pa) and y = 1.4. The bulk modulus of air (K,)
varies with the volumetric strain in the air:
dpa ~

Kq= Jed Y br eXP()’S_z) =y (pa+pr)- (20.13)

Bulk modulus model: Drained soil

The pressure model for drained soils has the form
—eff ~e\b,
p L bi(&)

— = byef e —— 20.
Ks(peff) bz(ss)b“ + b3 ( 14)

where the material parameters are b, > 0, b, > 0,b, > 0, b; > 0,b, > 1. Dependence on plastic strain can
be added to the model if necessary.

The tangent bulk modulus is defined as

B d—eff
Kd(peff) = d; . (20.15)
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Then, using (20.14),

eff) _ [KS(I_)eff)]z b. + b1b3b4(5_5)h471

= — - o . )
[Ks(pe) — nspefi] [6.(£2)% +b,]°

To express (20.16) in closed-form in terms of p we have to eliminate ;. But a closed form expression

for the volumetric elastic strain cannot be derived from the pressure model. So we find an approximate

form of (20.14) by assuming b, — o. This approximation is valid at moderate to large strains. Then, from
(20.14) with b, = 0, we have

— 1/b,
= . bsPeE
o v o)

and (20.16) can be expressed in terms of p as

Ky(p (20.16)

B b ‘Beff 1-1/b,
Ly IGG) bibsb, (sgph-am)
Kd(p ) - [K (I_)eff) -n }_,eff] ot by pef 2 (20.18)
: : (b2 (e + 01

Bulk modulus model: Partially saturated soil
The pressure in the partially saturated soil (p) is given by

p= fK(L,Z,e_IJ,</>,SW) de; . (20.19)
Note that

f)eff = %(L - Z) ) (20.20)

The tangent bulk modulus of the partially saturated soil is found using a variation on the Grassman model
for fully saturated rocks:

(- sy

K(ﬁeﬁ, 8_5, $,Sy) = Kd(ﬁeﬁ) + (20.21)

1 _ Ky(pefh) 11
K(peth) (1 K(peth) ) 9 (Kf(f) Ks(ﬁe“))
where K is the effective bulk modulus of the partially saturated soil, K;; is the bulk modulus of the drained
soil, Ky is the bulk modulus of the pore fluid, and K; is the bulk modulus of the solid grains. At partial
saturation, we compute the pore fluid bulk modulus using a harmonic mean (lower bound) on the air and
water bulk moduli (K, Kf):

1 Sw 1—-S,

K0 K@) K@)

(20.22)

Shear modulus model: Drained soil

The shear modulus is typically assumed to be constant. However, a variable shear modulus may be needed
to fit experimental data and to prevent negative values of Poisson’s ratio in the simulations. In those
situations a variable Poisson’s ratio (v) is defined as

Ky(p°%, €, 6, S,)
K. (p°)

where v, and v, are material parameters. The shear modulus is computed using the Poisson’s ratio and
the drained bulk modulus:

3K, (P, e0, 6, 5,,) (1 - 2v)
2(1+v) '

v=v+7v, exp [— (20.23)

G(ﬁeﬁ> 3_5’ ¢,Sy) = (20.24)
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Rate-independent plasticity

Yield function

The Arena yield function is

f = \/z - Ff(I_l’ () FC(I_D Z) )_(’ 7_() = \/E - Ff(l_)eff) Fc(}_)eff; )_(, R) (20.25)
where

Fr(p™) = a, — ay exp[-3a,p™)] + 3a,p°" (20.26)
and

1 for 3pT <%
F.(p™, X, %) = (3}3eff - R)Z = (20.27)
1- | —=— for 3p* > k.
X-x

Here X is the hydrostatic compressive strength, « is the branch point at which the cap function F, starts
decreasing until it reaches the hydrostatic strength point (X, o), and

Jo=73s:s. (20.28)

Non-associativity is modeled using a parameter 8 that modifies \/J, (see 20.8).

Hydrostatic compressive strength: Drained soil

The drained crush curve model is used to compute X and has the form

& —pys=In|1- — |- (20.29)

where po, s, pa» p5 are model parameters and & = X — p, where X is the hydrostatic compressive strength.
The parameter p, is related to the initial porosity (¢) by p; = —In(1 - ¢,).

The drained hydrostatic compressive strength (X,;/3) is found from the drained material crush curve
using

1/p:

= /P 1—exp(-

Xi(e£,¢0) = po = p p( p3)_ -1 , P3=—In(1-¢). (20.30)
1-exp(=p; +¢7)

Hydrostatic compressive strength: Partially saturated soil

The elastic part of the volumetric strain at yield is defined in the model as

se,yield(e_g) — Xd(sg’ (/)0)

v )? 77
3Kd (i d(?@o))

(20.31)

where X is found from the drained material crush curve.

The elastic volumetric strain at yield is assumed to be identical for drained and partially saturated mate-
rials. With this assumption, the compressive strength of a partially saturated sand is given by

— T _ - e, ield —_
X(eg) :3K(Peﬁ) £€’¢’Sw g (85) (20.32)

where K is the bulk modulus of the partially saturated material.
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Backstress: Pore pressure
The pore pressure as an isotropic backstress ({) that translates the Cauchy stress to the effective stress:
off =0 — (I > ( = _[(1 - Sw)l_)a + Swl_)w] . (20-33)

In the elastically unloaded state (where the effective stress is zero) we assume that the pore pressure (Z) is
related to the volumetric plastic strain by

exp(—s_f,)) = ¢o (1-So) exp [—iln(ﬁ% + 1)] +¢o So exp (—%) +(1—¢o) exp (_Ki) . (20.34)

w S

This equation can be solved for ¢ (ev) using a root finding algorithm.

Alternatively, this equation can be converted into rate form and integrated using an explicit time stepping
method if a Newton solve is too expensive or fails to converge:

a¢
(= d—sgds‘f. (20.35)
where
d¢ exp(-¢y) s)
d_g{/)_ 5 (20.36)
and
Sl ) )

Rate-dependent plasticity
Porosity and saturation

The total volumetric strain is given by

exp(e,) = (1~ So)bo exp(e5) + Sobo exp(el) + (1. - ho) exp(el) (20.38)

where ¢,, S, are the initial porosity and saturation, and

ey (ey) = _P(ev) ~po , e(gy) = —iln [1+ p(;V)] , & (&) =- (£V) (20.39)

KW r S

We can combine (20.38) and (20.39) to solve for p(¢,) and then compute the volumetric strain in the air
in terms of the total volumetric strain.

Saturation

The saturation function S,, (¢, ), is given by

— C(Sv) - So w a
Sw(ey) = m , C(ey) := (1 — )exp(sv ) exp(—¢}). (20.40)

[¢]

Porosity

The porosity evolution equation (in the elastically unloaded state) for partially saturated sand has the

form
d(ey) =¢ 1% exp(y) 20.41
(&) ° (1— Sw(sv)) [exp(sv)] ' (20.41)
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20.5 Summary of partially saturated soil model

m Bulk modulus model

Drained soil:
The equation of state of the drained soil is

~e\by—1 —e 1/b,
(K] [b N b1b3b4(55)b4 :| = %[ b;p i ]/ _

Kj=——"—==1bo — > =
d [Ks - nspeﬂ] [bz(ss)lu + b3:| Y b,K, - bzpeff

Partially saturated soil:
The bulk modulus model is

( Kd)2
1— —
K

1 K, Sy 1-8, 1
—|1-—|+¢|—+ -—
K K Ky K. K

where

Ki(p) = Kso + 115 (P~ Pso) s Kw(p) = Ko + 1y (P~ Pwo) » Ka(p) =y (p+pr)

'ﬂ Shear modulus model

The shear modulus is either a constant (G,) or determined using a variable Poisson’ ratio (v)

Ka(p°%, €8, 6, S)
K, (p°)

v=v 4+, exp[—

3K, (5%, €8, 6, S,) (1 — 2v)

—eff P _
G(p™ e Su) = 2(14v)
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ﬂ Yield function

The Arena yield function is

f=V1-F(L, ) F(L, § X, &) = /T, - F(p*) F.(p, X, %)

where

Ff(l_)eff) =a,—4a; eXP[_?’azpeﬁ)] + 3“41_7eff
and
1 for 3pft <%
F.(p*%, X, %) = 7T _ %\’
(r ) \l 1- (311 _K) for 3p°T> k.
X-k

Non-associativity is modeled using a parameter f that modifies \/J,.

(20.42)

(20.43)

(20.44)

ﬂ Hydrostatic strength model

Drained soil:

1/ 2
- exp(=py) ] kG-,
)

)_(d(8€) —Po=p =
1-exp(—p; + &)

Partially saturated soil:
X(el) = 3K (L el ¢, 8.) €7 (eD)

where

Xa(eh)

X (el —
SKd( dg v)’gg)

&7 (e]) =
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@ Pore pressure model

Solve g({, g’) = o for (.

L%
r

I{(8 g) = _eXP(—S_f)Jr(/)o (1-S,) exp [—i ln(

Alternatively, integrate

/

4@

del

p
de, .

(=

where

d_Z= exp(~¢b)

)]+¢0 So exp (— e

(_1_70

)+(1—¢0) exp (_Kis) .

w

de? B
and
B:= |:—¢°(_1_S_°)]exp[—lln(_£+1)]+ b °exp(ﬁ0_()+1_¢° exp(——) .
y(pr + ) y \pr Ky K, K; K,

on

E: Saturation and porosity evoluti
Saturation:
C(ey) ( So
S =—— C =
wl(ev) 1+C(ey) (&) 1- S,

w _ 1_)(81;) _1_70 a 1
e (&) = _K—w » &v(e) = _;ln[
Porosity:
o 1-S, exp(ey)
#len) = 4o (1 - Sw(sv)) [eXP(SV)] .

Note that

1+ 28

exp(el) exp(-e2).

|

where ¢,, S, are the initial porosity and saturation, and

@)

r

exp(ey) = (1-So)¢oexp(ey) + Sodo exp(ey) + (1 - ¢o) exp(e;)

p(ey) ‘

f/(sv) == K
S

(20.45)

20.6 Computing the stress and internal variables

The partially saturated soil model uses Michael Homel

>«

s “consis

tency bisection” algorithm to find the

plastic strain direction and to update the internal state variables. A closest-point return algorithm in
transformed stress space is used to project the trial stress state on to the yield surface. Because of the
nonlinearities in the material models, it is easier to solve the problem by dividing the strain increment to

substeps.



20.6 Computing the stress and internal variables 153

The partially saturated soil model treats the porosity (¢) and saturation (S,,) as internal variables in ad-
dition to the hydrostatic compressive strength (X), the isotropic backstress (), and the plastic strain (eP)
which are used by the fully saturated model.

The inputs to the rate-independent stress update algorithm for a single material point are:

o d" : the rate of deformation at time ¢ = t,; defined as d := (I + I") where I = Vv and v is the
velocity field.

o At : the time step

o ¢": the unrotated Cauchy step at time ¢ = ¢,,.

o ¢": the porosity at time ¢ = t,,.

o va : the saturation at time ¢ = ¢,,.

o X" : the hydrostatic compressive strength at time ¢ = ¢,,.

o (™ : the trace of the backstress at time t = t,,.

o P! the plastic strain at time ¢ = t,,.

After the return algorithm has been exercised, the outputs from the algorithm are:

o 6" : the unrotated Cauchy step at time ¢ = t,,,, = t, + At.
o ¢ : the porosity at time ¢ = t,,4,.

o SOt : the saturation at time ¢ = t,,.,.

o X" : the hydrostatic compressive strength at time t = ¢,,,,.
o (™. the trace of the backstress at time t = t,,,.

p>n+1

o £ : the plastic strain at time ¢ = ;.

The update algorithm uses the standard predictor-corrector approach of hypoelastic-plasticity where a
trial predictor stress is computed first and then a corrector return algorithm is used to locate the position
of the correct stress on the yield surface. This approach requires that the trial stress (6™ is computed
using the relation

oMl = g" 4 CC (dAt) (20.46)

where C° is an elastic modulus that is typically assumed to be constant over the time step At. Though
this assumption suffices for nonlinear elastic materials if the rate of deformation is small or the timestep
is small or both, for large dAt significant errors can enter the calculation. The Vaango implementation
assumes that C° is the tangent modulus at the beginning of a timestep (or load substep).

Caveat:

The partially saturated soil model has been developed for an explicit dynamics code where tiemsteps are
typically very small. Care should be exercised if the application domain requires timesteps to be large.

Remark:

Note that in the Kayenta model (which is the basis for Arenisca and Arena), the bulk modulus has a high pressure limit. This
limit was used by Michael Homel in Arenisca3 and Arenisca4 to define conservative elastic properties during the stress and
internal variable update. However, the bulk modulus model used by the partially saturated version of Arena does not have this
limit. Therefore the trial stress for the partially saturated model is computed using an alternative approach that assumes that the

elastic moduli are those at the beginning of the timestep (or load substep).

After the trial stress is computed, the timestep is subdivided into substeps based on the characteristic
dimension of the yield surface relative to the magnitude of the trial stress increment (¢ — ¢"). The
substep size is then recomputed by comparing the elastic properties at 6" with those at 6" to make sure
that the nonlinear elastic solution is accurate.

The pseudocode for the algorithm is given below.

Algorithm 15 The stress and internal variable update algorithm
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1. procedure RATEINDEPENDENTPLASTICUPDATE(d", At, 6", ¢", S, X", (7, €P")

2: K", G" < compuTEELASTICMODULI(6", €', ¢", S}) >Compute tangent bulk and shear
modulus
3: o' « coMPUTETRIALSTRESS(6", K*, G", d", At) >Compute trial stress
4 Ngub < COMPUTESTEPDIVISIONS(c", €P", ¢", S}, amal) >Compute number of substeps
At
5: Ot < D>Substep timestep
Nsub
6: o.old - o.n’ sp,old - Sp,n’ (pold - (/)n’ Sg}ld - S;l/’ Xold - Xn’ (old - (n
7: X < 1, Hocal < 0.0 > Initialize substep multiplier and accumulated time increment
8: isSuccess <~ FALSE
9: repeat
10: isSuccess, @"Y, gPNeW, gnew  gnew  ymew imew . conpuTESUBSTEP(0M, P04, ¢0ld, gold,
Xx°ld, gold gn, 8t) >Compute updated stress and internal variable for the current substep
1 if isSuccess = TRUE then
12: tlocal < tlocal + OF
13: O.OId « ghew, 8p,old « ghnew, (pold - ¢new) S;)/ld - Silvew Xold « Xhew {old - (new
14: else
15: X < 2
16: 0t < Ot/2 I>Halve the timestep
17: if y > CHI_.MAX then
18: return IsSuccess, 6", ¢", S}, X", (", eP" >Algorithm has failed to converge
19: end if
20: end if
21 until £y, > At
22: return IsSuccess, 6"V, ¢"¢Y, SHEW, XV, (MW, ghnew >Algorithm has converged

23: end procedure

Algorithm 16 Computing the elastic moduli

1 procedure coMPUTEELASTICMODULI(0", €P", ¢", S}})
2 K<+o0,G<o__
I, < —tr(o"), &) « —tr(eP™)

3:
4 if S}, > o then

5: K, G < cOMPUTEPARTIALSATURATEDMODULI(],, &), ¢, SD)
6: else .

7: K, G« COMPUTEDRAINEDMODULI(I_I, 85)

8: end if

9: return K, G

10: end procedure

Algorithm 17 Computing the partially saturated elastic moduli

Require: Ko, 15, I_Jsoa Ko, 1y, pwo’ Y I_7r
1: procedure COMPUTEPARTIALSATURATEDMoDULI(T,, &), ¢, S1)

2: if I, > o then

3: p<1L/3

4: Ks <« Kso + nS(ﬁ - I_)SO)

5 Ky, <_Kw0+”w(1_7_1_7W0)
6: Ko < y(p+pr)

Ky, G < COMPUTEDRAINEDMODULI(I_I, 8_13)
8: K¢ < 1.0/ [S},/Ky + (1.0 = S},) /K, ] I>Bulk modulus of air + water mixture
9: numer < (1.0 — K;/K;)?

D
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10: denom < (1.0/K;) (1.0 -~ K4/K;) + ¢" (1.0/Kf — 1.0/K)

1 K < K; + numer/denom D> Bulk modulus of partially saturated material (Biot-Grassman
model)

12: else o

13: K, G < compuTEDRAINEDMODULI(];, eh)

14: end if

15: return K, G

16: end procedure

Algorithm 18 Computing the drained elastic moduli

Require: K, 1, 1_7507 bo, by, by, b37 b4’ Go, V1> Vs,
1. procedure cCOMPUTEDRAINEDMoODULI(I;, )

2: if I, > o then

3: I_) - Il/3

4 K; < Ko + ns(]_) - I_)so)

5: K2 « Ko /(1.0 — ng * p/Ky)

6: &5 < Pow((b; * p)/(b,Ks — b,p), (1.0/b,));

7: y < pow(e;, by)

8: z< by+0b,

9: K « Ki°[b, + (1/€2)b,byb,y/2%]; > Compute compressive bulk modulus
10: v =, +v,exp(-K/K;)

11: G« Go

12: if v > o then

13: G < 1.5K (1.0 —2.0v)/(1.0+ v) > Update the shear modulus (if nu,, v, > o)
14: end if

15: else

16: K < by,K,, > Tensile bulk modulus = Bulk modulus at p = o
17: G < G, > Tensile shear modulus
18: end if

19: return K, G

20: end procedure

Algorithm 19 Computing the trial stress

1 procedure coMPUTETRIALSTRESS(0", K", G", d", At)

2 Ae <« d™ At > Total strain increment
3: AES Jtr(Ae)I

4 Al « Ag — Ag°

5 otmal g0 4 3I<nA£iso + 2GnA£dev

6: return ¢!

7: end procedure

Algorithm 20 Computing the initial number of substeps

. k -
Require: n™*, P STREN, € «< 1074
1 procedure COMPUTESTEPDIVISIONS(a", €P", ¢7, S, g2, X™)

2: K", G" < compuTEELASTICMODULI(6", €, ¢", S})
3: Kl Gtel  compuTEELASTICMODULI(6' ), €97, @7, 1)
4 nPulk  |K™ - Kl /K™ >Compute change in bulk modulus
5: Ao < O.trial —o"
L peak  pn
6 L L(IP-x™)



20.7

20.7.1

156 Arena: Partially Saturated Soils

if STREN > o.0 then

7

8: L < MIN(L, STREN)

9: end if
10: nVield e x |Ag| /L] >Compute trial stress increment relative to yield surface size
1 1% Max(nbuk, jyield) >n is the maximum of the two values
12: if 7% > 1™ then

13: nsb 4

14: else

15: 1%« MIN(MAX (1P, 1), n™2X)

16: end if

17: return ">

18: end procedure

Algorithm 21 Computing the stress and internal variable update for a substep

1. procedure COMPUTESUBSTEP(O’Old, gpold, ¢°ld, vald, xold, 4 old gn g t)

2: Kold Gold COMPUTEELASTICMODULI(O’OM, gpold, ¢°1d, Sf}d) >Compute tangent bulk and
shear modulus
3: de <« d"6t >>Compute strain increment
4 o « compuTETRIALSTRESS(6°4, KO, GOl d", Af) >Compute trial stress
5: pirial  /yurial < grRESSINVARIANTS(0' ) >Compute invariants of the trial stress
6: isElastic « EVALYIELDCONDITION(I{rial, \/ Jirial, xold, 4 old  gold (gold B)
7: if isElastic = TRUE then
3: oV O.trial’ ehnew sp,old’ (/)new - (POld’ S;l/ew - Sﬁ,ld, Xnew Xold’ (new - (old
9: isSuccess = TRUE
10: return isSuccess, "V, gPNEW $NEW GIEW X nEW new
1L end if
128 0°, 0eP° « NONHARDENINGRETURN(O'Old, gtral §g xold (01‘1, Kold gold, B, Ifeak) >Compute
return to updated yield surface (no hardening)
13 isSuccess, g€V, ghnew xmew gmew gmid omid _ oonsisTENCYBISECTION(€POM, 5P, (01, 6O,

otrial gold Gold B Ipeak)
> > > > 41
14: if iSuccess = FALSE then

15: return isSuccess, 6%, gP0ld, gold, gold  xold ' rold
16: end if
17: return isSuccess, g7V, gPNEY, $NEW, SEW XNEW | [new

18: end procedure

The consistency bisection algorithm

Fixed (nonhardening) yield surface

Let the stress at the beginning of the load step be 6°!¢ and let the trial stress be 6", Assume the yield
surface is fixed and let the correct projection of the trial stress on to the fixed yield surface be ¢"“"°.

The increment of stress for the load step (Ac?®) is related to the elastic strain increment (A&“°)by

Ag® = g0 — o_old =C: Ae®° (20.47)

where C is a constant elastic modulus tensor. The elastic modulus tensor can be assumed to be an average
value of the nonlinear tangent modulus for the load step.

If we know C, we can compute the elastic strain increment using

Ae®° =C™: Ac°. (20.48)
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For a strain driven update algorithm, the total strain increment Ae¢ is known. Assuming that the total
strain increment can be additively decomposed into an elastic and a plastic part, we can find the plastic
strain increment (A&P°) using

AeP° = Ag — Ae®°. (20.49)

Hardening yield surface

Now, if we allow the yield surface to harden, the distance between the trial stress point and its projection
on to the yield surface decreases compared to that for a fixed yield surface. If AgP is the plastic strain
increment for a hardening yield surface, we have

AP > AeP® (20.50)

where the inequality can be evaluated using an appropriate Euclidean norm. Note that this distance is
proportional to the consistency parameter A.

Fully saturated model

In the fully saturated version of the Arenisca model, the internal variables are the hydrostatic compressive
strength (X) and the scalar isotropic backstress ({). These depend only on the volumetric plastic strain
increment

Aed = tr(A€P). (20.51)
Because
Aed > Aeb° (20.52)

we can define a parameter, 7 € (0, 1), such that

Aeb

= —F. 20.
AeD® (20.53)

11 :

Because the solution is bounded by the fixed yield surface, a bisection algorithm can be used to find the
parameter 7.

Partially saturated model

TODO

Bisection algorithm: Fully saturated

Algorithm 22 The consistency bisection algorithm for fully saturated materials

i k
1: procedure CONSISTENCYBISECTION(gP?d, §gP0, (04, g0, gtrial gold Gold | g ppeaty

0"V « ¢°, OeP < HeP°
,old ,old
PO tr(ePld), §eb O  tr(dePold)

N

3

4 i<1

5 l/lin <o, nout -1
6: repeat

7 j<1

8 isElastic <~ TRUE

9 while isElastic = TRUE do

10: nmid - i(ﬂout + nin)
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11:

12:

13:

14:
15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:

28:
29:
30:
3L
32!
33:
34
35:
36:
37
38:
39:
40:
41:

42:

44:
45:
46:

;old i , .
X"V « coMPUTEHYDROSTATICSTRENGTH(eD " + ™4 §¢8°°) 1> Update the hydrostatic
compressive strength

8_(,; < COMPUTEDERIVATIVEOFBACKSTRESS(Arguments?)

oe;,

(heW (Old + (5_(1’) x (qmid 5sv’°) > Update the isotropic backstress
SV

il /yrial  grRESSINVARIANTS(0'2)) >Compute invariants of the trial stress

isElastic « EVALYIELDCONDITION(Jl, | /]trial | ynew gnew ' grold "old g

7O < pmid I>Too much plastic strain

j<j+1

if j > j™ then
isSuccess <~ FALSE
return isSuccess
end if
end while
O_mld. - i(O'OId + O_nev.l)
£p,m1d - sp,old + iﬂmld Seb°
Kmid gmid . compuTeELASTICMODULI(6™!, £PMid)
o.new’ SePnew NONHARDENINGRETURN(O'OM, o.trial’ 88new) Xnew’ cnew’ Kmid’ Gmid’ ﬂ) Ifeak)
> Compute return to updated yield surface (no hardening)
if sign(tr(a"! - ¢"%)) # sign(tr(¢" — 6°)) or | 8PV > ™4 |5&P°| then
7O <« pmid >Too much plastic strain
else
if 6677, < 4™ | 5P|, then
7 <« pmid o> Too little plastic strain
end if
end if
i< i+1
if i > i™* then
isSuccess < FALSE
return isSuccess
end if
until abs([|0P2V|| — #™id | §eP°| ) < TOLERANCE
gPnew = gpold | geponew > Update the plastic strain
X" « coMPUTEHYDROSTATICSTRENGTH(tr(eP™")) > Update the hydrostatic compressive
strength
a¢
o¢h
(new o gold 4 (g—:;) x (tr(8eP"ev)) > Update the isotropic backstress
v

isSuccess < TRUE
return isSuccess, o
end procedure

< COMPUTEDERIVATIVEOFBACKSTRESS(Arguments?)

new  gp.New  ynew Cnew’ Kmid, Gmid

The nonhardening return algorithm

Let the plastic flow direction be M. Then

e =M. (20.54)
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The nonhardening return algorithm uses a transformed space where the computation is carried out in

special Lode coordinates (z’, r') where

SR
\/5,

and 7/

V3

(20.55)

NON

If the flow rule is non-associative, the yield surface parameter 3 # 1. In that case,

r' < pr'.

(20.56)

The quantities needed by the non-hardening return algorithm are:

Require: as input
trial

e O

. o.old

o O£"eW
. Xold
(old

. Kold
. Gold
I?eak

- B

> Trial stress

I>Stress at the start of the substep

>Increment of total strain

I>Hydrostatic compressive strength

> Isotropic backstress (trace)

> Tangent bulk modulus

> Tangent shear modulus

D> The location of the yield surface vertex

>The yield surface non-associativity parameter

The nonhardening return algorithm pseudocode is listed below:

Algorithm 23 Non-hardening return algorithm

1: procedure NONHARDENINGRETURN(o
prial yrial STRESSINVARIANTS(O'mal)

trial
3: rtrial - ﬁ /2 ];.rial’ Ztrial - \/g

2:

old
4 ( rl)trial - rtrial 3K
2Gold
k
s 10« O L(XOM L ) 10 w0

(o)

I
6: 0« Br/2]0,2° « —
ﬁ 2 \/5

1d
: (r)° «r° —3KO
7 >Gold

old tr1al 8£new Xold COId Kold Gold ﬁ IPeak

>Compute invariants of the trial stress

>Compute Lode coordinates of the trial stress

> Transform the trial r coordinate
>Compute interior point

>Compute Lode coordinates of the interior point

> Transform the interior point r coordinate

8: 0<o
9: repeat
10: 2", (r')"W < APPLYBISECTIONALGORITHM(2®, (1')°, 2!, (¢")trial xold gold ‘grold ‘Gold | g)

D>Find intersection point on the non-hardening yield surface

1: 0, 2, (') « rINDNEWINTERNALPOINT(Z" (7

Gold /3)
12: (r/)o - (r/)rot, ZO - Zrot
13: until 6 < TOLERANCE
14: Iilew — \/gznew’ / gew —

old ../ \new
2G (1)

3K01d \/5 ﬁ

15: Strial - O.trial _ i Iirial I
/]new |
new _ 1 ynew tria
16 0"V =1 s

Cc. (o.new —o

17: OeP "V = e — Old)

/)trial’ Znew’ (r/)new’ 9’ Xold, (old, Kold’

>Apply rotation algorithm to find new internal point

>>Compute updated stress invariants

>Compute deviatoric trial stress
>Compute updated stress

>Compute plastic strain increment
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18: return Outputs:
o ™Y > Updated stress tensor
o HePDEW >Increment in plastic strain

19: end procedure

Algorithm 24 Apply bisection algorithm to find point on yield surface.

1 procedure APPLYBISECTIONALGORITHM(2%, (r')°, z!Mial, (#/)trial| xold  gold " jrold "Gold gy

2 qin <o, ﬂout 1
while 7°" - 4™ > TOL do
& ﬂmid — i(ﬂin + ﬂout)

. [ Zmid :| - mid[ Ztrial — 20 :| ) [ 2° :|
5: (r/)mid n (r/)trial _ (1")0 (7’/)0

6: isElastic « EVALYIELDCONDITION(z™9, (r' )mid, xold gold gold " Gold B)
7: if isElastic = TRUE then

3: nin - qmid

o: else

10: nout - ’,lmid

11 end if

12: end while

13 20w Zmid’ (rl)new - (rl)mid

14: return z"V, (r')"V

15: end procedure

Algorithm 25 Rotation around trial state to find internal point inside yield surface

1: procedure FINDNEWINTERNALPOINT (219, (7")trial, znew (y/ynew g xold rold grold " old " gy
2: n<o

3: repeat
4: n<«<n+1
" T L floor(n)
5 6 (—1)"x—x(3)
cosf —sin6
6:
[Q] < sinf cosf
2ot Zhew _ Ztrial Ztrial
7: |:(r/)r0t:| < [Q]- |:(r/)new _ (rl)tria1:| + |:(r/)trial:|
8: isElastic < EVALYIELDCONDITION(z™!, (#/)™t, X°ld, ¢old gold Gold ' gy
9: until isElastic = FALSE
10: return 0, z™, (r/)™

1: end procedure

Algorithm 26 Evaluate the yield condition

1: procedure EVALYIELDCONDITION(z"®Y, (#/)ne%, X°ld, gold gold Gold ' g)
2‘Gold 1
MW 32NV JnewW | —— x —— x (¢/)"V > Transform back into stress space
1 2 3K01d \/5/5 ( ) d 4

3 isElastic <~ EVALYIELDCONDITION(I}®Y, /J0ev, xeld gold " gold " Gold B)
4 return isElastic
5: end procedure

N
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At present we allow only three independent variables in VAANGO . )

MPM tabular material data is often of the form shown in Figure 21.1. In this particular data set, we have
three independent variables: the plastic strain (), the saturation («), and the strain (¢). Pressure (p) is
the dependent variable. The data represents a function of the form p = p(e, a, ). We are given an input
point in the three-dimensional independent variable space, (&5, &0, o), and we would like to find the
corresponding value of the pressure, p,.

Pressure (P)

uz\J Strain (¢)

Plastic Strain ()

Figure 21.1: Schematic of tabular material data for MPM constitutive models. The circle in blue is the
input data point for which we would like to find the pressure.

As we can see from the figure, the data are largely unstructured. However, there is some structure to
the data. For instance, the data are provided for three values of saturation, [a,, &,, a;]. For each value
of a, we have data for a few plastic strain values: a, : [Bi1, Bz Bi3]> @2 ¢ [Bar> Bazs Pazs Bags - -+ |» and s :
[Bs1> B35 - - - |. Finally, for each value of the plastic strain, we have a pressure-strain curve, for example,
for a,, /311 : [sup €1125 €1135 -+ - > suN] and [Pm, Puzs Puzs - - - ;puN]’ or for s, ﬁ32 : [8321’ €3225 83235+ 4 - 832M]
and [ Psa1> P32t Pars - - - » P ] Clearly, the data become quite complex as the number of dimensions is
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increased.

Linear interpolation

The procedure below assumes that the o values are sorted in ascending order. If oy ¢ [oty, atn],
VaanGo will throw an exception and exit. Also observe that at least two sets of data are needed for
the interpolation procedure to work.

In this section we describe the process used in VAANGO to interpolate the data. For simplicity, we only
consider two independent variables, the saturation («) and the strain (¢) as shown in Figure 21.2.

Pressure (P)

Strain (¢)

Figure 21.2: Schematic of a three variable table of material data. The circle in blue is the input point for
which we would like to find the pressure.

The first step in the process is to find the pressure-strain data that are needed for the interpolation process.
This can be accomplished by iterating through the as and finding a value of the parameter s € [0, 1] where

O — &
s:o—k, k=12,...,N—-1 (21.1)
K1 — Ak

where N is the number of values of « for which data area available.

Once the two curves needed for interpolation have been identified, the next step is to find the segments of
the pressure-strain curves that correspond to the input variable ¢,. These segments are highlighted with
thick lines in Figure 21.3. The two associated parameters ¢, and ¢, are calculated using

Eo — &k
tlz—], k:1,2,...,Mj—1
Eik+1~ Ejk (21.2)
o — &jr1k ’
tZ:—J k:1,2,...,Mj+1—1

b
Ejrrk+1 ~ €tk
where ¢; i is a point on the pressure-strain curve for saturation «, and M; is the number of points on the
curve.

We can now compute the pressures at these two points, using

P = (1 - tl)pj,k + tlpj,kﬂ

(21.3)
p>= (1- tz)Pj+1,k + LPjrkn
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Pressure (p)

Strain (£)

Figure 21.3: Second stage of interpolation of a three variable table of material data. The circle in blue is
the input point for which we would like to find the pressure.

The final step of the process is to compute the interpolated pressure p, using

Po=(—=3)p;+sp,. (21.4)

A schematic of this operation is shown in Figure 21.4.

Pressure (p)

Strain (g)

Figure 21.4: Final stage of interpolation of a three variable table of material data. The circle in blue is the
input point and the red circle is the interpolated value.

The tabular equation of state

For the tabular equation of state, we assume that there is only one independent variable, the density ratio
n = p/po where p is the current mass density and p, is its reference value. The dependent variable is
the pressure, p = p(#), which is positive in compression. A linear interpolation is done to compute the
pressure for a given state of deformation.

The bulk modulus is computed using

K= p|Plre)=pln=e) (205)

2€
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The tolerance e is hardcoded to 107 in VAANGO but may not be adequate for some problems. )

The tabular plasticity model

The tabular plasticity model was designed for materials that have almost no tensile strength, and the
inputs are expected in the compression positive convention. Note that the general convention used in
the Vaango code is that tension is positive and compression is negative. Conversions are done internally
in the code to make sure that signs are consistent.

The model uses isotropic elasticity, with a shear modulus that is either a constant (G,) or determined
using a Poisson’s ratio (v) from the tabular bulk modulus, K(p):

_ 3K(1-2v)

2(1+v) (216)

This relation is activated if v € [-1.0, 0.5), otherwise the constant shear modulus is used.

The tangent bulk modulus is determined from a table of unloading curves (see Figure 21.5 of the mean
stress, p, as a function of the total Hencky volumetric strain, £,. Each unloading curve is associated with

a Hencky plastic volumetric strain (¢£). Additive decomposition of the volumetric strains is assumed.
The plastic volumetric strain is subtracted from the total volumetric strain to compute the elastic volu-

metric strain (¢¢). The data stored in the table is therefore of the form 1_)(8‘5 , €2) and the bulk modulus is
computed, after interpolation, using the central difference scheme:

_ P = P =
- > + - 5 -
K(E‘Eo’sso) = P(svo Ero 6) 2617(51/0 fvo 6) (21.7)

6

The tolerance € is hardcoded to 107" in VAANGO and may not be adequate for some problems. )

A

Hydrostat
Loading

Pressure

Plastic Volumetric Strains

IAS SN >
Total Volumetric Strain

Figure 21.5: Unloading curves uses to determine the tangent bulk modulus for the tabular plasticity model
at various plastic strain value.

The tabular yield condition has the form

f=V9h-g(p)=o (21.8)
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The function g(p) is provided in tabular form and is depicted in Figure 21.6(a). To ensure convexity of
the tabular data, a convex hull of the data points is computed first as shown in Figure 21.6(b).

A

1000

Convex hull
g(p) . Input points °

800 - o

o~ 600 d
~
o

VI

'%000 0 2(;00 4(;00 60‘00 8000
P
(a) Yield function (b) Computed hull of the input data

Y

Figure 21.6: Yield function used by the tabular plasticity.

Linear interpolation is used to determine is a stress state is inside the yield surface. We also compute
a normal to the yield surface using linear interpolation and a central difference scheme (similar to that
used to compute the bulk modulus). However, the actual return algorithm uses a geometric closest point
computation rather than the derivative of the yield function with respect to the stress. The approach is
similar to that used in the ARENA material model.

If the number of points in the input table is equal to 2, the yield function is either a von Mises model or
a linear Drucker-Prager model. In that can we find the closest point to the tabular data directly.

For tables with more than two input points, we fit a quadratic B-spline to the closest segment of the input
tabular data and find the closest distance to that spline. Approximating, rather than interpolating, splines
are used to retain the convexity of the yield function.

The B-splines are computed using
sx=a-(Mj-px), sy=a-(M;-p,) (21.9)

where a = (1,1,1%), t € [0,1] parameterizes each segment of the tabular data, py = (xk, Xk11> Xk42)>
Py = (Jk> Yk+1> Yk+2)»> and (xg, yi) are the input o, ..., N — 1 tabular data points. The associated matrices
that are used are:

2 0 o 1 1 o 1 1 o
Mj,=05|-4 4 o|, Mj=os5|-2 2 of|, Mj-xy,=05|-2 2 O (21.10)
2 -3 1 1 -3 2 1 -2 1

Closest point projections of stress states outside the yield surface to fitted B-splines along the yield surface
are shown in Figure 21.7.

Theory behind closest-point projection

The ideas behind the closest-point projection approach were made rigorous in the mid-to-late 1980s by a
group of researchers influenced by developments in convex optimization.
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Figure 21.7: Closest point projections to yield function used by the tabular plasticity.

Background

In nonlinear optimization, the method of Lagrange multipliers has been used since the mid 1800s to solve
minimization problems with *equality* constraints. In 1950, this approach was generalized by Kuhn and
Tucker to allow for *inequality* constraints. Later it was discovered that W. Karush from the University
of Chicago had reached the same conclusions in his MSc thesis from 1939.
Primal form
The primal form of the optimization problem is

minimize f(x)

subjectto gi(x) <o, i=1,...,m (21.11)

hi(x)=0, j=1,...,p

Note that there is no convexity requirement for this problem.

The Lagrangian

The Lagrangian (£) associated with the primal form is just the weighted sum of the objective function f,
and the constraint functions g; and h;. Thus

L(x,A,v) = f(x) +1-g(x) +v-h(x) (21.12)
where
A & V1 h,
A= L , 8= g:z ,v=|"|, h= h:z (21.13)
Am m Vp hp

The vectors A and v are called *Lagrange multiplier vectors* or, more frequently, the *dual variables* of
the primal problem.
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Dual function

The dual function (F(A, v)) to the primal problem is defined as
F(A,v) =inf L(x,A,v) =inf [f(x) +A-g(x) +v-h(x)] (21.14)
Note that the dual function is the minimum of a family of affine functions (linear + a constant term) in

(A, ). This makes the dual problem concave. Note also that since the dual function is affine, it is bounded
from below by —oco when the value of x is unbounded.

Simplified forms for F can be found for many problems, including problems that can be expressed as
quadratic forms.

Dual form

Since the dual function is the largest lower bound on the Lagrangian, the *Lagrange dual form* of the
primal minimization can be expressed as

maximize F(A,v)

21.1
subjectto A>o (21.15)

We don’t have any constraint on v because h(x) = o.

Karush-Kuhn-Tucker optimality conditions

Let x* be the optimal solution for the primal problem and let (1%, ¥v*) be the optimal solution of the dual
problem. When these two solutions lead to a zero duality gap, i.e.,

f(x*)=FQA%,v") (21.16)
the Lagrangian at that optimal point is

LxXA,v") = f(x*)+ 1" -g(x") +v* -h(x") (21.17)
Also, since A* > oand h = o,

f(x")=F(QA",v") = ir;fﬁ(x,/\*, v <L(xAN YY) < f(xY) (21.18)
The only way for the above to be true is when

A g(x')=0 <+« Alg(x")=o. (21.19)

Also, since x* minimizes the Lagrangian, its gradient is zero at that point:

0 o oaw oy Of(x) ., og(x*) , oh(x")
aXE(X,A,V)—O— o +A . +v ax

(21.20)

These results, along with the original constraints of the primal and dual problems, are collected together
into the *Karush-Kuhn-Tucker optimality conditions*:

gi(x") <o hi(x*) =0

Af >0 Agi(x*)=o0

() v 980) . 9h(x)
ox 0x ox

(21.21)
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Similarity with plasticity
The plastic loading-unloading conditions are similar to the Karush-Kush-Tucker optimality conditions
in that we have

g(e) <o, A>o0, Ag(a)=o0 (21.22)

where g(0) is the yield surface constraining the values of 6. We may also interpret the flow rule as the
last Karush-Kuhn-Tucker condition:

—ép+/.lg—g:o where _éP:;ﬂ

p 5o (21.23)

and f (o) is the quantity that is minimized in the primal problem. We can interpret f as the negative of
the maximum plastic dissipation, i.e.,

flo)=-0:¢". (21.24)
If we use a first-order update approach, the discretized equations for perfect plasticity are

. trial .
Opt1 = C: (snﬂ - €‘Z+1) = O'nr:-a1 -C: (sgﬂ - Sﬁ)
0 0
el =€l + AL % or e, =& +AL % (21.25)
On

g(0p) <0, AL>0, AAg(044,) =0

O n+1

Note that if we interpret the flow rule as an optimality condition a backward Euler update is con-
sistent with the Karush-Kuhn-Tucker conditions and a forward Euler update is ruled out.

Closest point return

Let ¢! be the trial stress and let g(¢""#!) be the value of the yield function at that state. Let ¢, be
actual stress and let g(o,,+,) = o be the value of the yield function at the actual stress state.

Let us assume the actual stress state on the yield surface is at the closest distance from the trial stress.
Then we can devise the primal minimization problem:

trial

minimize f(o) =" -a|?

(21.26)
subjectto g(g) <o

where

lo| =Vo:o (21.27)
The Lagrangian for this problem is

L(0,)) = f(6) + AAg(0) = |6 - a|* + Adg(0) (21.28)
The Karush-Kuhn-Tucker conditions for this problem at the optimum value ¢, are

g(0p11) <0, AL>0, AAg(0y4y) =0

. (21.29)
9f (6n+1) + Alag(anﬂ) _ —z(amal—anﬂ) + AAag(anﬂ) o
do Jo Jo

From the last condition we see that the closest distance using this criterion leads to a stress value of

08(0411)
do

G ey = oM — ZAM (21.30)
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But we have seen previously that the first-order stress update with backward Euler leads to

08(0411)
do

The similarity between the two indicates that we are on the right track, i.e., the actual stress is at the closest
distance from the trial stress to the yield surface. But the correct closest distance is not in the standard
standard stress space, but in a space where the norm to be minimized is given by

L Ly Y oF (21.31)

[o|c=Ve:C':a (21.32)

This can be verified by repeating the above exercise with the new definition of the norm. More specif-
ically, the correct updated stress is at the shortest distance from the trial stress to the yield surface in a
9-dimensional space that has the Euclidean distance measure

loflc=Ve:C1:a (21.33)

where C is the stiffness tensor. We will explore some of the implications of this idea in this article.

Note that this particular closest-point interpretation applies only for *perfect plasticity* and only
*associative* flow rules. For hardening plasticity, the space in which the actual stress is closest to
the trial stress is different. For non-associative plasticity, it is unclear whether any closest-point
approach can be rigorously justified.

Eigendecompositions in linear elasticity
The stiffness tensor for an isotropic elastic material is

C=AI@I+2ul (21.34)
where A, y are the Lamé elastic constants, I is the rank-2 identity tensor, and I° is the symmetric rank-4

identity tensor. The inverse of C is the compliance tensor

Cﬂ:S:———JL——I®I+145 (21.35)
204 (30 +24) 24

Eigendecompositions of the stiffness and compliance tensors are defined via
C:V=2V, S:V=1V (21.36)

where A are the eigenvalues (not to be confused with the Lamé modulus) and V are rank-2 tensors that
form the eigenbasis. Because of the symmetries of the stiffness matrix, there are six or less unique eigen-
values and the corresponding eigentensors are orthogonal, i.e.,

Vi:Vi=1 and V;:V;=o. (21.37)
The stiffness and compliance tensors may then be represented as:

1

CZZ/L'V,‘®V,', S:ZA

i=1 i=1

Vi®V; (21.38)

where m is the number of non-zero and distinct eigenvalues. Note also that, in this eigenbasis, the sym-
metric rank-4 identity tensor is

m
IF=>VieV;. (21.39)

i=1
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Eigenprojectors are defined as rank-4 tensors that have the property (for i # j)
Pi : Vi = V,’ s Pi : V] =0 (21.40)

If we apply the eigenprojector to the rank-4 identity tensor, we get

m m
Pk = Pk (= ZPk : (V,’ ®V,’) = Z(Pk:Vi) ®V; = (Pk :Vk) ®Vk :Vk®Vk (21.41)

i=1 i=1
Therefore we may also write the eigendecomposition in terms of the eigenprojectors

m

AiPi, S:ixpi, IF=>"P;. (21.42)

=1 "1 i=1

C=

™Mz

1l
-

For isotropic materials, a small amount of algebra shows that there are two unique eigenvectors which
lead to the decomposition

C=AP,+A,P, where S-= %Pl + /%PZ (21.43)

1 2

and
P1=§I®I, P,=1-P,. (21.44)
We can now express the stiffness and compliance tensors in terms of these eigenprojections:
— 2 N
C= (K—;y) I®I+2ul
. C (21.45)
=3K(EI®I)+2‘M (I _§I®I)

where « is the bulk modulus and y is the shear modulus. Also,
s-1(L-L)rers Le
3\3k 24 2f (21.46)

=3ix(§1®1)+$(|5—§1®1)

Therefore, we can write

C =3k P 4 PYMY  apnd S = 3LK piso 4 i psymdev (21.47)

where Pi%° = P, and PSYmdev — 2,

It is also worth noting that if
c/>.c/*:=C and SY*:5Y*:=S (21.48)

then, using the property that P, : P, = 0,

C* = /AP, + VAP, where SV7- \/}_Pl + \/#A_Pz (21.49)

In that case, we have

Cl/2 _ \/?,—Kpiso+\/ﬁpsymdev and Sl/z _ \/13_K piso | 12H Psymdev (21.50)
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The transformed space for isotropic linear elasticity

Details of the transformed space for isotropic linear elasticity were worked out by M. Homel in his 2014
PhD dissertation. We will follow his approach in this section.

The distance measure
lo|s=ve:S:o (21.51)

can be interpreted as a standard Euclidean distance measure in a transformed stress space by observing
that

lolls = \/(0' :SY2): (SY2:6) where S$Y/*:5Y2:=§

= \/(51/2 :0):(SY2:6) using the major symmetry of S (21.52)
=V 0" = o]

We would like to calculate the transformed stress tensor.

The Lode invariants and the Lode basis

The Lode basis (described by R. M. Brannon in 2009) is an alternative basis that can be used to decompose
the stress tensor. Let us define the following deviatoric quantities:

s=dev(s) =0 —tr(0)l and t=dev(s-s)=s-s-tr(s-s)I (21.53)

The quantity ¢ is also called the *Hill tensor*.

The Lode invariants of a stress tensor are

s
z= ﬁtr(a) , r=|s|, sin3f = 3\/gdet(—) (21.54)
sl
These invariants are associated with an orthonormal set of unit tensors
A sin20-5-
s [~ S 3V
E,=-21I, E,=—, Egp= 21.
v = Te) B <0530 (21.55)
The stress can be expressed in terms of the Lode basis as
o0=zE,+rE,. (21.56)
The transformed stress tensor
We can now compute the transformed stress tensor:
* 1/2 . 1 iso 1 symdev | .
c"=5":6=|—P%+—FP :(zE,+rE,). (21.57)
/3K V2U
We can show that
Piso :E,=E,, Piso ‘E, =0, Psymdev :E,=o0, Psymdev :E, =E, (21.58)
Therefore,
. z r
c=——E,+ —E, (21.59)
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We can also show that the transformed stress vector remains geometrically unchanged (in the sense that
angles are unchanged) if we express it as

6" =zE, +, /S—KrE, =:zE, +r'E, (21.60)
24

So we have a straightforward way of computing stresses in the transformed space and use this idea in the
geometrical closest point return algorithm.
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Shell theory

The continuum-based approach to shell theory has been chosen because of the relative ease of implemen-
tation of constitutive models in this approach compared to exact geometrical descriptions of the shell. In
order to include transverse shear strains in the shell, a modified Reissner-Mindlin assum The major as-
sumptions of the shell formulation are [82, 83]

1. 'The normal to the mid-surface of the shell remains straight but not necessarily normal. The direc-
tion of the initial normal is called the “fiber” direction and it is the evolution of the fiber that is
tracked.

2. The stress normal to the mid-surface vanishes (plane stress)

3. The momentum due to the extension of the fiber and the momentum balance in the direction of
the fiber are neglected.

4. The curvature of the shell at a material point is neglected.

The shell formulation is based on a plate formulation by Lewis et al. [83]. A discussion of the formulation
follows.

The velocity field in the shell is given by

w(a,B) =u(a, B) +z w(a, B) x n(a, B) + zn(a, B) (22.1)

where w is the velocity of a point in the shell, u is the velocity of the center of mass of the shell, n is the
normal or director vector, w is the angular velocity of the director, («, ) are orthogonal co-ordinates on
the mid-surface of the shell, z is the perpendicular distance from the mid-surface of the shell, and z is the
rate of change of the length of the shell director.

Since momentum balance is not enforced for the motion in the direction of the director n, the terms
involving z are dropped in constructing the equations of motion. These terms are also omitted in the
deformation gradient calculation. However, the thickness change in the shell is not neglected in the com-
putation of internal forces and moments. Equation (22.1) can therefore be written as

w(a, ) =u(a, B) +zr(a, B) (22.2)

where r, the rotation rate of n, is a vector that is perpendicular to n.

The velocity gradient tensor for w is used to compute the stresses in the shell. If the curvature of the shell
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is neglected, i.e., the shell is piecewise plane, the velocity gradient tensor for w can be written as
Vw = [V(S)u+zv(s)r] +r®n (22.3)

where r ® n represents the dyadic product, and V*) is the in-surface gradient operator, defined as,
v =[v()]e1¥). (22.4)

The o represents a tensor inner product and I¢) is the in-surface identity tensor (or the projection oper-
ator), defined as,

I® —I-nen. (22.5)

It should be noted that, for accuracy, the vector n should not deviate significantly from the actual normal
to the surface (i.e., the transverse shear strains should be small).

The determination of the shell velocity tensor Vw requires the determination of the center of mass velocity
u of the shell. This quantity is determined using the balance of linear momentum in the shell. The local
three-dimensional equation of motion for the shell is, in the absence of body forces,

Veo=pa (22.6)

where sigma is the stress tensor, p is the density of the shell material, and a is the acceleration of the shell.
The two-dimensional form of the linear momentum balance equation (22.6) with respect to the surface
of the shell is given by

v e(o)=pa. (22.7)

The acceleration of the material points in the shell are now due to the in-surface divergence of the average
stress (o) in the shell, given by

(0):= % f:j o(z)dz (22.8)

where h* is the “thickness” of the shell (along the director) from the center of mass to the “top” of the
shell, 4~ is the thickness from the center of mass to the “bottom” of the shell, and & = h* + h™. The point
of departure from the formulation of Lewis et al. [83] is that instead of separate linear momentum balance
laws for shell and non-shell materials, a single global momentum balance is used and the “plane stress”
condition g, = o is enforced in the shell stress update, where the subscript zz represents the direction of
the shell director.

The shell director n and its rotation rate r also need to be known before the shell velocity gradient tensor
Vw can be determined. These quantities are determined using an equation for the conservation of angular
momentum [84], given by

V(S)oM—no(a)oI(s):iphzl‘ (22.9)
12
where I is the rotational acceleration of n, p is the density of the shell material, and M is the average
moment, defined as

h+
M:=10) o [% fh_ 0(z) z dz] oIC) (22.10)

The center-of-mass velocity u, the director n and its rate of rotation r provide a means to obtain the
velocity of material points on the shell. The shell is divided into a number of layers with discrete values of
z and the layer-wise gradient of the shell velocity is used to compute the stress and deformation in each
layer of the shell.



22.2

22.2.1

22.2 Shell Implementation for the Material Point Method 175

Shell Implementation for the Material Point Method

The shell description given in the previous section has been implemented such that the standard steps of
the material point method [1] remain the same for all materials. Some additional steps are performed for
shell materials. These steps are encapsulated within the shell constitutive model.

The steps involved for each time increment At are discussed below. The superscript n represents the value
of the state variables at time n At while the superscript # + 1 represents the value at time (n +1) At. Note
that At need not necessarily be constant. In the following, the subscript p is used to index material point
variables while the subscript v is used to index grid vertex variables. The notation }_, denotes summation

over material points and }’, denotes summation over grid vertices. Zeroth order interpolation functions

associated with each material point are denoted by S éov) while first order interpolation functions are de-

noted by Sf,fﬂ.

Interpolate state data from material points to the grid.

The state variables are interpolated from the material points to the grid vertices using the contiguous
generalized interpolation material point (GIMP) method [85]. In the GIMP method material points are
defined by particle characteristic functions y,(x) which are required to be a partition of unity,

Yap(x) =1V xeQ (22.11)
p

where x is the position of a point in the body Q. A continuous representation of the property f(x) is
given by
f(x) = pr Xp(X) (22.12)
p

where f, is the value at a material point. Similarly, a continuous representation of the grid data is given
by

g(x) = ng Sy(x) (22.13)
where

Z Sy(x)=1V xeQ. (22.14)

14

To interpolate particle data to the grid, the interpolation (or weighting functions) S élg are used, which are
defined as

ny_1
SP,V = Vp [)PQQ XP(X) SV(X) dx (22.15)

where V), is the volume associated with a material point, Q, is the region of non-zero support for the
material point, and

ZS}(;?, =1V x€Q,. (22.16)

14

The state variables that are interpolated to the grid in this step are the mass (), momentum (mu), volume
(V), external forces (f**'), temperature (T), and specific volume (v) using relations of the form

m, = Z mp S;la . (22.17)
p
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In our computations, bilinear hat functions S, were used that lead to interpolation functions S 1(,13 with
non-zero support in adjacent grid cells and in the next nearest neighbor grid cells. Details of these func-
tions can be found in reference [85].

For shell materials, an additional step is required to inhabit the grid vertices with the interpolated normal
rotation rate from the particles. However, instead of interpolating the angular momentum, the quantity
pp = myr, is interpolated to the grid using the relation

py = pr Sz(y:)» . (22.18)
p

At the grid, the rotation rate is recovered using
r, = py/my (22.19)

This approximation is required because the moment of inertia contains 4* terms which can be very small
for thin shells. Floating point errors are magnified when m, is multiplied by h*. In addition, it is not
desirable to interpolate the plate thickness to the grid.

Compute heat and momentum exchange due to contact.

In this step, any heat and momentum exchange between bodies inside the computational domain is per-
formed through the grid. Details of contact algorithms used my the material point method can be found
in references [1, 6, 16]. subsection Compute the stress tensor. The stress tensor computation follows the
procedure for hyperelastic materials cited in reference [23]. However, some extra steps are required for
shell materials. The stress update is performed using a forward Euler explicit time stepping procedure.
The velocity gradient Vw at a material point is required for the stress update. This quantity is determined
using equation (22.3). The velocity gradient of the center of mass of the shell (Vu) is computed from the
grid velocities using gradient weighting functions of the form

(n_1
VS = Vp .[meQ Xp(x) VS, (x) dx (22.20)
so that
Vu, = Zuv VS;(;)/ . (22.21)

The gradient of the rotation rate (Vr) is also interpolated to the particles using the same procedure, i.e.,

Vrp=> 1, VS},TZ ) (22.22)
v
The next step is to calculate the in-surface gradients V(s)up and V(S)rp. These are calculated as

V(S)up =Vu,e (I - nz ® nZ) (22.23)
V(S)rp =Vrpe (I -n;® nZ) (22.24)

The superscript # represents the values at the end of the n-th time step. The shell is now divided into a
number of layers with different values of z (these can be considered to be equivalent to Gauss points to be
used in the integration over z). The number of layers depends on the requirements of the problem. Three
layers are used to obtain the results that follow. The velocity gradient Vw, is calculated for each of the
layers using equation (22.3). For a shell with three layers (top, center and bottom), the velocity gradients
are given by

letf,op = [V(S)up +ht V(S)rp] +1, ®n) (22.25)
V‘V}:’en _ V(S)up 4 rZ ® n; (22.26)

ngm = [V(S)up -h” V(S)rp] + r; ® n; (22.27)
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The increment of deformation gradient (AF) in each layer is computed using
AF, = At Vw, +1 (22.28)

The total deformation gradient (F) in each layer is updated using

~1+1

F, =AF,e F; (22.29)
where F;ﬂ is the intermediate updated deformation gradient prior to application of the “plane stress”
condition.

The stress in the shell is computed using a stored energy function (W) of the form

W= lI([l(]2—1)—ln]] +1G[tr(l_))—3] (22.30)
2 L2 2
where K is the bulk modulus, G is the shear modulus, J is the Jacobian (J = det F), and b is the volume
preserving part of the left Cauchy-Green strain tensor, defined as

b= ]_iF oFT (22.31)

The Cauchy stress then has the form
a:lK(]—l)I+E[l_)—£tr(l_))] . (22.32)
2 J J 3

The “plane stress” condition in the thickness direction of the shell is applied at this stage using an iterative
Newton method. To apply this condition, the deformation gradient tensor has to be rotated such that its
(33) component is aligned with the (zz) direction of the shell. The rotation tensor is the one required to
rotate the vector e; = (0,0,1) to the direction n}’, about the vector e, x n;. If 6 is the angle of rotation
and a is the unit vector along axis of rotation, the rotation tensor is given by (using the derivative of the
Euler-Rodrigues formula)

R=cosf(I-a®a)+a®a-sinf A (22.33)
where
o -ay; a,
A=la;, o -af. (22.34)

-a, a, O
The rotated deformation gradient in each layer is given by
~Nn+1

rot _ T
F'=ReF, eR'. (22.35)

The updated stress (a;"t) is calculated in this rotated coordinate system using equation (22.32). Thus,

3 1 1 G [-rot 1 —rot
p p

An iterative Newton method is used to determine the deformation gradient component F;; for which

o
the stress component oy, is zero. The “plane stress” deformation gradient is denoted F and the stress is

denoted @.

At this stage, the updated thickness of the shell at a material point is calculated from the relations
Wi, =ht f 10722(+z) dz (22.37)

Wiy = hg /l Iojzz(—l) dz (22.38)
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where i} and h; are the initial values, and h;;,, and h, ., are the updated values, of k" and /™, respectively.

In the next step, the deformation gradient and stress values for all the layers at each material point are
rotated back to the original coordinate system. The updated Cauchy stress and deformation gradient are

F)" =R"eFeR (22.39)
o, = RTeceR. (22.40)

The deformed volume of the shell is approximated using the Jacobian of the deformation gradient at the
center of mass of the shell

V;ﬂ = V; ]";H . (22.41)

Compute the internal force and moment.

The internal force for general materials is computed at the grid using the relation

fint = 3 [a;“ . VSE,?,] Vp'“rl (22.42)
p

For shell materials, this relation takes the form

£ 3 [{op) e vsi] v (243
p

In addition to internal forces, the formulation for shell materials requires the computation of internal
moments in order to solve for the rotational acceleration in the rotational inertia equation (22.9). To
obtain the discretized form of equation (22.9), the equation is integrated over the volume of the shell
leading to [83]

_ zp: [(Mp . VSI(:*)/ . I(S)) + (np . (ap) . I(S)) Séov)] V= (i %: Séov) my h;) Iy . (22.44)

The average stress over the thickness of the shell is calculated using equation (22.8) and the average mo-
ment is calculated using equation (22.10). The trapezoidal rule is used in both cases. Thus,

(a?“) = ﬁ [:j: oy (2) dz (22.45)
M";“ =19 o [ ! f:_zﬂ azﬂ(z) z dz] oI (22.46)
n+1 J=Ho
where
1) =1-nj @nj (22.47)

These are required in the balance of rotational inertia that is used to compute the updated rotation rate
and the updated director vector. The internal moment for the shell material points can therefore the
calculated using

m =3 [(M;“ . VSf,fz . I(S)) - (n; o (o)) I(S)) Sfyov)] vy (22.48)
p

In practice, only the first term of equation (22.48) is interpolated to the grid and back to the particles. The
equation of motion for rotational inertia is solved on the particles.
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Solve the equations of motion.

The equations of motion for linear momentum are solved on the grid so that the acceleration at the grid
vertices can be determined. The relation that is used is

u, = m% (£ - £M) (22.49)

where £ are external forces.

The angular momentum equations are solved on the particles after interpolating the term

m, =) (M;Jrl . VSI(,T,)/ . I(S)) (22.50)
p
back to the material points to get t,. The rotational acceleration is calculated using
12 'V,
. p ext =~ (s)
I, = ( ) m —mp—np0<ap)01 (22.51)
mp h; [ p ]

Integrate the acceleration.

The linear acceleration in integrated using a forward Euler rule on the grid, giving the updated velocity
on the grid as

n+1

u, " =u) +Atu, (22.52)

For the rotational acceleration, the same procedure is followed at each material point to obtain an inter-
mediate increment
Atp = At i) (22.53)

The factor m,, h; in the denominator of the right hand side of equation (22.51) makes the differential
equation stiff. An accurate solution of the equation requires an implicit integration or extremely small
time steps. Instead, an implicit correction is made to A¥, by solving the equation [86]

[I + (I - n; ® n;)] Ar, = Af, (22.54)
where A:'p is the corrected value of A¥, and
6 E At\?
B = (—) (22.55)
V, my h

which uses the Young’s modulus E of the shell material. The intermediate rotation rate is updated using

the corrected increment. Thus,
wN+1

r, = rZ +Ar, . (22.56)
Update the shell director and rotate the rotation rate

At this stage, the shell director at each material point is updated. The incremental rotation tensor AR is
calculated using equation (22.33) with rotation angle 6 = |r|At and axis of rotation

" RS
n)xr
P P
a= S (22.57)
n
|np X1, |
The updated director is
nZ“ =ARenj. (22.58)

In addition, the rate of rotation has to be rotated so that the direction is perpendicular to the director
using,
wh+1

r,”' =ARer, . (22.59)
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Interpolate back to the material points and update the state variables.

In the final step, the state variables at the grid are interpolated back to the material points using relations
of the form

uyt = 3 u;‘“S}(,fa (22.60)
v
Typical simulation results

Three tests of the shell formulation have been performed on different shell geometries - a plane shell, a
cylindrical shell, and a spherical shell.

Punched Plane Shell

This problem involves the indentation of a plane, circular shell into a rigid cylindrical die of radius 8 cm.
The shell is made of annealed copper with the properties and dimensions shown in Table 22.1.

Table 22.1: Circular plane shell properties and dimension:s.

Po K G Thickness Radius Velocity
(kg/m3) (GPa) (GPa) (cm) (cm) (m/s)
8930 136.35  45.45 0.3 8 100

Snapshots of the deformation of the shell are shown in Figure 22.1. Substantial deformation of the shell

+ + + +
Al M S5 <SS

Figure 22.1: Deformation of punched circular plane shell.

occurs before particles at the edges tend to tear off. The tearing off of particles is due to the presence
of large rotation rates (r) which are due to the stiffness of the rotational acceleration equation (22.51).
The implicit correction does not appear to be adequate beyond a certain point and a fully implicit shell
formulation may be required for accurate simulation of extremely large deformations.

Particles in the figure have been colored using the equivalent stress at the center-of-mass of the shell.
The stress distribution in the shell is quite uniform, though some artifacts in the form of rings appear. An
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implicit formulation has been shown to remove such artifacts in the stress distribution in membranes [87].
Therefore, an implicit formulation may be useful for the shell formulation. Another possibility is that these
artifacts may be due to membrane and shear locking, a known phenomenon in finite element formulations
of shells based on a continuum approach [82, 88]. Such locking effects can be reduced using an addition
hour glass control step [82] in the simulation.

Pinched Cylindrical Shell

The pinched cylindrical shell is one of the benchmark problems proposed by MacNeal and Harder [89].
The cylindrical shell that has been simulated in this work has dimensions similar to those used by Li et
al. [90]. The shell is pinched by contact with two small rigid solid cylinders placed diametrically opposite
each other and located at the midpoint of the axis of the cylinder. Each of the solid cylinders is 0.25 cm in
radius, 0.5 cm in length, and moves toward the center of the pinched shell in a radial direction at 10 ms™.
The material of the shell is annealed copper (properties are shown in Table 22.1). The cylindrical shell is

2.5 cm in radius, 5.0 cm long, and 0.05 cm thick.

Snapshots of the deformation of the pinched cylindrical shell are shown in Figure 22.2. The deformation

4 4 4 4

O+l O+
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Figure 22.2: Deformation of pinched cylindrical shell.

of the shell proceeds uniformly for 60 ms. However, at this time the increments of rotation rate begin
to increase rapidly at each time step, even though the velocity of the center-of-mass of the shell still re-
mains stable. This effect can be attributed to the stiffness of the rotational inertia equation. The effect is
that extremely large rotation rates are produced at 70 ms causing high velocities and eventual numerical
fracture of the cylinder. The problem may be solved using an implicit shell formulation.

Inflating Spherical Shell

The inflating spherical shell problem is similar to that used to model lipid bilayers by Ayton et al. [91]. The
shell is made of a soft rubbery material with a density of 10 kg m™, a bulk modulus of 60 KPa and a shear
modulus of 30 KPa. The sphere has a radius of 0.5 m and is 1 cm thick. The spherical shell is pressurized
by an initial internal pressure of 10 KPa. The pressure increases in proportion to the internal surface area
as the sphere inflates.

The deformation of the shell with time is shown in Figure 22.3. The particles in the figure are colored on
the basis of the equivalent stress. Though there is some difference between the values at different latitudes
in the sphere, the equivalent stress is quite uniform in the shell. The variation can be reduced using the
implicit material point method [92].
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Figure 22.3: Deformation of inflating spherical shell.

Problems

A shell formulation has been developed and implemented for the explicit time stepping material point
method based on the work of Lewis et al. [83]. Three different shell geometries and loading conditions
have been tested. The results indicate that the stiff nature of the equation for rotational inertia may require
the use of an implicit time stepping scheme for shell materials.

1. Shells and solids cannot interact easily.
2. Shell interpolations should be on a shell-based grid.

Alternative approaches

The approach discussed in the previous section suffers from the defect that particle data from the surface
of the shell are projected on to grid points that are not on the surface of the shell.

This shortcoming has been addressed by Jiang et al. [93] by representing the shell with a surface mesh with
quadrature points rather than with unstructured particles. Particles in a given simulation are represented
either as:

1. standard MPM particles,
2. particles that represent Lagrangian mesh nodes, and
3. particles that represent Lagrangian mesh element quadrature points.

The particle state at time £, includes the position xp, the velocity v}, the mass m,, the volume V), the
elastic deformation gradient F;’", an affine velocity cg, and the material directions D,. Note that the
deformation gradient is stored only in the standard MPM particles and at the shell mesh quadrature
points. The material directions are stored only at the mesh quadrature points. These approaches are
being explored in the research version of VAANGO.
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Introduction

The ICE (Implicit Compressible Eulerian) code for fluid simulations in VAANGO uses a multi-material
CFD approach designed to solve “full physics” simulations of dynamic fluid structure interactions in-
volving large deformations and material transformations (e.g., phase change). “Full physics” refers to
problems involving strong interactions between the fluid field and solid field temperatures and velocities,
with a full Navier Stokes representation of fluid materials and the transient, nonlinear response of solid
materials. These interactions may include chemical or physical transformation between the solid and
fluid fields.

The theoretical and algorithmic basis for the multi-material CFD algorithm presented here is based on
a body of work of several investigators at Los Alamos National Laboratory, primarily Bryan Kashiwa,
Rick Rauenzahn and Matt Lewis. Several reports by these researchers are publicly available and are cited
herein. It is largely through our personal interactions that we have been able to bring these ideas to bear
on the simulations described herein.

An exposition of the governing equations is given in the next section, followed by an algorithmic descrip-
tion of the solution of those equations. This description is first done separately for the materials in the
Eulerian and Lagrangian frames of reference, before details associated with the integrated approach are
given.

Governing Equations

The governing multi-material model equations are stated and described, but not developed, here. Their
development can be found in [11]. Here, our intent is to identify the quantities of interest, of which there
are eight, as well as those equations (or closure models) which govern their behavior. Consider a collec-
tion of N materials, and let the subscript r signify one of the materials, such thatr = 1,2,3,...,N. Inan
arbitary volume of space V (x, t), the averaged thermodynamic state of a material is given by the vector
[ My, uy, er, Ty, vy, 0, 61, p], the elements of which are the r-material mass, velocity, internal energy, tem-
perature, specific volume, volume fraction, stress, and the equilibration pressure. The r-material averaged
density is p; = M,/ V. The rate of change of the state in a volume moving with the velocity of r-material
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is:

1 DM, X
- = I (23.1)
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Equations (23.1-23.3) are the averaged model equations for mass, momentum, and internal energy of -
material, in which o is the mean mixture stress, taken here to be isotropic, so that ¢ = —pI in terms of the
hydrodynamic pressure p. The effects of turbulence have been explicitly omitted from these equations,
and the subsequent solution, for the sake of simplicity. However, including the effects of turbulence is not
precluded by either the model or the solution method used here.

In Eq. (23.2) the term Z?’:I f;s signifies a model for the momentum exchange among materials. This term
results from the deviation of the r-field stress from the mean stress, averaged, and is typically modeled
as a function of the relative velocity between materials at a point. (For a two material problem this term
might look like f;, = K;,6,0,(u, — u,) where the coefficient K,, determines the rate at which momentum
is transferred between materials). Likewise, in Eq. (23.3), XN, g represents an exchange of heat energy
among materials. For a two material problem q,, = H,,60,0,(T, — T,) where T, is the r-material temper-
ature and the coefficient H, is analogous to a convective heat transfer rate coefficient. The heat flux is
jr = —prb: VT, where the thermal diffusion coeflicient b, includes both molecular and turbulent effects
(when the turbulence is included).

In Egs. (23.1-23.3) the term I} is the rate of mass conversion from s-material into r-material, for example,
the burning of a solid or liquid reactant into gaseous products. The rate at which mass conversion occurs
is governed by a reaction model. In Egs. (23.2) and (23.3), the velocity u;, and the enthalpy k7, are those
of the s-material that is converted into r-material. These are simply the mean values associated with the
donor material.

The temperature Ty, specific volume v, volume fraction 6,, and hydrodynamic pressure p are related to
the r-material mass density, p,, and specific internal energy, e, by way of equations of state. The four
relations for the four quantites ( Ty, vy, 6;, p) are:

€r = er(Vn Tr) (23~4)
ve =ve(p, Tt) (23.5)
and
0r = prvr (23.6)
N
0=1-) povs (237)

Equations (23.4) and (23.5) are, respectively, the caloric and thermal equations of state. Equation (23.6)
defines the volume fraction, 0, as the volume of r-material per total material volume, and with that def-
inition, Equation (23.7), referred to as the multi-material equation of state, follows. It defines the unique
value of the hydrodynamic pressure p that allows arbitrary masses of the multiple materials to identically
fill the volume V. This pressure is called the “equilibration” pressure [94].

A closure relation is still needed for the material stress o,. For a fluid o, = —pI + 7, where the deviatoric
stress is well known for Newtonian fluids. For a solid, the material stress is the Cauchy stress. The Cauchy
stress is computed using a solid constitutive model and may depend on the the rate of deformation, the
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current state of deformation (E), the temperature, and possibly a number of history variables. Such a
relationship may be expressed as:

o:=0,(Vu,E., Ty, ...) (23.8)

The approach described here imposes no restrictions on the types of constitutive relations that can be
considered. More specific discussion of some of the models used in this work can be found in the section
on ICE models.

Equations (23.1-23.8) form a set of eight equations for the eight-element state vector,

[ My, uy, er, Ty, vy, 0, 61, p], for any arbitrary volume of space V moving with the r-material velocity. The
approach described here uses the reference frame most suitable for a particular material type. As such,
there is no guarantee that arbitrary volumes will remain coincident for materials described in different
reference frames. This problem is addressed by treating the specific volume as a dynamic variable of the
material state which is integrated forward in time from initial conditions. In so doing, at any time, the
total volume associated with all of the materials is given by:

N
Vi = zMrVr (23.9)

r=1

so the volume fraction is 8, = M,v,/V; (which sums to one by definition). An evolution equation for the
r-material specific volume, derived from the time variation of Egs. (23.4-23.7), has been developed in [11].
It is stated here as:

1D 0 o DT &, DT
VD_;(MrVr) =i V-u+ [Vrrr -k ;vsl"s] + [Grﬁr Igtr -t IZ:; 6535 5; (23.10)
where
(T
f9 - (23.11)
' Zg\; 05k

and «; is the r-material bulk compressibility.

The evaluation of the multi-material equation of state (Eq. (23.7) is still required in order to determine an
equilibrium pressure that results in a common value for the pressure, as well as specific volumes that fill
the total volume identically.

A description of the means by which numerical solutions to the equations in Section 23.2 are found is
presented next. This begins with separate, brief overviews of the methodologies used for the Eulerian and
Lagrangian reference frames. The algorithmic details necesssary for integrating them to achieve a tightly
coupled fluid-structure interaction capability is provided in Sec. 25.

Algorithm Description

The Eulerian method implemented here is a cell-centered, finite volume, multi-material version of the ICE
(for Implicit, Continuous fluid, Eulerian) method [95] developed by Kashiwa and others at Los Alamos
National Laboratory [96]. “Cell-centered” means that all elements of the state are colocated at the grid
cell-center (in contrast to a staggered grid, in which velocity components may be centered at the faces
of grid cells, for example). This colocation is particularly important in regions where a material mass
is vanishing. By using the same control volume for mass and momentum it can be assured that as the
material mass goes to zero, the mass and momentum also go to zero at the same rate, leaving a well-
defined velocity. The technique is fully compressible, allowing wide generality in the types of problems
that can be addressed.
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Our use of the cell-centered ICE method employs time splitting: first, a Lagrangian step updates the state
due to the physics of the conservation laws (i.e., right hand side of Egs. 23.1-23.3); this is followed by an
Eulerian step, in which the change due to advection is evaluated. For solution in the Eulerian frame, the
method is well developed and described in [96].

In the mixed frame approach used here, a modification to the multi-material equation of state is needed.
Equation (23.7) is unambiguous when all materials are fluids or in cases of a flow consisting of dispersed
solid grains in a carrier fluid. However in fluid-structure problems the stress state of a submerged struc-
ture may be strongly directional, and the isotropic part of the stress has nothing to do with the hydrody-
namic (equilibration) pressure p. The equilibrium that typically exists between a fluid and a solid is at the
interface between the two materials: there the normal part of the traction equals the pressure exerted by
the fluid on the solid over the interface. Because the orientation of the interface is not explicitly known
at any point (it is effectively lost in the averaging) such an equilibrium cannot be computed.

The difficulty, and the modification that resolves it, can be understood by considering a solid material in
tension coexisting with a gas. For solid materials, the equation of state is the bulk part of the constitutive
response (that is, the isotropic part of the Cauchy stress versus specific volume and temperature). If one
attempts to equate the isotropic part of the stress with the fluid pressure, there exist regions in pressure-
volume space for which Eq. (23.7) has no physical solutions (because the gas pressure is only positive).
This can be seen schematically in Fig. 23.1, which sketches equations of state for a gas and a solid, at an
arbitrary temperature.

Recall that the isothermal compressiblity is the negative slope of the specific volume versus pressure. Em-
bedded structures considered here are solids and, at low pressure, possess a much smaller compressibility
than the gasses in which they are submerged. Nevertheless the variation of condensed phase specific vol-
ume can be important at very high pressures, where the compressibilities of the gas and condensed phase
materials can become comparable (as in a detonation wave, for example). Because the speed of shock
waves in materials is determined by their equations of state, obtaining accurate high pressure behavior is
an important goal of our FSI studies.

To compensate for the lack of directional information for the embedded surfaces, we evaluate the solid
phase equations of state in two parts. Above a specified postive threshold pressure (typically 1 atmo-
sphere), the full equation of state is respected; below that threshold pressure, the solid phase pressure
follows a polynomial chosen to be C* continuous at the threshold value and which approaches zero as the
specific volume becomes large. The effect is to decouple the solid phase specific volume from the stress
when the isotropic part of the stress falls below a threshold value. In regions of coexistence at states be-
low the threshold pressure, p tends to behave according to the fluid equation of state (due to the greater
compressibility) while in regions of pure condensed phase material p tends rapidly toward zero and the
full material stress dominates the dynamics as it should.
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Figure 23.1: Specific volume vs pressure for a gas phase material and a solid phase material. Light dashed
line reflects an altered solid phase equation of state to keep all materials in positive equilibration pressure
space.






24.1

24.1.1

24 — Fluid material models

ICE use standard Newtonian fluid models for the simulation of fluids. However, since it was designed for
shock-compression applications, we focus on some of the high energy material models that are used by
ICE in VAANGO.

High Energy Material Reaction Models

Two types of High Energy (HE) reaction models were considered here. The first is a model for detonation,
in which the reaction front proceeds as a shock wave through the solid reactant, leaving highly pressurized
product gases behind the shock. The second is a deflagration model, in which the reaction proceeds more
slowly through the reactant in the form of a thermal burn. Each is described here.

The JWL++ Detonation Model

The detonation model used in two of the calculations discussed in Section 25.3 is a reactive flow model
known as JWL++[97]. JWL++ consists of equations of state for the reactant and the products of reaction
as well as a rate equation governing the transformation from product to reactant. In addition, the model
consists of a “mixer” which is a rule for determining the pressure in a mixture of product and reactant,
as found in a partially reacted cell. Because pressure equilibration among materials is already part of the
multi-material CFD formulation described in Section 25.1, the mixer was not part of the current imple-
mentation. Lastly, two additional rules apply. The first is that reaction begins in a cell when the pressure
in that cell exceeds 200 MPa. Finally, no more than 20% of the explosive in a cell is allowed to reactin a
given timestep.

The Murnaghan equation of state [21] used for the solid reactant material is given by:

p=— (i - 1) (24.1)

nk \v"

where v = p,/p, and n and « are material dependent model parameters. Note that while the reactants are
solid materials, they are assumed to not support deviatoric stress. Since a detonation propagates faster
than shear waves, the strength in shear of the reactants can be neglected. Since it is not necessary to track
the deformation history of a particular material element, in this case, the reactant material was tracked
only in the Eulerian frame, i.e. not represented by particles within MPM.
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The JWL C-term form is the equation of state used for products, and is given by:
C
P =Aexp(-R,v) + Bexp(—R,v) + —— (24.2)
PoKVn_l

where A, B, C, R,, R,, p, and « are all material dependent model parameters.
The rate equation governing the transformation of reactant to product is given by:

dF
T G(p+q)'(1-F) (24.3)

where G is a rate constant, and b indicates the power dependence on pressure. g is an artificial viscosity,
but was not included in the current implementation of the model. Lastly:
F= Pproduct

Preactant T Pproduct

(24.4)

is the burn fraction in a cell. This can be differentiated and solved for a mass burn rate in terms of d F:

dF
I'= E (Preactant + Pproduct) (24.5)
Deflagration Model

The rate of thermal burning, or deflagration, of a monopropellant solid explosive is typically assumed to
behave as:

D = Ap" (24.6)

where D can be thought of as the velocity at which the burn front propagates through the reactant (with
units of length/time) and p is the local pressure [98]. A and n are parameters that are empirically de-
termined for particular explosives. Because deflagration is a surface phenomenon, our implementation
requires the identification of the surface of the explosive. The surface is assumed to lie within those cells
which have the highest gradient of mass density of the reactant material. Within each surface cell, an
estimate of the surface area a is made based on the direction of the gradient, and the rate D above is
converted to a mass burn rate by:

I'= aDPreactant (24.7)

where preactant i the local density of the explosive. While the reaction rate is independent of temperature,
initiation of the burn depends on reaching a threshold temperature at the surface.

Since the rate at which a deflagration propagates is much slower than the shear wave speed in the reac-
tant, it is important to track its deformation as pressure builds up within the container. This deformation
may lead to the formation of more surface area upon which the reaction can take place, and the change
to the shape of the explosive can affect the eventual violence of the explosion. Because of this, for de-
flagration cases, the explosive is represented by particles in the Lagrangian frame. The stress response
is usually treated by an implementation of ViscoSCRAM [99], which includes representation of the ma-
terial’s viscoelastic response, and considers effects of micro-crack growth within the granular composite
material.
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Approaches to fluid structure interaction (FSI) problems are typically divided into two classes. “Sep-
arated” approaches treat individual materials as occupying distinct regions of space, with interactions
occurring only at material interfaces. The details of those interactions vary between implementations,
and are often a function of the degree, or “strength” of the coupling between the fluid and solid fields.
Because of the separated nature of the materials, only one set of state variables is needed at any point in
space, since only one material is allowed to exist at that point. “Averaged” model approaches allow all
materials to exist at any point in space with some probability. Variables describing the material state vary
continuously throughout the computational domain, thus, the state of every material is defined at every
point in space. Distinct material interfaces are not defined, rather the interaction between materials is
computed in an average sense, and, as such, interactions among materials may take place anywhere.

While both the separated model and averaged model approaches have their respective merits, the aver-
aged model, when carried out on an Eulerian grid, allows arbitrary distortion of materials and material
interfaces. However, these distortions can be catastrophic for the solid material, as the deformation his-
tory of the solid must be transported through the Eulerian grid. This transport can lead to non-physical
stresses and the interface between materials is also subject to diffusion. The latter problem can be miti-
gated via surface tracking and the use of a single valued velocity field [100, 101], but this does not eliminate
the problems of stress transport.

The approach described here uses the averaged model approach, and addresses the issue of stress transport
by integrating the state of the solid field in the “material” frame of reference through use of the Material
Point Method (MPM) [1, 2]. MPM is a particle method for solid mechanics that allows the solid field
to undergo arbitrary distortion. Because the fluid state is integrated in the Eulerian frame, it can also
undergo arbitrary distortion. MPM uses a computational “scratchpad” grid to advance the solution to
the equations of motion, and by choosing to use the same grid used in the Eulerian frame of reference,
interactions among the materials are facilitated on this common computational framework. By choosing
to use an infinitely fast rate of momentum transfer between the materials, the single velocity field limit is
obtained, and the interface between materials is limited to, at most, a few cells. Thus, in the differential
limit, the separated model can be recovered. This means that with sufficient grid resolution, the accuracy
of the separated model and the robustness of the averaged model can be enjoyed simultaneously.

An exposition of the governing equations of the CFD approach are given in Chapter 23 while those for
MPM can be found in Chapter 1. Algorithmic description of the solution of those equations can also be
found in those chapters, but a summary is provided here. The reader is encouraged to browse Section 25.3
to better appreciate the direction that the subsequent development is headed.
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Numerical Implementation

A description of the means by which numerical solutions to the equations in the preceding section are
found is presented next. This begins with separate, brief, overviews of the methodologies used for the
Eulerian and Lagrangian reference frames. The algorithmic details necesssary for integrating them to
achieve a tightly coupled fluid-structure interaction capability is provided in Sec. 25.1.3.

ICE Eulerian Multi-Material Method

The Eulerian method implemented here is a cell-centered, finite volume, multi-material version of the
ICE (for Implicit, Continuous fluid, Eulerian) method [102] developed by Kashiwa and others at Los
Alamos National Laboratory [103]. “Cell-centered” means that all elements of the state are colocated at
the grid cell-center (in contrast to a staggered grid, in which velocity components may be centered at
the faces of grid cells, for example). This colocation is particularly important in regions where a material
mass is vanishing. By using the same control volume for mass and momentum it can be assured that as
the material mass goes to zero, the mass and momentum also go to zero at the same rate, leaving a well
defined velocity. The technique is fully compressible, allowing wide generality in the types of problems
that can be efficiently computed.

Our use of the cell-centered ICE method employs time splitting: first, a Lagrangian step updates the state
due to the physics of the conservation laws (i.e., right hand side of Egs. 23.1-23.3); this is followed by an
Eulerian step, in which the change due to advection is evaluated. For solution in the Eulerian frame, the
method is well developed and described in [103].

In the mixed frame approach used here, a modification to the multi-material equation of state is needed.
Equation 23.7 is unambiguous when all materials are fluids or in cases of a flow consisting of dispersed
solid grains in a carrier fluid. However in fluid-structure problems the stress state of a submerged struc-
ture may be strongly directional, and the isotropic part of the stress has nothing to do with the hydrody-
namic (equilibration) pressure p. The equilibrium that typically exists between a fluid and a solid is at the
interface between the two materials: there the normal part of the traction equals the pressure exerted by
the fluid on the solid over the interface. Because the orientation of the interface is not explicitly known
at any point (it is effectively lost in the averaging) such an equilibrium cannot be computed.

The difficulty, and the modification that resolves it, can be understood by considering a solid material in
tension coexisting with a gas. For solid materials, the equation of state is the bulk part of the constitutive
response (that is, the isotropic part of the Cauchy stress versus specific volume and temperature). If
one attempts to equate the isotropic part of the Cauchy stress with the fluid pressure, there exist regions
in pressure-volume space for which Eq. 23.7 has no physical solutions (because the gas pressure is only
positive). This can be seen schematically in Fig. 23.1, which sketches equations of state for a gas and a
solid, at an arbitrary temperature.

Recall that the isothermal compressiblity is the negative slope of the specific volume versus pressure. Em-
bedded structures considered here are solids and, at low pressure, possess a much smaller compressibility
than the gasses in which they are submerged. Nevertheless the variation of condensed phase specific vol-
ume can be important at very high pressures, where the compressibilities of the gas and condensed phase
materials can become comparable (as in a detonation wave, for example). Because the speed of shock
waves in materials is determined by their equations of state, obtaining accurate high pressure behavior is
an important goal of our FSI studies.

To compensate for the lack of directional information for the embedded surfaces, we evaluate the solid
phase equations of state in two parts. Above a specified postive threshold pressure (typically 1 atmo-
sphere), the full equation of state is respected; below that threshold pressure, the solid phase pressure
follows a polynomial chosen to be C* continuous at the threshold value and which approaches zero as the
specific volume becomes large. The effect is to decouple the solid phase specific volume from the stress
when the isotropic part of the stress falls below a threshold value. In regions of coexistence at states be-
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low the threshold pressure, p tends to behave according to the fluid equation of state (due to the greater
compressibility) while in regions of pure condensed phase material p tends rapidly toward zero and the
full material stress dominates the dynamics as it should.

The Material Point Method

Solid materials with history dependent constitutive relations are more conveniently treated in the La-
grangian frame. Here we briefly describe a particle method known as the Material Point Method (MPM)
which is used to evolve the equations of motion for the solid phase materials. MPM is a powerful tech-
nique for computational solid mechanics, and has found favor in applications involving complex geome-
tries [104], large deformations [105] and fracture [106], to name a few. After the description of MPM, its
incorporation within the multi-material solution is described in Sec. 25.1.3.

Originally described by Sulsky, et al., [1, 2], MPM is a particle method for structural mechanics simu-
lations. MPM is an extension to solid mechanics of FLIP [3], which is a particle-in-cell (PIC) method
for fluid flow simulation. The method typically uses a cartesian grid as a computational scratchpad for
computing spatial gradients. This same grid also functions as an updated Lagrangian grid that moves
with the particles during advection and thus eliminates the diffusion problems associated with advection
on an Eulerian grid. At the end of a timestep, the grid is reset to the original, regularly ordered, position.
Details of the theory of MPM can be found in Chapter 1.

By describing and implementing MPM in an independent fashion, validation of the method itself as well
as submodels (e.g., constitutive models and contact) is simplified. However, we emphasize that its use here
is for selected material field description within the general multi-material formulation. This integration
is described next.

Integration of MPM within the Eulerian Multi-Material Formulation

An important feature of this work is the ability to represent a material in either the Lagrangian or Eulerian
frame. This allows treating specific phases in their traditionally preferred frame of reference. The Material
Point Method, is used to time advance solid materials that are best described in a Lagrangian reference
frame. By choosing the background grid used to update the solid materials to be the same grid used in the
multi-material Eulerian description, all interactions among materials can be computed in the common
framework, according to the momentum and heat exchange terms in Eqs 23.2-23.3. This results in a robust
and tightly coupled solution for interacting materials with very different responses.

To illustrate how the integration is accomplished in an algorithmic fashion the explicit steps for advancing
a fluid-structure interaction problem from time ¢ to time ¢ + At are described below.

1. Project particle state to grid: A simulation timestep begins by interpolating the particle descrip-
tion of the solid to the grid. This starts with a projection of particle data to grid vertices, or nodes, as
described in Eq. 1.69, and is followed by a subsequent projection from the nodes to the cell-centers.
Since our work uses a uniform structured grid, each node has equal weight in its contribution to
the cell-centered value. The exception to this is near computational boundaries where symmetric
boundary conditions are used. The weight of those nodes on the boundary must be doubled in
order to achieve the desired effect.

2. Compute the equilibrium pressure: While Eq. 23.7 and the surrounding discussion describes the
basic process, one specific point warrants further explanation. In particular, the manner in which
each material’s volume fraction is computed is crucial. Because the solid and fluid materials are
evolved in different frames of reference, the total volume of material in a cell is not necessarily
equal to the volume of a computational cell. Material volume is tracked by evolving the specific
volume for each material according to Eq. 23.10. The details of this are further described in step 11.
With the materials’ masses and specific volumes, material volume can be computed (V, = M,v,) and
summed to find the total material volume. The volume fraction 6, is then computed as the volume
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of r-material per total material volume. With this, the solution of Eq. 23.7 can be carried out at
each cell using a Newton-Raphson technique[107], which results in new values for the equilibrium
pressure, peq, volume fraction, 6, and specific volume, v,.

Compute face-centered velocities, v, for the Eulerian advection: At this point, fluxing velocities
are computed at each cell face. The expression for this is based on a time advanced estimate for the
cell-centered velocity. A full development can be found in [103] and [11] but here, only the result is
given:

ut = Prilr, + Preltrg (ZervFRAt) (peqR = Pegq;
=
Pry T Pry Ve T Vrg Ax

The first term above is a mass weighted average of the logically left and right cell-centered velocities,
the second is a pressure gradient acceleration term, and the third is acceleration due to the com-
ponent of gravity in the face normal direction. Not shown explicitly is the necessary momentum
exchange at the face-centers. This is done on the faces in the same manner as described subse-
quently in step 10 for the cell-centered momentum exchange.

Multiphase chemistry: Compute sources of mass, momentum, energy and specific volume as a
result of phase changing chemical reactions for each r-material, I}, u,I}, eI, and v,I,. Specifics of
the calculation of I, are model dependent, and examples are given in Sec. 24.1.

Care must be taken to reduce the momentum, internal energy and volume of the reactant by an
amount proportional to the mass consumed each timestep, so that those quantities are depleted
at the same rate as the mass. When the reactant material is described by particles, decrementing
the particle mass automatically decreases the momentum and internal energy of that particle by
the appropriate amount. This mass, momentum, and internal energy is transferred to the product
material’s state, and the volume fraction for the reactant and product materials is recomputed.
Compute an estimate of the time advanced pressure, p: Based on the volume of material being
added to (or subtracted from) a cell in a given timestep, an increment to the cell-centered pressure
is computed using:

) + gAt (25.1)
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where «, is the r-material bulk compressibility. The first term in the numerator of Eq. 25.2 represents
the change in volume due to reaction, i.e., a given amount of mass would tend to occupy more
volume in the gas phase than the solid phase, leading to an increase in pressure. The second term
in the numerator represents the net change in volume of material in a cell due to flow into or out of
the cell. The denominator is essentially the mean compressibility of the mixture of materials within
that cell. This increment in pressure is added to the equilibrium pressure computed in step 2 and
is the pressure used for the remainder of the current timestep. Again, the details leading to this
equation can be found in [103].

Face Centered Pressure p*: The calculation of p* is discussed at length in [11]. For this work, it is
computed using the updated pressure by:

P*=(&+p—R)/(i+i) (25.4)
pr pr)'\pL  pr

where the subscripts L and R refer to the logically left and right cell-centered values, respectively,
and p is the sum of all material’s densities in that cell. This will be used subsequently for the com-
putation of the pressure gradient, Vp*.

. Material Stresses: For the solid, we calculate the velocity gradient at each particle based on the

grid velocity (Eq. 1.73) for use in a constitutive model to compute particle stress. Fluid stresses are
computed on cell faces based on cell-centered velocities.
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Accumulate sources of mass, momentum and energy at cell-centers: These terms are of the form:

N
A(m), = AtV Y T (25.5)
S=1,S#1
N
A(mu), = —AtV[@,Vp*+V-9r(ar—a)+ > usl“s] (25.6)
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Note that the only source of internal energy being considered here is that due to “flow work”. This
is required for the compressible flow formulation, but other terms, such as heat conduction are at
times included.

Compute Lagrangian phase quantities at cell-centers: The increments in mass, momentum and
energy computed above are added to their time t counterparts to get the Lagrangian values for
these quantities. Note that here, some Lagrangian quantities are denoted by an L— superscript. This
indicates that all physical processes have been accounted for except for inter-material exchange of
momentum and heat which is described in the following step.

(m)y = (m);+A(m), (25.8)
(mu):™ = (mu)!+ A(mu), (25.9)
(me)l™ = (me)' + A(me), (25.10)

Momentum and heat exchange: The exchange of momentum and heat between materials is com-
puted according to:

N
(mu); = (mu);” +Atm, > 0,0:K,s(ul - ul) (25.11)
$=1
N
(me)f = (me)f_ + At my ¢y, Z 0,0,H,, (TSL - TrL) (25.12)

These equations are solved in a pointwise implicit manner that allows arbitrarily large momentum
transfer to take place between materials. Typically, in FSI solutions, very large (10") values of K are
used, which results in driving contacting materials to the same velocity. Intermaterial heat exchange
is usually modeled at a lower rate. Again, note that the same operation must be done following Step
3 above in the computation of the face-centered velocities.

Specific volume evolution: As discussed above in step 2, in order to correctly compute the equilib-
rium pressure and the volume fraction, it is necessary to keep an accurate accounting of the specific
volume for each material. Here, we compute the evolution in specific volume due to the changes in
temperature and pressure, as well as phase change, during the foregoing Lagrangian portion of the
calculation, according to:

N N
A(mv), = AtV|vTI, +f9rv . Z up + 0,8, T, —fgr Z 0B Ts (25.13)

$=1 $=1
(m)E = (mv)! + A(mv), (25.14)
where f8 is the constant pressure thermal expansivity and T = TLA_ tTt is the rate of change of each

material’s temperature during the Lagrangian phase of the computation.

Advect Fluids: For the fluid phase, use a suitable advection scheme, such as that described in [108],
to transport mass, momentum, internal energy and specific volume. As this last item is an intensive
quantity, it is converted to material volume for advection, and then reconstituted as specific volume
for use in the subsequent timestep’s equilibrium pressure calculation.

Update Nodal Quantities for Solid Materials: Those changes in solid material mass, momen-
tum and internal energy that are computed at the cell-centers are interpolated to the nodes as field
quantities, e.g., changes in momentum are expressed as accelerations, for use in Eq. 1.72.

Advect Solids: For the solid phase, interpolate the time advanced grid velocity and the correspond-
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ing velocity increment (acceleration) back to the particles, and use these to advance the particle’s
position and velocity, according to Egs. 1.76.

This completes one timestep. In the preceding, the user has a number of options in the implementation.
The approach taken here was to develop a working MPM code and a separate working multi-material ICE
code. In addition, some routines specific to the integration are required, for example, to transfer data from
grid nodes to cell-centers. We note, however, that the fluid structure interaction methodology should not
be looked at in the context of a “marriage” between an Eulerian CFD code and MPM. The underlying the-
ory is a multi-material description that has the flexibility to incorporate different numerical descriptions
for solid and fluid fields within the overarching solution process. To have flexibility in treating a widest
range of problems, it was our desire that in the integration of the two algorithms, each of the components
be able to function independently. As described here, this method is fully explicit in time. To make this
implicit with respect to the propagation of pressure waves, a Poisson equation is solved in the calculation
of Ap, which is in turn used to iteratively update the face-centered velocities [103].

Models

The governing equations given in Section 23.1.1 are incomplete without closure equations for quantities
such as pressure, stress, and rate of exchange of mass between materials. Equations of state, constitutive
models and reaction models provide the needed closure. Some ICE material models have been discussed
in Chapter 24. Materials used by the MPM component are discussed elsewhere in the Vaango Theory
Manual.

Numerical Results

The simulation results presented here are intended to serve two purposes, to validate the method pre-
sented above, and to demonstrate its capabilities. While results from some very basic validation tests can
be found in [109], the validation tests presented here are targeted toward exploding energetic devices.
Extensive experimental data have been collected for the first two cases, and these data are compared with
simulation results.

The first test, detonation of a series of cylinders of explosive, validates both the general multi-material
framework, including material transformation, as well as the detonation model itself. In the second test,
a cylinder of explosive confined in a copper tube is detonated. There, the confidence gained from the first
test is built upon and extended to include the interaction of the highly pressurized product gases with the
confining copper cylinder. Wall velocity of the copper tube is compared with experimental measurements.

For the last case, a steel cylinder filled with PBX-9501 is heated to the critical temperature to commence
a deflagration. The simulation continues through the rupture of the case when product gases are free to
interact with the surrounding air. This simulation demonstrates a unique capability of this approach, in
which initially separate fluid regions are allowed to interact following the failure of the steel container.

Rate Stick Simulations

A well known phenomenon of detonating solid high explosives is the so-called “size effect”. The size effect
refers to the change of the steady state detonation velocity of explosives, Us with size R, [97]. In order
to validate our implementation of the JWL++ detonation model within our multi-material framework, a
parameter study was conducted for cylinders of Ammonium Nitrate Fuel Oil (ANFO-K1) with length of
10 cm and radii ranging from 4 mm to 20 mm. In addition, a one-dimensional simulation provided for
the “infinite radius” case. In each of the finite radius cases, the cylinder was initially surrounded by air.
Detonation was initiated by impacting the cylinder at 9o m/s against the boundary of the computational
domain, at which a zero velocity Dirichlet boundary condition was imposed. This impact was sufficient
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Figure 25.1: Unconfined 12 mm “rate-stick”. The mass density of the reactant material is volume rendered,
and shows evidence of the curvature of the reaction front, and the compression of the reactant just ahead
of the reaction. Behind the detonation, most of the reactant material is consumed.

to raise the pressure within the cylinder to above the threshold for initiation of reaction. The detonation
velocity was determined by comparing the arrival time of the detonation at two points along the cylinder,
sufficiently into the far field that the detonation had reached a steady state.

Material properties for these cases included the following: The reactant was described by a Murnaghan
equation of state with parameters n = 7.4, ¥ = 3.9x10" Pa™1 and p, = 1160.0 kg/m3. The products of
reaction were described by a JWL C-term form equation of state with parameters A = 2.9867x10" Pa, B
= 4.11706x10° Pa, C = 7.206147x10° Pa, R, = 4.95, R, = 1.15, w = 0.35 and p, = 1160.0 kg/m>. The JWL++
parameters were taken as: G = 3.5083x1077 s'Pab, b =13, po = 1160.0 kg/m3. In all, this simulation
included 3 materials; the reactant material, the products of reaction and the surrounding air.

Simulations were carried out on uniform meshes with cell sizes of 1.0 mm, 0.5 mm and 0.25 mm. A one-
quarter symmetry was assumed in all cases. A qualitative representation is shown in Figure 25.1, which
depicts a volume rendering of the density of the reactant as the detonation has progressed about halfway
into the material for the 12 mm radius case at the finest resolution. The curvature of the burn front and
the elevated density just ahead of it are evident in this view.

Figure 25.2 is a plot of detonation velocity versus the inverse of the sample radius. Experimental data are
represented by open squares, while results of the simulations are shown with filled circles (h = 1.0 mm),
filled diamonds (h = 0.5 mm) and filled triangles (h = 0.25 mm). Connecting lines for the numerical
data are in place to guide the eyes of the reader. Evident from this plot is the convergence of detonation
velocities with grid resolution, and the generally good agreement between experimental and computed
detonation velocities at the finer grid resolutions, particularly at the larger radii, where both the experi-
mental data and the model are considered more reliable.

Again, while this set of tests doesn’t validate the full fluid-structure interaction approach, it does give
credibility to the underlying multi-material formulation, including the pressure equilibration and the
exchange of mass between materials, in this case as governed by the JWL++ detonation model, as well as
momentum and energy.

Cylinder Test Simulation

The cylinder test is an experiment which is frequently used to calibrate equations of state for detonation
products of reaction [110]. In this case, the test consists of an OFHC copper tube with an inner radius of
2.54 cm, an outer radius of 3.06 cm and a length of 35 cm. The tube is filled with QM-100, an Ammonium
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Figure 25.2: Detonation velocity vs. inverse radius. Experimental and numerical data are presented, and
indicate good agreement of the model with experiment, as well as convergence of detonation velocity with
grid resolution.

Nitrate emulsion and a detonation is initiated at one end of the tube. Measurements of the wall velocity
wall are made at individual points along the length of the tube using Fabry-Perot interferometry or streak
cameras.

A simulation of this configuration was performed and wall velocity data were collected at an axial location
25 cm from the point of initiation. The reactant was again described by a Murnaghan equation of state with
parameters n = 7.0, k = 1.02x10 ° Pa™" and p, = 1260.0 kg/m3. The products of reaction were described
by a JWL C-term form equation of state with parameters A = 4.8702x10" Pa, B = 2.54887x10° Pa, C =
5.06568x10°% Pa, R, = 5.0, R, = 1.0, w = 0.3 and po =1260.0 kg/m3. The JWL++ parameters were taken as:
G =9.1x10 °s ' Pa, b =1.0, p, =1260.0 kg/m>. The copper tube was modeled as an elastic-perfectly plastic
material with a density of 8930.0 kg/m?, bulk and shear moduli of 117.0 GPa and 43.8 GPa, respectively,and
a yield stress of 70.0 MPa. The copper tube was surrounded by air. In all, 4 materials are present in this
simulation, the reactant, the products of reaction, the copper tube, and the surrounding air.

Again, a one-quarter symmetry section of the full cylinder was modeled using a cell size of h = 0.5 mm and
a total domain size of 35 cm x 6 cm x 6 cm. Zero gradient conditions described the exterior boundaries,
which allowed material to exit the domain.

Figure 25.3 shows a snapshot of this test midway through the simulation, at t = 18.8 us. The copper tube is
depicted using an iso-surface of the cell-centered mass density (the two surfaces are the inner and outer
walls of the tube) that is colored by velocity. A volume rendering of the pressure field is also present.
Alternating bands of high and low velocity of the tube wall are evidently due to the reflection of the
impulse provided by the shock between the inner and outer surfaces of the tube.

Velocity data was collected from those particles which were both initially at an axial location of 25 cm,
and upon the exterior surface of the tube. The velocity from this collection of particles was averaged over
the circumference and plotted vs. time in Figure 25.4. In addition, experimental results (LLNL, Shot No.
K260-581) are also shown. Both datasets are time shifted to coincide with the arrival of the detonation.
Good agreement is evident between the experimental and numerical data, further indicating the validity
of the approach described here.

Fast Cookoff Simulation

Cookoft tests, generally speaking, refer to experiments in which energetic material is heated until it
reaches ignition. The rate of heating typically differentiates these tests in to “fast” or “slow” cookoft. In
slow cookoft tests, the temperature is usually increased very slowly, perhaps a few degrees per hour, so
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Figure 25.3: Copper cylinder test simulation. The walls of the copper tube are depicted as an isosurface
of density of the copper material and are colored by velocity magnitude. Pressure is represented by a vol-
ume rendering, and indicates the progress of the detonation, as well as the interaction of the pressurized
products of reaction with the confining walls.
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Figure 25.4: Copper cylinder test simulation. Experimental and computational velocities of the cylinder
vs. time. Data was collected at a point 25 cm from the point of initiation of the detonation.
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Table 25.1: Material constants for 4340 steel.

P K U To Tm Co ro SOt
(kg/m®) (GPa) (GPa) (K) (K) (m/s)
7830.0 173.3 80.0 204.0 1793.0 3574 1.69 1.92

A B C n m D, D, D, D, D,
(MPa) (MPa)
792.0 510.0 0.014 0.26 1.03 0.05 3.44 -212 0.002 0.61

that the entire sample is able to equilibrate and is nearly isothermal when ignition occurs. In fast cookoft
tests, heat is added to the system quickly, which is likely to lead to relatively local ignition at the surface of
the sample. Fast cookoff is more likely to occur in an accident scenario, where ordinance may be subject
to heating by a fire, as occurred on the USS Forrestal in 1967.

The scenario considered here consists of a cylindrical 4340 steel container with both inner diameter and
length of 10.16 cm, and wall thickness of 0.635 cm, filled with PBX-9501. The temperature of the container
was initialized to be 1° K above the ignition temperature in the deflagration model for PBX-9501. In
this way, the entire outer surface of the explosive is ignited simultaneously. This is, of course, somewhat
unrealistic for an accident scenario, but rather is an idealization.

Mechanical properties for PBX 9501 were obtained from the literature [99], while the material constants
used in the modeling of 4340 steel are shown in Table 25.1. A temperature-dependent specific heat model
[111] was used to compute the internal energy and the rate of temperature increase in the material. We
assumed an initial mean porosity of 0.005 with a standard deviation of 0.001. The critical porosity was
0.3. The mean strain at void nucleation was assumed to be 0.3 with a standard deviation of o.1. The scalar
damage variable was initialized with a mean of 0.005 and a standard deviation of 0.001.

Three planes of symmetry are assumed, which allows modeling only 1/8th of the total geometry. Each
dimension of the computational domain was 9.0 cm discretized into 180 computational cells, for a grid
spacing of h = 0.5 mm. Four materials were present, the steel container and the PBX-9501, each of which
are treated in the Lagrangian frame of reference, as well as the air initially surrounding the container, and
the products of reaction from the deflagration, both of which are represented in the Eulerian frame of
reference. Neumann zero gradient boundary conditions are used on the exterior domain boundaries to
allow material to flow out of the domain, as the explosion progressed.

Because of the size and complexity of this simulation, significant computational resources were required
to obtain a solution. Namely, the simulation ran for about 48 hours on 600 processors of a Linux cluster
at Lawrence Livermore National Laboratory, which resulted in 0.31 milliseconds of simulated time.

Results from this simulation are shown in Fig. 25.5. In each panel, the container and explosive are depicted
by isosurfaces, blue and red, respectively. In Fig. 25.5b-25.5¢, a volume rendering of the mass density of
the product material of the reaction is also included. Fig. 25.5a shows the initial state of the geometry,
while the remaining panels show the progression of the simulation at the times indicated in the captions.
The last two panels depict the same time, with the product gas removed in the final panel, to more clearly
show the state of the container at that time. Close comparison of the initial and final panels also reveals the
reduction in size of the explosive pellet, due to the reaction. Product gas first begins to leave the container
through a rupture where the side and end of the container meet(Fig. 25.5¢), and ultimately also through
a rupture in middle (Fig. 25.5¢). The formation of these openings is governed by material localization.

Since no surface tracking is required in this method, there is no requirement to track the creation of the
new surfaces that occur due to material failure. Gas is free to escape through the openings simply because
there is no longer anything in those computational cells to prevent it once the gap is sufficiently wide.
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Figure 25.5: Time series of a steel container (blue) filled with deflagrating plastic bonded explosive(red). A
volume rendering of the mass density of the products of reaction is also shown, except in the final panel,
where it is removed to more clearly show the regions where the container has failed.
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